File: select_algorithm.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1928 lines) | stat: -rw-r--r-- 68,723 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
# mypy: allow-untyped-defs
import builtins
import contextlib
import dataclasses
import functools
import inspect
import itertools
import json
import logging
import math
import operator
import os
import sys
import textwrap
import time
from collections import namedtuple
from concurrent.futures import as_completed, ThreadPoolExecutor
from io import StringIO
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, TypeVar, Union
from unittest.mock import patch

import sympy
from filelock import FileLock

import torch
import torch._inductor.async_compile  # noqa: F401 required to warm up AsyncCompile pools
from torch._dynamo.testing import rand_strided
from torch._dynamo.utils import counters, dynamo_timed, identity, preserve_rng_state

from . import config, ir
from .autotune_process import (
    TensorMeta,
    TritonBenchmarkRequest,
    TritonCPUBenchmarkRequest,
    TritonGPUBenchmarkRequest,
)
from .codecache import code_hash, PersistentCache, PyCodeCache
from .codegen.common import (
    CSEVariable,
    IndentedBuffer,
    KernelTemplate,
    OpOverrides,
    WorkspaceArg,
)
from .codegen.simd_kernel_features import SIMDKernelFeatures
from .codegen.triton import (
    gen_common_triton_imports,
    texpr,
    TritonKernel,
    TritonScheduling,
)
from .codegen.triton_utils import config_of, signature_to_meta
from .exc import CUDACompileError
from .ir import ChoiceCaller, PrimitiveInfoType
from .ops_handler import StoreMode
from .runtime.benchmarking import benchmarker
from .runtime.hints import DeviceProperties
from .utils import (
    FakeIndentedBuffer,
    get_dtype_size,
    Placeholder,
    restore_stdout_stderr,
    sympy_dot,
    sympy_index_symbol,
    sympy_product,
    triton_type_to_torch,
    unique,
)
from .virtualized import V


log = logging.getLogger(__name__)

# correctness checks struggle with fp16/tf32
VERIFY: Dict[str, Any] = {}
PRINT_AUTOTUNE = True
DEBUG = False


class KernelNamespace:
    pass


# these objects are imported from the generated wrapper code
extern_kernels = KernelNamespace()


_T = TypeVar("_T", bound="AutotuneArgs")


@dataclasses.dataclass
class BenchmarkTensors:
    """Represents a set of inputs and outputs for autotuning with a template"""

    input_tensors: List[torch.Tensor]
    output_tensor: Optional[torch.Tensor]

    def unpack(self):
        return self.input_tensors, self.output_tensor


@dataclasses.dataclass
class AutotuneArgs:
    """During autotuning, we need to pass the same inputs to all choices.
    Note:
        Since we typically have a mix of external choices and triton choices, we create
        two lists of inputs for the same underlying buffers:
        - External inputs (for aten kernels): Include offset for sliced tensors
        - Triton inputs: Use base pointer for sliced tensors, without offset
    """

    triton: BenchmarkTensors
    extern: BenchmarkTensors
    expected: Optional[torch.Tensor] = None

    def get_benchmark_tensors(self, extern=False) -> BenchmarkTensors:
        """Returns the inputs and output tensors for a given choice."""
        bench_tensors = self.extern if extern else self.triton
        return bench_tensors

    @classmethod
    def from_choice_args(
        cls: Type[_T],
        example_inputs: List[torch.Tensor],
        example_inputs_extern: List[torch.Tensor],
        out: torch.Tensor,
        out_extern: torch.Tensor,
        expected: Optional[torch.Tensor] = None,
    ) -> _T:
        """Factory method to create AutotuneInputs from separate inputs/outputs"""
        return cls(
            triton=BenchmarkTensors(example_inputs, out),
            extern=BenchmarkTensors(example_inputs_extern, out_extern),
            expected=expected,
        )

    def verify(self, **kwargs):
        """Verify the correctness of the benchmarking results"""

        torch.testing.assert_close(self.extern.output_tensor, self.expected, **kwargs)


class PartialRender:
    """
    Some parts of a template need to be generated at the end, but
    inserted into the template at the start.  This allows doing a bunch
    of replacements after the initial render.
    """

    def __init__(self, code, replacement_hooks) -> None:
        super().__init__()
        self.code = code
        self.replacement_hooks = replacement_hooks

    def finalize_hook(self, hook_key: str, strict=True) -> None:
        if hook_key not in self.replacement_hooks:
            if strict:
                raise RuntimeError(
                    f"{hook_key} not registered in self.replacement_hooks"
                )
            else:
                return
        assert (
            self.replacement_hooks[hook_key] is not None
        ), "hook_key can only be called once"
        self.code = self.code.replace(hook_key, self.replacement_hooks[hook_key]())
        self.replacement_hooks[hook_key] = None

    def finalize_all(self) -> str:
        for key, fn in self.replacement_hooks.items():
            self.code = self.code.replace(key, fn())
        return self.code


# This is used to store info needed for lowering each subgraph in triton
# templates
SubgraphInfo = namedtuple(
    "SubgraphInfo",
    [
        "body",
        "template_mask",
        "template_out",
    ],
)


class ModificationWrapper(V.WrapperHandler):  # type: ignore[name-defined]
    """Handles placeholder substitutions during subgraph processing."""

    def __init__(
        self,
        kernel,
        subgraph_number: int,
        fixed_inputs: Dict[str, Any],
        mask: Optional[str],
    ):
        super().__init__(V.ops)
        self.name = f"PlaceholderSubstitution_{subgraph_number}"
        self.kernel = kernel
        self.fixed_inputs = fixed_inputs
        self.mask = mask

    def load(self, name: str, index: sympy.Expr):
        """Handle loading from tensor or fixed input."""
        if name not in self.fixed_inputs:
            index_str = self._process_indexing(index)
            var = self._add_kernel_input(name)
            return f"tl.load({var} + {index_str})"
        return f"({self.fixed_inputs[name]})"

    def indirect_indexing(self, index_var: str, size, check, wrap_neg=True):
        """Convert index variable to symbolic form."""
        return sympy_index_symbol(str(index_var))

    def store(
        self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
    ) -> str:
        """Currently only supports stores for atomic adds coming from scatter nodes
        This is used by flex_attention's backwards grad for captured buffers, see
        zeros_and_scatter lowering
        """
        assert (
            self.mask is not None
        ), "Mask is required for inner stores in modifications"
        assert mode == "atomic_add", "Only atomic_add is supported for inner stores"

        buf_name = self._add_kernel_input(name)
        index_str = self._process_indexing(index)
        index_str = f"tl.broadcast_to({index_str}, {value}.shape)"
        store = f"tl.atomic_add({buf_name} + {index_str}, {value}, {self.mask}, sem='relaxed')"
        return store

    def _add_kernel_input(self, name: str):
        """Add name as input to kernel and return input ref."""
        return self.kernel.args.input(name)

    def _process_indexing(self, index):
        """Process and rename indexing, adding symbols as kernel inputs."""
        return self.kernel.kexpr(self.kernel.rename_indexing(index))


class TritonTemplateKernel(TritonKernel):
    def __init__(
        self,
        kernel_name,
        input_nodes,
        output_node,
        defines,
        num_stages,
        num_warps,
        grid_fn,
        meta,
        call_sizes,
        use_jit=False,
        prefix_args=0,
        suffix_args=0,
        epilogue_fn=identity,
        subgraphs: Optional[List[ir.ComputedBuffer]] = None,
        workspace_arg: Optional[WorkspaceArg] = None,
    ) -> None:
        numel = sympy_product(output_node.get_size())
        super().__init__(
            {
                "x": numel,
                "r": sympy.S.One,
            },
            features=SIMDKernelFeatures([], numel),
        )
        self.input_nodes = input_nodes
        self.output_node = output_node
        self.named_input_nodes = {}  # type: ignore[var-annotated]
        self.defines = defines
        self.kernel_name = kernel_name
        self.use_jit = use_jit
        self.num_stages = num_stages
        self.num_warps = num_warps
        self.grid_fn = grid_fn
        self.meta = meta
        self.call_sizes = call_sizes
        # for templates with fixed epilogues
        self.prefix_args = prefix_args
        self.suffix_args = suffix_args
        self.epilogue_fn = epilogue_fn
        self.render_hooks = {}  # type: ignore[var-annotated]
        self.triton_meta: Optional[Dict[str, object]] = None
        # For Templated Attention this can be a list of ir.Subgraph
        self.subgraphs: Optional[List[ir.ComputedBuffer]] = subgraphs

