1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
|
# mypy: allow-untyped-defs
import functools
import itertools
import logging
from typing import (
Any,
Callable,
cast,
Dict,
Iterable,
List,
Optional,
Sequence,
Set,
Tuple,
Union,
)
import sympy
from sympy import Expr
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols, ShapeEnv
from torch.utils._sympy.functions import FloorDiv, ModularIndexing
from torch.utils._sympy.symbol import symbol_is_type, SymT
from torch.utils._sympy.value_ranges import bound_sympy, IntInfinity, ValueRanges
from .runtime.runtime_utils import is_power_of_2
from .utils import (
has_free_symbols,
sympy_index_symbol,
sympy_index_symbol_with_prefix,
sympy_subs,
VarRanges,
)
from .virtualized import V
log = logging.getLogger(__name__)
def evaluate_expr(
shape_env: ShapeEnv,
expr: Union[sympy.Basic, bool],
axioms: Optional[Tuple[sympy.Expr]] = None,
var_to_range: Optional[Tuple[Tuple[sympy.Symbol, ValueRanges[Any]]]] = None,
) -> bool:
if expr in (True, False):
return bool(expr)
try:
simplified = shape_env._maybe_evaluate_static(
expr,
axioms=axioms,
var_to_range=var_to_range,
)
if simplified is not None:
return bool(simplified)
except Exception:
log.debug("Could not simplify %s", expr, exc_info=True)
return False
# This class is a little awkward, because ShapeEnv is doing most of the heavy
# lifting and in some cases we should be directly passing through to ShapeEnv,
# but there is some extra inductor logic that needs to be handled here
class SizeVarAllocator:
def __init__(self, shape_env=None) -> None:
super().__init__()
if shape_env is None:
shape_env = ShapeEnv()
self.shape_env = shape_env
self.var_to_val = self.shape_env.var_to_val
self.replacements: Dict[sympy.Symbol, Expr] = self.shape_env.replacements
# Maps of dynamic sizes that have to be precomputed on the host to the kernel args.
# The basic idea is if we have some complicated sympy expression
# f(s0), we may choose to precompute it on the host and then replace
# all occurrences of that sympy expression with ps0, so that when we
# codegen we simply reference ps0 directly without repeating
# f(s0). Unlike regular size variables, ps variables cannot be
# guarded upon; so if we are asked to guard on a Sympy expression
# which potentially could have already had a precomputed replacement
# on it, we are obligated to invert the precomputed replacements
# (inv_precomputed_replacements).
self.precomputed_replacements: Dict[Expr, sympy.Symbol] = {}
self.inv_precomputed_replacements: Dict[sympy.Symbol, Expr] = {}
self.stride_vars = self.make_stride_vars_cache()
self.simplify_with_ranges = self.make_simplify_with_ranges_cache()
self._simplify_loops = self.make_simplify_loops_cache()
def simplify(self, expr: Expr):
return sympy.expand(expr).xreplace(self.replacements)
def make_simplify_with_ranges_cache(self) -> Callable[[Expr, VarRanges], Expr]:
"""
self._simplify_with_ranges() can be expensive, cache its results
"""
cache: Dict[Tuple[Any, ...], Expr] = {}
replacement_count = len(self.replacements)
def simplify_with_ranges(expr: Expr, var_ranges: VarRanges) -> Expr:
nonlocal replacement_count
if replacement_count != len(self.replacements):
# new replacements invalidates cached results
cache.clear()
replacement_count = len(self.replacements)
key = (expr, *var_ranges.items())
result = cache.get(key, None)
if result is None:
result = self._simplify_with_ranges(expr, var_ranges)
cache[key] = result
return result
return simplify_with_ranges
def make_simplify_loops_cache(self):
"""
self._simplify_with_ranges() can be expensive, cache its results
"""
cache: Dict[Tuple[Any, ...], Any] = {}
replacement_count = len(self.replacements)
def simplify_loops(index_vars, sizes, index_formulas):
nonlocal replacement_count
if replacement_count != len(self.replacements):
# new replacements invalidates cached results
cache.clear()
replacement_count = len(self.replacements)
key = (*index_vars, *sizes, *index_formulas)
result = cache.get(key, None)
if result is None:
result = self._simplify_loops_impl(index_vars, sizes, index_formulas)
cache[key] = result
return result
return simplify_loops
def _simplify_with_ranges(self, expr: Expr, var_ranges: VarRanges) -> Expr:
"""
Simplify indexing expression with knowledge of the ranges of
iteration variables.