        # Some templates use extra global memory as a workspace
        self.workspace_arg = workspace_arg
        if workspace_arg is not None:
            self.args.workspace_args.append(workspace_arg)

        # The following attributes (body, template_mask, output_val) are all
        # used for triton kernel codegen.
        # They are swapped onto the TritonTemplateKernel object by
        # `set_subgraph_body`
        self.subgraph_bodies: Dict[str, SubgraphInfo] = {}

        self.body: IndentedBuffer = FakeIndentedBuffer()
        self.template_mask: Optional[str] = None
        self.template_out: Optional[str] = None

    @contextlib.contextmanager
    def set_subgraph_body(self, body_name: str):
        old_body, old_mask, old_out = self.body, self.template_mask, self.template_out
        assert body_name in self.subgraph_bodies, body_name
        self.body, self.template_mask, self.template_out = self.subgraph_bodies[
            body_name
        ]
        yield
        self.subgraph_bodies[body_name] = SubgraphInfo(
            self.body, self.template_mask, self.template_out
        )
        self.body, self.template_mask, self.template_out = old_body, old_mask, old_out

    @contextlib.contextmanager
    def create_subgraph_body(self, body_name: str):
        assert body_name not in self.subgraph_bodies
        self.subgraph_bodies[body_name] = SubgraphInfo(IndentedBuffer(), None, None)
        with self.set_subgraph_body(body_name):
            yield

    def need_numel_args(self):
        return False

    def estimate_kernel_num_bytes(self):
        """
        Estimate the total number of bytes this kernel takes.
        For in/out nodes, sizes are counted twice: once for reading and
        once for writing.
        """
        ninplace_args = len(unique(self.args.inplace_buffers.values()))
        num_bytes = []
        for i, inp in enumerate(itertools.chain(self.input_nodes, (self.output_node,))):
            size = V.graph.sizevars.size_hints(inp.get_size())
            numel = functools.reduce(operator.mul, size, 1)
            dtype_size = get_dtype_size(inp.get_dtype())
            num_bytes.append(numel * dtype_size * (1 + int(i < ninplace_args)))
        return sum(num_bytes)

    def jit_lines(self):
        if self.use_jit:
            return "@triton.jit"

        argdefs, _, signature, _ = self.args.python_argdefs()
        triton_meta: Dict[str, Any] = {
            "signature": signature_to_meta(
                signature, size_dtype=self.index_dtype, argdefs=argdefs
            ),
            "device": DeviceProperties.create(self.output_node.get_device()),
            "constants": {},
        }
        triton_meta["configs"] = [config_of(signature)]
        for arg_num in triton_meta["configs"][0].equal_to_1:  # type: ignore[index]
            triton_meta["constants"][signature[arg_num].name] = 1  # type: ignore[index]
        matrix_instr_nonkdim = self.meta.get("matrix_instr_nonkdim", 0)
        if matrix_instr_nonkdim != 0:
            triton_meta["matrix_instr_nonkdim"] = matrix_instr_nonkdim

        self.triton_meta = triton_meta

        inductor_meta = {
            "kernel_name": str(Placeholder.DESCRIPTIVE_NAME),
            **TritonKernel.inductor_meta_common(),
        }
        if config.profile_bandwidth or config.benchmark_kernel:
            num_gb = self.estimate_kernel_num_bytes() / 1e9
            inductor_meta["kernel_num_gb"] = num_gb
        return f"""
            @triton_heuristics.template(
                num_stages={self.num_stages},
                num_warps={self.num_warps},
                triton_meta={triton_meta!r},
                inductor_meta={inductor_meta!r},
            )
            @triton.jit
        """

    def gen_argdefs(self):
        def hook():
            # python_argdefs() cannot be run until after the rest of the template lazily adds more args
            arg_defs, *_ = self.args.python_argdefs()
            return f"{', '.join(arg_defs)}"

        self.render_hooks["<ARGDEFS>"] = hook
        return "<ARGDEFS>"

    def gen_defines(self):
        return self.defines

    def def_kernel(self, *argnames):
        """
        Hook called from template code to generate function def and
        needed args.
        """
        assert all(isinstance(x, str) for x in argnames)
        renames = IndentedBuffer(initial_indent=1)

        named_args = self.input_nodes[
            self.prefix_args : len(self.input_nodes) - self.suffix_args
        ]

        assert len(argnames) == len(named_args), (
            len(argnames),
            len(named_args),
            self.prefix_args,
            len(self.input_nodes),
        )

        for input_node in self.input_nodes[: self.prefix_args]:
            # get args in correct order
            self.args.input(input_node.get_name())

        for name, input_node in zip(argnames, named_args):
            arg_name = f"arg_{name}"
            self.named_input_nodes[name] = input_node
            self.args.input_buffers[input_node.get_name()] = arg_name

        # The args may be duplicated, so renaming must be after args are de-duplicated.
        for name in argnames:
            input_node = self.named_input_nodes[name]
            arg_name = self.args.input_buffers[input_node.get_name()]
            if input_node.get_layout().offset == 0:
                renames.writeline(f"{name} = {arg_name}")
            else:
                offset = texpr(self.rename_indexing(input_node.get_layout().offset))
                renames.writeline(f"{name} = {arg_name} + {offset}")

        for input_node in self.input_nodes[len(self.input_nodes) - self.suffix_args :]:
            # get args in correct order
            self.args.input(input_node.get_name())

        def hook():
            # python_argdefs() cannot be run until after the rest of the template lazily adds more args
            arg_defs, *_ = self.args.python_argdefs()
            code = IndentedBuffer()
            code.splice(gen_common_triton_imports())
            code.splice(self.jit_lines())
            code.writeline(f"def {self.kernel_name}({', '.join(arg_defs)}):")
            with code.indent():
                code.splice(self.defines)
                code.splice(renames.getvalue())
            return code.getvalue()

        assert "<DEF_KERNEL>" not in self.render_hooks
        self.render_hooks["<DEF_KERNEL>"] = hook
        return "<DEF_KERNEL>"

    def size(self, name: str, index: int):
        """
        Hook called from template code to get the size of an arg.
        Will add needed args to pass it in if it is dynamic.
        """
        assert isinstance(index, int)
        if name is None:
            val = self.output_node.get_size()[index]
        else:
            assert isinstance(name, str)
            val = self.named_input_nodes[name].get_size()[index]
        return texpr(self.rename_indexing(val))

    def stride(self, name, index=None):
        """
        Hook called from template code to get the stride of an arg.
        Will add needed args to pass it in if it is dynamic.
        """
        if name is None:
            val = self.output_node.get_stride()
        else:
            assert isinstance(name, str)
            val = self.named_input_nodes[name].get_stride()

        if isinstance(index, int):
            return texpr(self.rename_indexing(val[index]))
        return ", ".join([texpr(self.rename_indexing(i)) for i in val])

    def _get_subgraph(self, subgraph_number: int):
        assert isinstance(subgraph_number, int)
        assert isinstance(self.subgraphs, list)
        assert subgraph_number < len(
            self.subgraphs
        ), f"Invalid subgraph number provided to create_modification, {subgraph_number} must be < {len(self.subgraphs)}"
        assert (
            self.body.getvalue() == ""
        ), "Body should be clear before adding a modification"
        return self.subgraphs[subgraph_number]

    def _handle_scatter_graph(self, scatter_graph):
        """Handle processing for a single scatter graph.

        Args:
            scatter_graph: The scatter graph to process
        """
        assert isinstance(
            scatter_graph, ir.ComputedBuffer
        ), f"scatter_graph must be an instance of ComputeBuffer but got {type(scatter_graph)}"

        def contiguous_strides(x):
            # We always create a fresh contiguous grad for scattering into
            return sum(
                x_i * stride for x_i, stride in zip(x, scatter_graph.get_stride())
            )

        return scatter_graph.data.store_output(scatter_graph.name, contiguous_strides, [])  # type: ignore[attr-defined]

    def modification(
        self,
        subgraph_number: int,
        output_name: Optional[str],
        mask: Optional[str] = None,
        **fixed_inputs,
    ) -> str:
        """This creates a modification function for a subgraph.
        To use this inside a template, the first argument should specify which subgraph to codegen for

        Args:
            subgraph_number (int): The index of the subgraph in self.subgraphs
            output_name (Optional[str]): The name of the output variable to store the result in
            mask (Optional[str]): An optional mask to use for the store operation. If provided, this mask
                will be applied to the store.
        """
        num = 0
        out = None
        scatters = []
        while f"mod_{subgraph_number}_{num}" in self.subgraph_bodies:
            num += 1
        with self.create_subgraph_body(f"mod_{subgraph_number}_{num}"):
            subgraph = self._get_subgraph(subgraph_number)
            modification_handler = ModificationWrapper(
                self, subgraph_number, fixed_inputs, mask
            )
            with V.set_ops_handler(modification_handler):
                assert isinstance(
                    subgraph, (ir.ComputedBuffer, List)
                ), f"Expected the subgraph to be a ComputedBuffer or a List[ComputedBuffer], got {type(subgraph)}"
                # Handle scatter stores
                if isinstance(subgraph, list):
                    for scatter_graph in subgraph:
                        scatters.append(self._handle_scatter_graph(scatter_graph))
                elif isinstance(subgraph.data, ir.InputBuffer):
                    out = subgraph.data.make_loader()(())
                else:
                    out = subgraph.data.inner_fn(())

            self.codegen_body()
            if output_name is not None:
                assert isinstance(output_name, str)
                assert out is not None
                self.body.writeline(f"{output_name} = {out.value}")
            else:
                assert out is None
                for scatter in scatters:
                    self.body.writeline(str(scatter))

            body_val = self.body.getvalue()
            self.cse.invalidate(set())  # type: ignore[arg-type]
            return body_val

    def store_output(
        self,
        indices: Union[List[Any], Tuple[Any]],
        val: str,
        mask: Optional[str] = None,
        indent_width: int = 4,
    ):
        """Stores the final output and appends any epilogue fusions if the buffer hasn't been optimized away.

        Args:
            indices (Union[List, Tuple]): The index for each dimension of the output. The dot product of
                these indices and output strides must match `val`.
            val (str): The value to store.
            mask (Optional[str]): An optional mask to use for the store operation. If provided, this mask
                will be applied to the store.
            indent_width (int): The number of spaces to use for indentation. This is used when the call to
                store_output is indented in the kernel definition.
        """
        with self.create_subgraph_body("<STORE_OUTPUT>"):
            assert isinstance(indices, (list, tuple))
            assert isinstance(val, str)
            assert isinstance(mask, (str, type(None)))
            assert self.template_mask is None
            indices = list(map(OpOverrides.paren, indices))
            index_symbols = [sympy.Symbol(x, integer=True) for x in indices]
            lengths = [
                V.graph.sizevars.simplify(s) for s in self.output_node.get_size()
            ]
            assert len(indices) == len(lengths)

            # glue to make generated code use same indexing from template
            for name, range_tree_entry in zip(
                indices, self.range_trees[0].construct_entries(lengths)
            ):
                range_tree_entry.set_name(name)
            contiguous_index = sympy_dot(
                ir.FlexibleLayout.contiguous_strides(lengths), index_symbols
            )
            contiguous_index = self.rename_indexing(contiguous_index)
            self.body.writeline("xindex = " + texpr(contiguous_index))
            self.range_trees[0].lookup(sympy.S.One, sympy_product(lengths)).set_name(
                "xindex"
            )
            self.template_mask = mask
            self.template_out = val
            self.template_indices = indices
            output_index = self.output_node.get_layout().make_indexer()(index_symbols)
            output_index = self.rename_indexing(output_index)
            if output_index == contiguous_index:
                output_index = sympy.Symbol("xindex", integer=True)

            acc_dtype = (
                triton_type_to_torch(self.meta["ACC_TYPE"])
                if "ACC_TYPE" in self.meta
                else torch.float32
            )
            epilogue_args = [V.kernel.cse.namedvar(val, dtype=acc_dtype)]
            for input_node in itertools.chain(
                self.input_nodes[: self.prefix_args],
                self.input_nodes[len(self.input_nodes) - self.suffix_args :],
            ):
                input_node.freeze_layout()
                epilogue_args.append(input_node.make_loader()(index_symbols))

            V.ops.store(
                self.output_node.get_name(),
                output_index,
                self.epilogue_fn(*epilogue_args),
            )
            self.codegen_body()

        def hook():
            # more stuff might have been added since the codegen_body above
            self.codegen_body()

            return textwrap.indent(self.body.getvalue(), " " * indent_width).strip()

        assert "<STORE_OUTPUT>" not in self.render_hooks
        self.render_hooks["<STORE_OUTPUT>"] = hook
        return "<STORE_OUTPUT>"

    def render(self, template, kwargs):
        return PartialRender(
            template.render(**self.template_env(), **kwargs),
            self.render_hooks,
        )

    def make_load(self, name, indices, mask):
        """
        Optional helper called from template code to generate the code
        needed to load from an tensor.
        """
        assert isinstance(indices, (list, tuple))
        assert isinstance(name, str)
        assert isinstance(mask, str)
        stride = self.named_input_nodes[name].get_stride()
        indices = list(map(OpOverrides.paren, indices))
        assert len(indices) == len(stride)
        index = " + ".join(
            f"{texpr(self.rename_indexing(s))} * {i}" for s, i in zip(stride, indices)
        )
        return f"tl.load({name} + ({index}), {mask}, other=0.0)"

    def template_env(self):
        """
        Generate the namespace visible in the template.
        """
        return {
            fn.__name__: fn
            for fn in [
                self.def_kernel,
                self.size,
                self.stride,
                self.store_output,
                self.make_load,
                self.modification,
                self.gen_argdefs,
                self.gen_defines,
            ]
        }

    def indexing(
        self,
        index: sympy.Expr,
        *,
        dense_indexing=False,
        copy_shape=None,
        override_mask=None,
        block_ptr=False,
    ):
        """
        Override the default indexing to use our custom mask and force
        dense indexing.
        """
        return super().indexing(
            index,
            dense_indexing=False,
            # We pass template_out as the shape to broadcast the indexing to as
            # the mask might be broadcast to the output shape
            copy_shape=self.template_out,
            override_mask=self.template_mask,
            block_ptr=block_ptr,
        )

    def codegen_range_tree(self):
        pass  # ignore default codegen

    def call_kernel(self, name: str, node: Optional[ir.IRNode] = None):
        wrapper = V.graph.wrapper_code
        _, call_args, _, arg_types = self.args.python_argdefs()