"""
expr = join_dimensions(self.simplify(expr))
original_expr = expr
var_to_range = dict(self.shape_env.var_to_range)
var_to_range.update(
{
k: ValueRanges(
0, max(0, v - 1) if not has_free_symbols([v]) else IntInfinity()
)
for k, v in var_ranges.items()
}
)
for var in expr.free_symbols:
if var not in var_to_range:
var_to_range[var] = ValueRanges(0, IntInfinity())
var_to_range_tuple = cast(
Tuple[Tuple[sympy.Symbol, ValueRanges[sympy.Expr]]],
tuple(var_to_range.items()),
)
axioms = []
for var, upper_bound in var_ranges.items():
axioms.append(0 <= var)
axioms.append(var < upper_bound)
axioms = tuple(axioms) + self.shape_env.get_axioms()
def statically_known(expr):
evaluated = self.shape_env._maybe_evaluate_static(
expr,
axioms=axioms,
var_to_range=var_to_range_tuple,
)
return bool(evaluated)
def remove_zero_terms(base, divisor):
"""Symbols smaller than the divisor are zero"""
if not statically_known(base >= 0):
return base
for v in base.free_symbols:
if v in var_ranges:
# var smaller than divisor can be removed
# if the rest is guaranteed to be multiple of divisor
rest = sympy.Wild("_rest", exclude=[v])
m = base.match(v + rest)
if m and v not in m[rest].free_symbols:
gcd = sympy.gcd(m[rest], divisor)
if gcd == divisor:
if statically_known(v < divisor):
base = m[rest]
return base
def visit_indexing_div(base, divisor):
return FloorDiv(remove_zero_terms(base, divisor), divisor)
def visit_modular_indexing(base, divisor, modulus):
base = remove_zero_terms(base, divisor)
can_remove_mod = statically_known(base >= 0) and statically_known(
base < modulus * divisor
)
if can_remove_mod:
return FloorDiv(base, divisor)
return ModularIndexing(base, divisor, modulus)
if expr.has(ModularIndexing):
expr = expr.replace(
ModularIndexing(
sympy.Wild("base", integer=True),
sympy.Wild("divisor", integer=True),
sympy.Wild("modulus", integer=True),
),
visit_modular_indexing,
)
if expr.has(FloorDiv):
expr = expr.replace(
FloorDiv(
sympy.Wild("base", integer=True),
sympy.Wild("divisor", integer=True),
),
visit_indexing_div,
)
if expr != original_expr:
return self._simplify_with_ranges(expr, var_ranges)
return expr
def _simplify_loops_impl(
self, index_vars: List[sympy.Symbol], sizes, index_formulas
):
"""
Try to remove as many axis from loop iterations as possible, by:
1) removing size==1 dimensions
2) fuse contiguous dimensions into a single loop
If channel_last = True, we will prevent the last dim fused with other dims
"""
sizes = list(map(self.simplify, sizes))