        # Handle workspace allocation
        if self.workspace_arg is not None:
            wrapper.generate_workspace_allocation(self.workspace_arg)

        if V.graph.cpp_wrapper:
            # In the cpp_wrapper case, we have to compute CUDA launch grid at runtime
            # if any dynamic dimension is involved. We rely on the Python version
            # of the grid function to generate those grid configs, which may contain
            # symbolic values. The wrapper will use cexpr to print out C++ code
            # appropriately for the grid configs.
            grid = self.call_sizes + [self.meta]
            wrapper.generate_kernel_call(
                name,
                call_args,
                grid=self.grid_fn(*grid),
                arg_types=arg_types,
                triton_meta=self.triton_meta,
            )
        else:
            wrapper.add_import_once(f"import {self.grid_fn.__module__}")
            meta = wrapper.add_meta_once(self.meta)
            grid = self.call_sizes + [meta]
            wrapper.generate_kernel_call(
                name,
                call_args,
                grid=grid,
                grid_fn=f"{self.grid_fn.__module__}.{self.grid_fn.__name__}",
                arg_types=arg_types,
                triton_meta=self.triton_meta,
                gpu="cpu" not in V.graph.device_types,
            )

        if self.workspace_arg is not None:
            wrapper.generate_workspace_deallocation(self.workspace_arg)


@functools.lru_cache(None)
def _jinja2_env():
    try:
        import jinja2

        return jinja2.Environment(
            undefined=jinja2.StrictUndefined,
        )
    except ImportError:
        return None


class TritonTemplate(KernelTemplate):
    index_counter = itertools.count()
    all_templates: Dict[str, "TritonTemplate"] = {}

    def __init__(self, name: str, grid: Any, source: str, debug=False) -> None:
        super().__init__(name)
        self.grid = grid
        self.template = self._template_from_string(source)
        assert name not in self.all_templates, "duplicate template name"
        self.all_templates[name] = self
        self.debug = debug

    def generate(  # type: ignore[override]
        self,
        input_nodes,
        layout,
        num_stages,
        num_warps,
        prefix_args=0,
        suffix_args=0,
        epilogue_fn=identity,
        subgraphs=None,
        mutated_inputs=None,
        call_sizes=None,
        workspace_arg: Optional[WorkspaceArg] = None,
        **kwargs,
    ):
        """This function generates a TritonTemplateCaller

        Args:
            input_nodes: List of input nodes
            layout: Output layout
            num_stages: Number of stages for triton launch
            num_warps: Number of warps for triton launch
            prefix_args: Number of input nodes to be passed as arguments
            suffix_args: Number of input nodes to be passed as arguments
            epilogue_fn: Optional epilogue function to be called on the output
            subgraphs: Optional subgraphs to be passed as arguments, these will be inlined
                into the triton template string
            mutated_inputs: Optional list of input nodes that are mutated by the kernel, this is helpful
                if you need to return multiple outputs. You can pass them as inputs and mark them as
                being mutated by the kernel.
        """
        assert self.template, "requires jinja2"
        defines = StringIO()
        for name, val in kwargs.items():
            defines.write(f"{name} : tl.constexpr = {val}\n")
        defines = defines.getvalue()

        fake_out = ir.Buffer(name="buf_out", layout=layout)
        kernel_name = f"triton_{self.name}"

        numel = sympy_product(layout.size)
        buffers = itertools.chain(input_nodes, (fake_out,))
        if not TritonScheduling.can_use_32bit_indexing(numel, buffers):
            raise NotImplementedError(
                "64-bit indexing is not yet implemented for triton templates"
            )

        if call_sizes is None:
            call_sizes = layout.size

        kernel_options = {
            "input_nodes": input_nodes,
            "defines": defines,
            "num_stages": num_stages,
            "num_warps": num_warps,
            "grid_fn": self.grid,
            "meta": kwargs,
            "call_sizes": call_sizes,
            "prefix_args": prefix_args,
            "suffix_args": suffix_args,
            "epilogue_fn": epilogue_fn,
            "subgraphs": subgraphs,
        }

        with patch.object(
            V.graph, "get_dtype", self._fake_get_dtype(fake_out)
        ), V.graph.set_current_device(layout.device), TritonTemplateKernel(
            kernel_name=kernel_name,
            output_node=fake_out,
            workspace_arg=workspace_arg,
            use_jit=False,
            **kernel_options,
        ) as kernel:
            try:
                template = kernel.render(self.template, kwargs)
                with kernel.set_subgraph_body("<STORE_OUTPUT>"):
                    code = template.finalize_all()
            except ZeroDivisionError:
                # TODO(nmacchioni): fix sympy division by zero
                return None
            if self.debug:
                print("Generated Code:\n", code)
            extra = (
                "-".join(
                    [
                        *[
                            f"{kwarg}={repr(kwargs[kwarg])}"
                            for kwarg in sorted(kwargs.keys())
                        ],
                        f"num_stages={num_stages}",
                        f"num_warps={num_warps}",
                    ]
                )
                + "-"
            )
            mod = PyCodeCache.load(code, extra)

        input_call_args = tuple(kernel.args.input_buffers.keys())

        # We expect the input_buffer order to be [*input_nodes, *captured_buffers]
        expected_input_args = tuple(unique(x.get_name() for x in input_nodes))
        assert input_call_args[: len(expected_input_args)] == expected_input_args, (
            input_call_args,
            expected_input_args,
        )

        full_input_nodes = tuple([V.graph.get_buffer(k) for k in input_call_args])
        extra_args = V.graph.sizevars.size_hints(
            map(sympy.expand, tuple(kernel.args.sizevars.keys())),
            fallback=config.unbacked_symint_fallback,
        )

        kernel_hash_name = f"triton_{self.name}_{next(self.index_counter)}"

        def make_kernel_render(out_node):
            kernel = TritonTemplateKernel(
                kernel_name=str(Placeholder.KERNEL_NAME),
                output_node=out_node,
                workspace_arg=workspace_arg,
                use_jit=False,
                **kernel_options,
            )
            render = functools.partial(
                kernel.render,
                self.template,
                kwargs,
            )
            return kernel, render

        # create the BenchmarkRequest
        assert mod.__file__ is not None
        grid = self.grid(
            *V.graph.sizevars.size_hints(
                call_sizes,
                fallback=config.unbacked_symint_fallback,
            ),
            kwargs,
        )
        bmreq_cls: Type[TritonBenchmarkRequest]
        if layout.device.type == "cpu":
            bmreq_cls = TritonCPUBenchmarkRequest
        else:
            bmreq_cls = TritonGPUBenchmarkRequest
        bmreq = bmreq_cls(
            module_path=mod.__file__,
            module_cache_key=mod.key,
            kernel_name=kernel_name,
            grid=grid,
            extra_args=extra_args,
            num_stages=num_stages,
            num_warps=num_warps,
            matrix_instr_nonkdim=kwargs.get("matrix_instr_nonkdim", 0),
            input_tensor_meta=TensorMeta.from_irnodes(full_input_nodes),  # type: ignore[arg-type]
            output_tensor_meta=TensorMeta.from_irnodes(layout),
            workspace_arg=workspace_arg,
        )

        return TritonTemplateCaller(
            kernel_hash_name,
            full_input_nodes,
            layout,
            make_kernel_render,
            extra.strip("-").replace("-", ", "),
            bmreq,
            log_info={
                "tile_shape": str(
                    (
                        kwargs.get("BLOCK_M", -1),
                        kwargs.get("BLOCK_K", -1),
                        kwargs.get("BLOCK_N", -1),
                    )
                ),
                "num_stages": num_stages,
                "num_warps": num_warps,
                "allow_tf32": str(kwargs.get("ALLOW_TF32", None)),
                "acc_type": str(kwargs.get("ACC_TYPE", None)),
            },
            mutated_inputs=mutated_inputs,
            workspace_arg=workspace_arg,
        )


class ExternKernelChoice:
    def __init__(
        self,
        kernel,
        cpp_kernel=None,
        *,
        name=None,
        has_out_variant=True,
        op_overload=None,
        use_fallback_kernel=False,
        kernel_creator=None,
    ) -> None:
        super().__init__()
        name = name or kernel.__name__
        assert callable(kernel)
        assert not hasattr(extern_kernels, name), f"duplicate extern kernel: {name}"
        self.name = name
        self.cpp_kernel_name = cpp_kernel
        self.has_out_variant = has_out_variant
        setattr(extern_kernels, name, kernel)
        self.op_overload = op_overload
        self.use_fallback_kernel = use_fallback_kernel
        self.kernel_creator = kernel_creator

    def to_callable(self):
        return getattr(extern_kernels, self.name)

    def call_name(self):
        return f"extern_kernels.{self.name}"

    @functools.lru_cache(None)  # noqa: B019
    def hash_key(self):
        fn = self.to_callable()
        parts = [
            self.name,
            getattr(fn, "__name__", ""),
            getattr(fn, "__module__", ""),
        ]
        try:
            parts.append(inspect.getsource(fn))
        except Exception:
            pass
        return code_hash("-".join(parts))

    def bind(
        self,
        input_nodes,
        layout,
        ordered_kwargs_for_cpp_kernel=(),
        **kwargs,
    ):
        self.ordered_kwargs_for_cpp_kernel = ordered_kwargs_for_cpp_kernel
        return ExternKernelCaller(
            self, input_nodes, layout, kwargs, has_out_variant=self.has_out_variant
        )


class TritonTemplateCaller(ir.TritonTemplateCallerBase):
    def __init__(
        self,
        name,
        input_nodes,
        layout,
        make_kernel_render,
        description,
        bmreq,
        log_info: Optional[
            Dict[str, Union[PrimitiveInfoType, List[PrimitiveInfoType]]]
        ] = None,
        mutated_inputs=None,
        workspace_arg: Optional[WorkspaceArg] = None,
    ) -> None:
        super().__init__(name, input_nodes, layout, description)
        self.make_kernel_render = make_kernel_render
        self.bmreq: TritonBenchmarkRequest = bmreq
        if log_info is None:
            log_info = {}
        self.log_info: Dict[str, Any] = log_info
        self.log_info.update(
            {
                "backend": "Triton",
                "grid": str(self.bmreq.grid),
                "num_stages": self.bmreq.num_stages,
                "num_warps": self.bmreq.num_warps,
            }
        )
        self.mutated_inputs = mutated_inputs
        self.workspace_arg = workspace_arg

    def benchmark(self, *args, out):
        assert self.bmreq is not None
        return self.bmreq.benchmark(*args, output_tensor=out)

    def precompile(self):
        assert self.bmreq is not None
        self.bmreq.precompile()

    def __str__(self) -> str:
        return f"TritonTemplateCaller({self.bmreq.module_path}, {self.description})"

    def call_name(self):
        return f"template_kernels.{self.name}"

    def hash_key(self):
        return "-".join(
            [
                self.name.rsplit("_", 1)[0],
                self.bmreq.module_cache_key,
            ]
        )

    def output_node(self):
        return ir.TensorBox.create(
            ir.TritonTemplateBuffer(
                layout=self.layout,
                inputs=self.input_nodes,
                make_kernel_render=self.make_kernel_render,
                mutated_inputs=self.mutated_inputs,
            )
        )

    def info_dict(self) -> Dict[str, Union[PrimitiveInfoType, List[PrimitiveInfoType]]]:
        """Information returned here is logged to the autotune log file when that is enabled."""
        return self.log_info

    def get_make_kernel_render(self):
        return self.make_kernel_render

    def autoheuristic_id(self):
        type_name = "triton"
        info = self.info_dict()
        # TODO(AlnisM): Does tile_shape always exist?
        tile = info["tile_shape"]
        tile_vals = eval(tile)  # type: ignore[arg-type]
        BLOCK_M = tile_vals[0]
        BLOCK_K = tile_vals[1]
        BLOCK_N = tile_vals[2]
        num_stages = info["num_stages"]
        num_warps = info["num_warps"]
        return f"type={type_name}_BLOCK-M={BLOCK_M}_BLOCK-K={BLOCK_K}_BLOCK-N={BLOCK_N}_numstages={num_stages}_numwarps={num_warps}"


class ExternKernelCaller(ChoiceCaller):
    def __init__(
        self,
        choice: ExternKernelChoice,
        input_nodes,
        layout,
        kwargs=None,
        *,
        has_out_variant=True,
    ) -> None:
        super().__init__(choice.name, input_nodes, layout, description="")
        self.choice = choice
        self.kwargs = kwargs or {}
        self.has_out_variant = has_out_variant

    def __str__(self) -> str:
        return f"ExternKernelCaller({self.choice.call_name()})"

    def benchmark(self, *args, out):
        if out.numel() == 0:
            # no need to run the kerrnel of do benchmarking
            return 0.0
        if self.has_out_variant:
            return super().benchmark(*args, out=out)
        else:
            algo = self.to_callable()
            out_new = algo(*args)
            torch._C._dynamo.guards.assert_size_stride(
                out_new, tuple(out.size()), tuple(out.stride())
            )
            out.copy_(out_new)  # for correctness checking
            return benchmarker.benchmark(algo, args, {})

    def to_callable(self):
        fn = self.choice.to_callable()
        if self.kwargs:
            return functools.partial(fn, **self.kwargs)
        return fn

    def hash_key(self):
        return "-".join(
            [
                self.choice.name,
                *[
                    f"{kwarg}={repr(self.kwargs[kwarg])}"
                    for kwarg in sorted(self.kwargs.keys())
                ],
                self.choice.hash_key(),
            ]
        )

    def output_node(self):
        if self.choice.use_fallback_kernel:
            assert (
                self.choice.op_overload is not None
            ), "Please provide an op_overload to use ir.FallbackKernel"
            inner = ir.FallbackKernel.create(
                self.choice.op_overload, *self.input_nodes, **self.kwargs
            )
        elif self.choice.kernel_creator is not None:
            inner = self.choice.kernel_creator(*self.input_nodes, **self.kwargs)
        else:
            cls = ir.ExternKernelOut if self.has_out_variant else ir.ExternKernelAlloc
            inner = cls(
                layout=self.layout,
                inputs=self.input_nodes,
                python_kernel_name=self.choice.call_name(),
                cpp_kernel_name=self.choice.cpp_kernel_name,
                ordered_kwargs_for_cpp_kernel=self.choice.ordered_kwargs_for_cpp_kernel,
                op_overload=self.choice.op_overload,
                kwargs=self.kwargs,
            )

        return ir.TensorBox.create(inner)

    def info_dict(self) -> Dict[str, Union[PrimitiveInfoType, List[PrimitiveInfoType]]]:
        """Information returned here is logged to the autotune log file when that is enabled."""
        return {
            "backend": "extern",
            "kernel_call_name": self.choice.call_name(),
        }

    def autoheuristic_id(self):
        return f"extern_{self.choice.name}"