strides = [
# index_formulas may contain boolean expressions (e.g. s0 < 10),
# for which "strides" don't make sense so we ignore them here.
# NOTE: These expressions may still block merging dims in the sound
# substitution test performed in can_merge_dims.
(
self.stride_vars(x, index_vars)
if isinstance(x, sympy.Expr)
else [0] * len(index_vars)
)
for x in index_formulas
]
assert len(sizes) == len(strides[0]), (len(sizes), len(strides[0]))
for i in range(len(sizes)):
if sizes[i] == 1:
# remove dim
sizes[i] = None
def can_merge_dims(a, b):
for k in range(len(strides)):
if self.simplify(strides[k][a] * sizes[a]) == self.simplify(
strides[k][b]
):
# approximate test passed, try sound version
va = index_vars[a]
vb = index_vars[b]
m1 = sympy_index_symbol("_merge_tester1")
m2 = sympy_index_symbol("_merge_tester2")
# NOTE: can't sub vb=0 here in case va * vb appears in the expression,
# in which case both expr1 and expr2 would be zero!
expr1 = sympy_subs(index_formulas[k], {va: m1 * sizes[a], vb: m2})
expr2 = sympy_subs(index_formulas[k], {va: 0, vb: (m1 + m2)})
if self.simplify(expr1) == self.simplify(expr2):
continue
return False
return True
changed = True
while changed:
changed = False
for i, j in itertools.product(
reversed(range(len(sizes))), reversed(range(len(sizes)))
):
if i == j or sizes[i] is None or sizes[j] is None:
continue
if can_merge_dims(i, j):
changed = True
sizes[i] = sizes[i] * sizes[j]
sizes[j] = None
def reindex(index):
it = list(reversed(index))
new_index = []
for size in sizes:
if size is None:
new_index.append(sympy.S.Zero)
else:
new_index.append(it.pop())
assert not it
return new_index
def prune(index):
assert len(index) == len(sizes)
return [i for i, s in zip(index, sizes) if s is not None]
return [x for x in sizes if x is not None], reindex, prune
# Note - [On Statically Known]
#
# The statically_known_* family of functions below replaces a prior system, called maybe_guard_*. The prior system
# operated by providing essentially a question, where the size hinted values were evaluated. If the condition was
# true, we add a guard and return True, otherwise, False.
#
# def maybe_guard_foo(args):
# if size_hinted_check(args):
# return False # No guard, no optim
# guard(args) # Make a guard
# return True # Safe to apply optimization
#
# The prior system incurred a guard, and green lit an optimization.
#
# The new system works in reverse - in the new system, if we know that the inputs are static, and evaluate the
# condition as true, we green light the optimization, and we do not incur a guard. If we cannot prove that, we
# return False.
#
# def maybe_guard_foo(args):
# if all_static(args):
# return True # Safe to apply optimization
# else:
# return False # No guard, no optim
# See Note - [On Statically Known]
def is_expr_static_and_true(self, expr: Union[sympy.Basic, bool]) -> bool:
return evaluate_expr(self.shape_env, expr)
def statically_known_equals(
self, left: Union[Expr, int], right: Union[Expr, int]
) -> bool:
"""
Returns a bool indicating if it is sound to optimize as if left and right are equal.
"""
return self.is_expr_static_and_true(sympy.Eq(left, right)) # type: ignore[arg-type]
# See Note - [On Statically Known]
def statically_known_list_equals(self, left: List[Expr], right: List[Expr]) -> bool:
"""
Returns a bool indicating if it is sound to optimize as if left and right lists are equal.
"""
return len(left) == len(right) and all(
self.statically_known_equals(l, r) for l, r in zip(left, right)
)
# See Note - [On Statically Known]
def statically_known_leq(self, left: Expr, right: Union[Expr, int]) -> bool:
"""
Returns a bool indicating if it is sound to optimize as if left is less than or equal to right.
"""
expr = left <= right
return self.is_expr_static_and_true(expr)
# See Note - [On Statically Known]
def statically_known_geq(self, left: Expr, right: Union[Expr, int]) -> bool:
"""
Returns a bool indicating if it is sound to optimize as if left is greater than or equal to right.
"""
expr = left >= right
return self.is_expr_static_and_true(expr)
# See Note - [On Statically Known]
def statically_known_lt(self, left: Expr, right: Union[Expr, int]) -> bool:
"""
Returns a bool indicating if it is sound to optimize as if left is less than right.
"""
expr = left < right
return self.is_expr_static_and_true(expr)
# See Note - [On Statically Known]
def statically_known_gt(self, left: Expr, right: Union[Expr, int]) -> bool:
"""
Returns a bool indicating if it is sound to optimize as if left is greater than right.
"""
expr = left > right
return self.is_expr_static_and_true(expr)
# See Note - [On Statically Known]
def statically_known_multiple_of(
self, numerator: Expr, denominator: Union[Expr, int]
) -> bool:
"""
Return a bool indicating if it is sound to optimize for the numerator being a multiple of the denominator.