@functools.lru_cache(None)
def get_mm_log_filename() -> Optional[str]:
    mm_file_name = os.environ.get("TORCHINDUCTOR_MM_LOGGING_FILE", None)
    if not mm_file_name:
        return None

    if "json" not in mm_file_name:
        mm_file_name = f"{mm_file_name}.json"

    return mm_file_name


def append_to_log(filename, data):
    lock_file = filename.replace(".json", ".lock")
    lock = FileLock(lock_file)
    with lock:
        try:
            with open(filename) as f:
                log_data = json.load(f)
        except (FileNotFoundError, json.JSONDecodeError):
            log_data = []

        log_data.append(data)

        with open(filename, "w") as f:
            json.dump(log_data, f, indent=4)


class DataProcessorChoiceCallerWrapper:
    def __init__(self, wrapped, preprocessor, postprocessor) -> None:
        self._wrapped = wrapped
        if preprocessor is not None:
            self._preprocessor = preprocessor
        else:
            self._preprocessor = lambda x, y: (x, y)
        if postprocessor is not None:
            self._postprocessor = postprocessor
        else:
            self._postprocessor = lambda x: x

    def __getattr__(self, name):
        return getattr(self._wrapped, name)

    def benchmark(self, *args, out) -> float:
        new_args, new_out = self._preprocessor(args, out)
        result = self._wrapped.benchmark(*new_args, out=new_out)
        new_out = self._postprocessor(new_out)
        if out is not new_out:
            out.copy_(new_out)
        return result

    def output_node(self) -> ir.TensorBox:
        result = self._wrapped.output_node()
        return self._postprocessor(result)

    def __repr__(self) -> str:
        return f"DataProcessorChoiceCallerWrapper({self._wrapped})"


class DataProcessorTemplateWrapper:
    """
    A wrapper class for a kernel template.

    This class together with `DataProcessorChoiceCallerWrapper` provides a convenient way to
    preprocess and postprocess data before and after using the wrapped template. A typical
    usage is to reorder or filter the input nodes in order to match the expected input of other
    kernel choices like a ATen kernel. A more complicated usage is to prepack the weights.
    See the example from :mod:`cpp_gemm_template` for more details.
    """

    def __init__(
        self,
        wrapped_template_cls,
        preprocessor,
        postprocessor,
        **kwargs,
    ) -> None:
        if preprocessor is not None:
            self._preprocessor = preprocessor
        else:
            self._preprocessor = lambda x, y: (x, y)
        if postprocessor is not None:
            self._postprocessor = postprocessor
        else:
            self._postprocessor = lambda x: x
        assert "input_nodes" in kwargs
        assert "layout" in kwargs
        kwargs["input_nodes"], kwargs["layout"] = preprocessor(
            kwargs["input_nodes"], kwargs["layout"]
        )
        self._wrapped = wrapped_template_cls(**kwargs)

    def __getattr__(self, name):
        return getattr(self._wrapped, name)

    def maybe_append_choice(self, choices, **kwargs):
        return type(self._wrapped).maybe_append_choice(self, choices, **kwargs)

    def generate(self, **kwargs):
        choice_caller = self._wrapped.generate(**kwargs)
        return DataProcessorChoiceCallerWrapper(
            choice_caller, self._preprocessor, self._postprocessor
        )

    def __repr__(self) -> str:
        return f"DataProcessorTemplateWrapper({self._wrapped})"


class ErrorFromChoice(RuntimeError):
    def __init__(self, msg, choice: ChoiceCaller, inputs_str) -> None:
        msg += f"\nFrom choice {choice}\n{inputs_str}"
        super().__init__(msg)
        self.choice = choice


class NoValidChoicesError(RuntimeError):
    pass


@functools.lru_cache(None)
def get_env_num_workers() -> Optional[int]:
    if "TORCHINDUCTOR_COMPILE_THREADS" in os.environ:
        return int(os.environ["TORCHINDUCTOR_COMPILE_THREADS"])
    return None


def create_inputs_key(input_nodes) -> str:
    return repr([AlgorithmSelectorCache.key_of(x) for x in input_nodes])


def create_precompile_key(
    name: str, inputs_key: str, choices: List[ChoiceCaller]
) -> str:
    return ":".join(
        [
            name,
            inputs_key,
            torch.get_float32_matmul_precision(),
        ]
        + [choice.hash_key() for choice in choices]
    )


class AlgorithmSelectorCache(PersistentCache):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)

        # the autotuning will get occur in the scheduler, so there is
        # no guarantee that the first lowering for a given key will also be the
        # first to benchmark it. share a single precompilation function for all lowerings
        # of a particular key
        self.precompile_cache: Dict[str, Callable[[], None]] = {}
        # list of callbacks that are called after benchmarking
        self.feedback_saver_fns: List[
            Callable[
                [Dict[ChoiceCaller, float], str, List[Any], List[ChoiceCaller]], None
            ]
        ] = []

    def __call__(
        self,
        name,
        choices: List[ChoiceCaller],
        input_nodes,
        layout,
        # optional dict mapping arg indices to the functions
        # generating a torch.Tensor for that input from the
        # corresponding ir.Buffer. if passed for a given
        # arg, the function will be called instead of
        # generating a random torch.Tensor for benchmarking.
        input_gen_fns: Optional[Dict[int, Callable[[ir.Buffer], torch.Tensor]]] = None,
        precompilation_timeout_seconds: int = 60 * 60,
        return_multi_template=False,
    ):
        from .codegen.cuda.cuda_kernel import CUDATemplateCaller

        # Templates selected with input_gen_fns require specific input data to avoid IMA
        # Passing custom input gen fns to benchmark_fusion NYI, so skip deferred template selection
        # TODO(jgong5): support multi-template on CPU
        if input_gen_fns is not None or layout.device.type == "cpu":
            return_multi_template = False

        # TODO - assert that we have not mutating kernels here

        # TODO(nmacchioni): remove once CI tests are fixed
        choices = [choice for choice in choices if choice is not None]

        if mm_file_name := get_mm_log_filename():
            M, K = input_nodes[-2].get_size()[:2]
            N = input_nodes[-1].get_size()[-1]
            append_to_log(mm_file_name, {"invoke": str((M, K, N))})

        if len(choices) == 0:
            backend_config = (
                "max_autotune_gemm_backends"
                if name != "convolution"
                else "max_autotune_conv_backends"
            )
            raise NoValidChoicesError(
                f"No choices to select, please consider adding ATEN into {backend_config} "
                "config (defined in torch/_inductor/config.py) to allow at least one choice. "
            )
        log.debug("Max autotune selects from %s choices.", str(len(choices)))

        if len(choices) == 1:
            if not isinstance(choices[0], CUDATemplateCaller):
                # CUDATemplateCaller still needs to go through autotuning process to retrieve workspace size.
                return choices[0].output_node()

        @functools.lru_cache(None)
        def make_benchmark_fn():
            return self.make_benchmark_fn(choices, input_nodes, layout, input_gen_fns)

        inputs_key = create_inputs_key(input_nodes)

        def precompile(choices) -> Callable[[], None]:
            def no_op(*args, **kwargs):
                return

            if (
                precompilation_timeout_seconds is None
                or precompilation_timeout_seconds <= 0
            ):
                return no_op

            env_workers = get_env_num_workers()
            num_workers = env_workers if env_workers is not None else (len(choices))

            if num_workers <= 0:
                return no_op

            # https://github.com/python/cpython/issues/106905
            if (
                sys.version_info.major == 3
                and sys.version_info.minor == 11
                and sys.version_info.micro <= 8
            ):
                return no_op

            # check local and global cache before precompiling
            timings = self.lookup(
                choices,
                name,
                inputs_key,
                benchmark=None,
            )

            if timings:
                return no_op

            if config.search_autotune_cache and not (
                config.max_autotune or config.max_autotune_gemm
            ):
                return no_op

            precompile_key = create_precompile_key(name, inputs_key, choices)
            if precompile_func := self.precompile_cache.get(precompile_key):
                return precompile_func

            log.info(
                "Multithreaded precompilation for %d choices using %d worker threads",
                len(choices),
                num_workers,
            )

            # In rare circumstances, because python threads inherit global state,
            # thread pool executor can race and leave stdout/stderr in a state
            # different than the original values. we explicitly restore the state
            # here to avoid this issue.

            initial_stdout = sys.stdout
            initial_stderr = sys.stderr

            def precompile_with_captured_stdout(choice):
                with restore_stdout_stderr(initial_stdout, initial_stderr):
                    start_time = time.time()
                    choice.precompile()
                    return time.time() - start_time

            executor = ThreadPoolExecutor(max_workers=num_workers)

            futures = {}
            for c in choices:
                if hasattr(c, "precompile"):
                    future = executor.submit(precompile_with_captured_stdout, c)
                    futures[future] = c

            @functools.lru_cache(None)
            @restore_stdout_stderr(initial_stdout, initial_stderr)
            def wait_on_futures():
                counters["inductor"]["select_algorithm_precompile"] += 1
                for future in as_completed(
                    futures,
                    timeout=precompilation_timeout_seconds,
                ):
                    if e := future.exception():
                        log.error(
                            "Exception %s for benchmark choice %s", e, futures[future]
                        )
                    else:
                        log.info(
                            "Precompiling benchmark choice %s took %.02fs",
                            futures[future],
                            future.result(),
                        )

                executor.shutdown(wait=True)

            self.precompile_cache[precompile_key] = wait_on_futures

            return wait_on_futures

        def autotune(choices):
            with dynamo_timed(f"{name}_template_autotuning"):
                return make_benchmark_fn()(choices)

        if config.autotune_in_subproc:
            from .autotune_process import tuning_pool

            # do the optional warmup
            tuning_pool.initialize()

        def do_autotuning(precompile_fn):
            precompile_start_ts = time.time()
            with dynamo_timed(f"{name}_template_precompiling"):
                precompile_fn()
            precompile_elapse = time.time() - precompile_start_ts

            autotune_start_ts = time.time()
            timings = self.lookup(
                choices,
                name,
                inputs_key,
                autotune,
            )
            autotune_elapse = time.time() - autotune_start_ts

            if timings and all(
                not math.isfinite(timing) for timing in timings.values()
            ):
                raise NoValidChoicesError

            if make_benchmark_fn.cache_info().currsize:
                counters["inductor"]["select_algorithm_autotune"] += 1

            if (
                make_benchmark_fn.cache_info().currsize
                or log.getEffectiveLevel() == logging.DEBUG
                or config.trace.log_autotuning_results
            ):
                self.log_results(
                    name, input_nodes, timings, autotune_elapse, precompile_elapse
                )

            for feedback_fn in self.feedback_saver_fns:
                feedback_fn(timings, name, input_nodes, choices)

            return timings

        precompile_fn = precompile(choices)

        if return_multi_template and (config.max_autotune or config.max_autotune_gemm):

            def get_timings():
                timings = do_autotuning(precompile_fn)
                min_extern_choice = float("inf")
                for choice, timing in timings.items():
                    if isinstance(choice, ExternKernelCaller):
                        min_extern_choice = min(min_extern_choice, timing)

                timings = {
                    choice: time
                    for choice, time in timings.items()
                    if (
                        time <= min_extern_choice
                        or not isinstance(choice, ExternKernelCaller)
                    )
                }

                return timings

            return torch._inductor.ir.TensorBox.create(
                torch._inductor.ir.MultiTemplateBuffer(
                    layout,
                    input_nodes,
                    get_timings,
                    choices,
                )
            )

        # TODO - dont want to precompile if we have a cache hit
        timings = do_autotuning(precompile_fn)
        if timings == {} or choices[0] not in timings:
            return choices[0].output_node()

        selected_key = builtins.min(timings, key=timings.__getitem__)
        selected_time = timings[selected_key]
        selected_choice = selected_key.output_node()
        log.debug("selected choice: %s", str(selected_choice))
        return selected_choice

    @classmethod
    def make_benchmark_fn(
        cls,
        choices,
        input_nodes,
        layout,
        input_gen_fns=None,
    ):
        if input_gen_fns is None:
            input_gen_fns = {}

        def get_inputs(
            choices: Union[List[ExternKernelCaller], List[TritonTemplateCaller]]
        ) -> AutotuneArgs:
            # de-duplicate args
            unique_example_inputs = {
                x.get_name(): input_gen_fns.get(i, cls.benchmark_example_value)(x)
                for i, x in enumerate(input_nodes)
            }
            example_inputs = list(unique_example_inputs.values())
            example_inputs_extern = [
                (
                    unique_example_inputs[input_node.get_name()]
                    if unique_example_inputs[input_node.get_name()].is_mkldnn
                    else torch.as_strided(
                        unique_example_inputs[input_node.get_name()],
                        V.graph.sizevars.size_hints(
                            input_node.get_size(),
                            fallback=config.unbacked_symint_fallback,
                        ),
                        V.graph.sizevars.size_hints(
                            input_node.get_stride(),
                            fallback=config.unbacked_symint_fallback,
                        ),
                        V.graph.sizevars.size_hint(
                            input_node.get_layout().offset,
                            fallback=config.unbacked_symint_fallback,
                        ),
                    )
                )
                for input_node in input_nodes
            ]
            out = cls.benchmark_example_value(layout)
            out_extern = torch.as_strided(
                out, out.size(), out.stride(), V.graph.sizevars.size_hint(layout.offset)
            )
            expected = None
            if VERIFY:
                choices[0].benchmark(*example_inputs_extern, out=out_extern)
                expected = out_extern.clone()

            return AutotuneArgs.from_choice_args(
                example_inputs,
                example_inputs_extern,
                out,
                out_extern,
                expected,
            )

        if DEBUG:
            print(f"{len(choices)} tuning requests:")

        def benchmark_choice_in_current_process(
            choice: ChoiceCaller, autotune_args: AutotuneArgs
        ) -> float:
            is_extern = isinstance(choice, ExternKernelCaller)
            benchmark_tensors = autotune_args.get_benchmark_tensors(is_extern)
            inpts, output = benchmark_tensors.unpack()
            output.zero_()
            result = choice.benchmark(*inpts, out=output)
            if VERIFY and autotune_args.expected is not None:
                autotune_args.verify(**VERIFY)
            if torch.cuda.is_available():
                torch.cuda.synchronize()  # shake out any CUDA errors
            return result

        def benchmark_in_current_process(
            choices: Union[List[ExternKernelCaller], List[TritonTemplateCaller]],
        ) -> Dict[Union[ExternKernelCaller, TritonTemplateCaller], float]:
            inputs = get_inputs(choices)
            timings = {}
            for choice in choices:
                try:
                    timing = benchmark_choice_in_current_process(choice, inputs)
                except CUDACompileError as e:
                    log.error(
                        "CUDA compilation error during autotuning: \n%s. \nIgnoring this choice.",
                        str(e),
                    )
                    timing = float("inf")
                except NotImplementedError as e:
                    log.warning("Not yet implemented: %s", e)
                    timing = float("inf")
                except RuntimeError as e:
                    msg = str(e)
                    if "invalid argument" in msg:
                        msg += "\n\nThis may mean this GPU is too small for max_autotune mode.\n\n"
                    else:
                        if "illegal memory access" in msg:
                            msg += "\n\nEither error in template or triton bug.\n"
                    log.error(
                        "Runtime error during autotuning: \n%s. \nIgnoring this choice.",
                        msg,
                    )
                    timing = float("inf")
                except AssertionError as e:
                    raise AssertionError(  # noqa: B904
                        f"Incorrect result from choice {choice}\n\n{e}"
                    )
                except Exception as e:
                    try:
                        from triton.runtime.autotuner import OutOfResources