"""
if free_unbacked_symbols(numerator) or free_unbacked_symbols(denominator):
return False
expr = sympy.Eq(numerator % denominator, 0)
return self.is_expr_static_and_true(expr) # type: ignore[arg-type]
# See Note - [On Statically Known]
def statically_known_power_of_2(self, expr: Expr) -> bool:
"""
Returns a bool indicating if x is known to be a power of 2.
"""
return isinstance(expr, sympy.Integer) and is_power_of_2(int(expr))
# The guard functions require you to ALREADY KNOW that a particular
# condition holds. If you don't know (you want to guard on an expression
# being a particular value, and then get access to that value), use
# the evaluate functions.
def guard_equals(self, left: Expr, right: Expr) -> Expr:
if isinstance(left, Expr):
left = sympy_subs(left, self.inv_precomputed_replacements) # type: ignore[arg-type]
if isinstance(right, Expr):
right = sympy_subs(right, self.inv_precomputed_replacements) # type: ignore[arg-type]
expr = sympy.Eq(left, right)
static_expr = self.shape_env._maybe_evaluate_static(expr)
if static_expr is not None:
assert bool(static_expr)
return left
assert self.shape_env.defer_runtime_assert(expr, "guard_equals")
return left
def guard_leq(self, left: Expr, right: Expr) -> None:
return self.guard_lt(left, right + 1)
def guard_lt(self, left: Expr, right: Expr) -> None:
expr = sympy.Lt(left, right)
static_expr = self.shape_env._maybe_evaluate_static(expr)
if static_expr is not None:
assert bool(static_expr)
return
assert self.shape_env.defer_runtime_assert(expr, "guard_lt")
def guarded_order(self, seq):
"""
Return the order of a sequence as a permutation of range(len(seq)) and guard on that order not changing.
"""
seq = [*map(self.remove_precomputed_replacements, seq)]
seq = [(self.size_hint(var), orig_idx, var) for orig_idx, var in enumerate(seq)]
seq.sort()
order = [-1] * len(seq)
last_var = None
for new_index, (_, orig_index, var) in enumerate(seq):
order[orig_index] = new_index
if last_var is not None:
self.guard_leq(last_var, var)
last_var = var
return order
# The evaluate functions evaluate some symbolic sympy expression
# (NB: not necessarily an Expr) and return what the concrete result
# is, guarding on the expression being that result
# NB: write evaluate_expr(sympy.Lt(a, b)) rather than evaluate_expr(a < b)
# as this will ensure that you actually have a sympy'ified expression,
# and will prevent you from incorrectly writing evaluate_expr(a == b)
# which does the wrong thing if a or b is a sympy expression
def evaluate_expr(self, left: Union[Expr, sympy.logic.boolalg.Boolean]) -> bool:
assert isinstance(left, (Expr, sympy.logic.boolalg.Boolean)), type(left)
return self.shape_env.evaluate_expr(sympy.sympify(left))
def evaluate_min(self, left: Expr, right: Expr) -> Expr:
"""return the smaller of left and right, and guard on that choice"""
if isinstance(left, Expr):
left = sympy_subs(left, self.inv_precomputed_replacements) # type: ignore[arg-type]
if isinstance(right, Expr):
right = sympy_subs(right, self.inv_precomputed_replacements) # type: ignore[arg-type]
try:
lv = self.size_hint(left)
rv = self.size_hint(right)
except TypeError: # unbacked symints
if left == right or self.statically_known_leq(left, right):
return left
if self.statically_known_leq(right, left):
return right
gcd = sympy.gcd(left, right)
if left == gcd: # handle `min(10*u0, u0)` etc
return left
if right == gcd:
return right
raise TypeError(
f"evaluate_min({left}, {right}) with unbacked symints"
) from None
if lv <= rv:
self.guard_leq(left, right)
return left
else:
self.guard_leq(right, left)
return right
def evaluate_max(self, left: Expr, right: Expr) -> Expr:
"""return the larger of left and right, and guard on that choice"""