                        if isinstance(e, OutOfResources):
                            log.warning(e)
                            timing = float("inf")
                        else:
                            raise e
                    except ImportError:
                        raise e from None

                timings[choice] = timing

            return timings

        def benchmark_in_sub_process(
            choices: Union[List[ExternKernelCaller], List[TritonTemplateCaller]]
        ):
            from . import autotune_process

            # only benchmark triton kernel in sub process for now.
            # ATen/Extern kernel are still benchmarked in the current process.
            extern = [c for c in choices if isinstance(c, ExternKernelCaller)]
            triton = [c for c in choices if not isinstance(c, ExternKernelCaller)]

            timings = benchmark_in_current_process(extern)
            timings.update(autotune_process.benchmark_in_sub_process(triton))  # type: ignore[arg-type]
            return timings

        benchmark = (
            benchmark_in_sub_process
            if config.autotune_in_subproc
            else benchmark_in_current_process
        )

        return benchmark

    @staticmethod
    def log_results(
        name: str,
        input_nodes: List[ir.IRNode],
        timings: Dict[ChoiceCaller, float],
        elapse: float,
        precompile_elapse: float,
    ):
        V.debug.log_autotuning_results(
            name, input_nodes, timings, elapse, precompile_elapse
        )
        if not (config.max_autotune or config.max_autotune_gemm) or not PRINT_AUTOTUNE:
            return
        sizes = ", ".join(
            [
                "x".join(
                    map(
                        str,
                        V.graph.sizevars.size_hints(
                            n.get_size(), fallback=config.unbacked_symint_fallback  # type: ignore[arg-type]
                        ),
                    )
                )
                for n in input_nodes
            ]
        )
        if config.autotune_num_choices_displayed == 0:
            return
        elif config.autotune_num_choices_displayed is None:
            n = -1
        else:
            n = config.autotune_num_choices_displayed

        top_k = sorted(timings, key=timings.__getitem__)[:n]

        best = top_k[0]

        def get_choice_info(choice):
            if isinstance(choice, torch._inductor.select_algorithm.ExternKernelCaller):
                return {"type": "cublas", "time": timings[choice]}

            assert isinstance(
                choice, torch._inductor.select_algorithm.TritonTemplateCaller
            )

            info = choice.info_dict()
            tile = info["tile_shape"]

            tile_vals = eval(tile)  # type: ignore[arg-type]
            BLOCK_M = tile_vals[0]
            BLOCK_K = tile_vals[1]
            BLOCK_N = tile_vals[2]

            return {
                "type": "triton",
                "time": timings[choice],
                "BLOCK_M": BLOCK_M,
                "BLOCK_K": BLOCK_K,
                "BLOCK_N": BLOCK_N,
                "num_stages": info["num_stages"],
                "num_warps": info["num_warps"],
            }

        mm_filename = get_mm_log_filename()
        if mm_filename and "mm" in name:
            M, K = input_nodes[-2].get_size()[:2]
            N = input_nodes[-1].get_size()[-1]

            out_dict = {
                str((M, K, N)): [get_choice_info(choice) for choice in timings.keys()]
            }

            append_to_log(mm_filename, out_dict)

        best_time = timings[best]
        sys.stderr.write(f"AUTOTUNE {name}({sizes})\n")
        for choice in top_k:
            result = timings[choice]
            if result:
                kernel_description = choice.description
                sys.stderr.write(
                    f"  {choice.name} {result:.4f} ms {best_time / result:.1%} {kernel_description}\n"
                )
            else:
                sys.stderr.write(
                    f"  {choice.name} {result:.4f} ms <DIVIDED BY ZERO ERROR>\n"
                )

        autotune_type_str = (
            "SubProcess" if config.autotune_in_subproc else "SingleProcess"
        )
        sys.stderr.write(
            f"{autotune_type_str} AUTOTUNE benchmarking takes {elapse:.4f} seconds and {precompile_elapse:.4f}"
            f" seconds precompiling for {len(timings)} choices\n"
        )

    @staticmethod
    def benchmark_example_value(node):
        """
        Convert an ir.Buffer into a concrete torch.Tensor we can use for
        benchmarking.
        """
        if isinstance(node, ir.Layout):
            node = ir.Buffer(name="fake", layout=node)
        # triton templates want the base tensor.
        if isinstance(node, ir.BaseView):
            node = node.unwrap_view()
        return AlgorithmSelectorCache.generate_example_value(
            V.graph.sizevars.size_hints(
                node.get_size(),
                fallback=config.unbacked_symint_fallback,
            ),
            V.graph.sizevars.size_hints(
                node.get_stride(),
                fallback=config.unbacked_symint_fallback,
            ),
            node.get_device(),
            node.get_dtype(),
            node.layout.offset,
        )

    @staticmethod
    def generate_example_value(size, stride, device, dtype, extra_size):
        # preserve rng states to avoid the rand_strided call below changes
        # the rng states for the real model code.
        with preserve_rng_state():
            return rand_strided(
                size,
                stride,
                device=device,
                dtype=dtype,
                extra_size=extra_size,
            )

    @staticmethod
    def key_of(node):
        """
        Extract the pieces of an ir.Buffer that we should invalidate cached
        autotuning results on.
        """
        sizevars = V.graph.sizevars
        return (
            node.get_device().type,
            str(node.get_dtype()),
            *sizevars.size_hints(
                node.get_size(),
                fallback=config.unbacked_symint_fallback,
            ),
            *sizevars.size_hints(
                node.get_stride(),
                fallback=config.unbacked_symint_fallback,
            ),
            sizevars.size_hint(
                node.get_layout().offset,
                fallback=config.unbacked_symint_fallback,
            ),
        )

    def add_feedback_saver(
        self,
        fn: Callable[
            [Dict[ChoiceCaller, float], str, List[Any], List[ChoiceCaller]], None
        ],
    ):
        self.feedback_saver_fns.append(fn)


_ALGORITHM_SELECTOR_CACHE: Optional[AlgorithmSelectorCache] = None


def autotune_select_algorithm(*args, **kwargs):
    global _ALGORITHM_SELECTOR_CACHE
    if _ALGORITHM_SELECTOR_CACHE is None:
        _ALGORITHM_SELECTOR_CACHE = AlgorithmSelectorCache()

    if "return_multi_template" not in kwargs:
        kwargs[
            "return_multi_template"
        ] = torch._inductor.config.benchmark_epilogue_fusion

    return _ALGORITHM_SELECTOR_CACHE(*args, **kwargs)


def add_feedback_saver(
    fn: Callable[[Dict[ChoiceCaller, float], str, List[Any], List[ChoiceCaller]], None]
):
    global _ALGORITHM_SELECTOR_CACHE
    if _ALGORITHM_SELECTOR_CACHE is None:
        _ALGORITHM_SELECTOR_CACHE = AlgorithmSelectorCache()
    _ALGORITHM_SELECTOR_CACHE.add_feedback_saver(fn)


def realize_inputs(*args):
    if len(args) == 1:
        return ir.ExternKernel.require_stride1(ir.ExternKernel.realize_input(args[0]))
    return [realize_inputs(x) for x in args]


# ensure lowering is imported so that `extern_kernels.*` is populated
from . import lowering  # noqa: F401