# Always choose the opposite of eval min for consistency
# This means min(a, b) and max(a, b) produce the same guards
min_val = self.evaluate_min(left, right)
return right if min_val is left else left
def evaluate_static_shape(self, left: Union[Expr, int]) -> int:
if isinstance(left, int):
return left
right = self.size_hint(left)
self.guard_equals(left, sympy.Integer(right))
return int(right)
def evaluate_static_shapes(self, left: Sequence[Union[Expr, int]]) -> List[int]:
return [self.evaluate_static_shape(x) for x in left]
def remove_precomputed_replacements(self, expr: Expr) -> Expr:
if any(symbol_is_type(s, SymT.PRECOMPUTED_SIZE) for s in expr.free_symbols): # type: ignore[attr-defined]
return sympy_subs(expr, self.inv_precomputed_replacements) # type: ignore[arg-type]
return expr
def symbolic_hint(self, expr: Union[Expr, int]) -> Union[Expr, int]:
if isinstance(expr, int):
return expr
# Substitute all hints into expr, but leave unbacked symints alone
expr = self.simplify(expr)
if not isinstance(expr, Expr):
assert isinstance(expr, int)
return expr
free_symbols = expr.free_symbols
if not free_symbols:
try:
return int(expr) # type: ignore[return-value]
except TypeError:
return expr # inf/nan/I
expr = self.remove_precomputed_replacements(expr)
return sympy_subs(expr, self.var_to_val)
def size_hint(
self, expr: Union[Expr, int], *, fallback: Optional[int] = None
) -> int:
out = self.symbolic_hint(expr)
if not isinstance(out, (int, sympy.Integer)) and fallback is not None:
# Use the provided heuristic fallback hint
unbacked_sym_vrs = {
s: self.shape_env.var_to_range.get(s, None) for s in out.free_symbols
}
if all(vr is not None for vr in unbacked_sym_vrs.values()):
hint_vr = bound_sympy(out, unbacked_sym_vrs) # type: ignore[arg-type]
if isinstance(hint_vr.lower, (int, sympy.Integer)):
fallback = max(fallback, int(hint_vr.lower))
if isinstance(hint_vr.upper, (int, sympy.Integer)):
fallback = min(fallback, int(hint_vr.upper))
return fallback
try:
return int(out)
except Exception:
log.debug("failed on: %s", out)
raise
def size_hints(
self,
exprs: Iterable[Expr],
*,
fallback: Optional[int] = None,
) -> Tuple[int, ...]:
return tuple(self.size_hint(x, fallback=fallback) for x in exprs)
def _lru_cache(self, fn, maxsize=None):
"""
Wrapper around functools.lru_cache that clears when replacements
has been invalidated.
"""
fn_cache = functools.lru_cache(maxsize)(fn)
prior_len = len(self.replacements)
@functools.wraps(fn)
def wrapper(*args, **kwargs):
nonlocal prior_len
if prior_len != len(self.replacements):
prior_len = len(self.replacements)
fn_cache.cache_clear()
return fn_cache(*args, **kwargs)
return wrapper
def make_stride_vars_cache(self):
cache = self._lru_cache(self._stride_vars)
def stride_vars(
index: Expr,
vars: Sequence[sympy.Symbol],
support_vars: Optional[Sequence[sympy.Symbol]] = None,
) -> List[Expr]:
if not support_vars:
support_vars = vars
return cache(index, tuple(vars), tuple(support_vars))
return stride_vars
def _stride_vars(
self,
index: Expr,
vars: Sequence[sympy.Symbol],
support_vars: Sequence[sympy.Symbol],
) -> List[Expr]:
"""Convert an indexing expression back into strides
NOTE: This is only valid if the index is a standard strided offset
calculation. e.g. 10 * ModularIndexing(i0 + 1, 1, 2) would give a
stride of -10 because the index wraps around after the first element
"""
strides = []
index = self.simplify(index)
# remove any offset
index = index - sympy_subs(
index, {v: sympy.S.Zero for v in support_vars if v != 0}
)
for i in range(len(vars)):
# drop all the other dims
index_dim = sympy_subs(
index,
{
support_vars[j]: sympy.S.Zero
for j in range(len(support_vars))
if vars[i] != support_vars[j] and support_vars[j] != 0
},
)
v = vars[i]
if v == 0:
strides.append(sympy.S.Zero)
else:
# TODO(jansel): should we use sympy.diff here?
strides.append(
sympy_subs(index_dim, {v: sympy.S.One})
- sympy_subs(index_dim, {v: sympy.S.Zero})
)
return strides
def atomically_apply_size_hint(
self, expr: Union[Expr, int], *, fallback: Optional[int] = None
) -> Union[Expr, int]:
if isinstance(expr, int):
return int(expr)
# For multiple expressions that depend on an unbacked symint,
# we want to compute them consistently for a size hint we have chosen.
# So, recursively compute expressions via size hints of contained symbols.
# For example: u1 * u2 - 10 ==> fallback * fallback - 10
assert isinstance(expr, Expr), type(expr)
free_symbols = expr.free_symbols
size_dict = {
symbol: V.graph.sizevars.size_hint(symbol, fallback=fallback)
for symbol in free_symbols
}
return expr.subs(size_dict)
def offset_var(self, index: Expr, vars: List[sympy.Symbol]) -> Expr:
"""Extract offset part of an indexing expression"""
index = self.simplify(index)
return sympy_subs(index, {v: sympy.S.Zero for v in vars if v != 0})
def stride_hints(
self,
index: Expr,
vars: Sequence[sympy.Symbol],
support_vars: Optional[Sequence[sympy.Symbol]] = None,
) -> List[int]:
for v in index.free_symbols:
if symbol_is_type(v, SymT.INDIRECT): # type: ignore[attr-defined]
index = sympy_subs(index, {v: 0}) # type: ignore[dict-item]
result = []
for s in self.stride_vars(index, vars, support_vars):
try:
result.append(self.size_hint(s))
except TypeError:
result.append(0)
return result
def stride_order(self, index: Expr, vars: List[sympy.Symbol]) -> List[int]:
strides = tuple(map(abs, self.stride_hints(index, vars)))
order = list(range(len(strides)))
order.sort(key=lambda x: (strides[x] == 0, strides[x]))
return order
def lookup_precomputed_size(self, expr: Expr) -> Expr:
if (
isinstance(expr, (int, sympy.Symbol, sympy.Number))
or expr.is_number
or expr.is_symbol
):
return expr
expr = self.remove_precomputed_replacements(expr)
if expr not in self.precomputed_replacements:
sym = sympy_index_symbol_with_prefix(
SymT.PRECOMPUTED_SIZE, len(self.precomputed_replacements)
)
self.precomputed_replacements[expr] = sym
self.inv_precomputed_replacements[sym] = expr
return self.precomputed_replacements[expr]
def free_symbols(self) -> Set[sympy.Symbol]:
return set(self.var_to_val.keys()) - set(self.replacements.keys())
def combine_modular_indexing_pairs(self, index: sympy.Expr) -> sympy.Expr:
"""
A pair of special ModularIndexing can be combined.
E.g. ModularIndexing(ModularIndexing(x, 1, a), 1, b)
We can simplify this to ModuleIndexing(x, 1, b), if
1. x is non negative integer
2. a and b are positive integers
3. a is a multiple of b.
"""
def _check_args(x, div, mod, is_first):
if not isinstance(div, sympy.Integer) or not isinstance(mod, sympy.Integer):
return False
if div != 1:
return False
if mod <= 0:
return False
if is_first:
# first ModularIndexing should conatins a nested ModularIndex
if not isinstance(x, ModularIndexing):
return False
else:
# second ModularIndexing should constains a non-negative
# symbol
if not isinstance(x, sympy.Symbol) or not self.statically_known_geq(
x, 0
):
return False
return True
if isinstance(index, ModularIndexing):
x, div, mod = index.args
if not _check_args(x, div, mod, True):
return index
x2, div2, mod2 = x.args
if not _check_args(x2, div2, mod2, False):
return index
if mod2 % mod != 0:
return index
return ModularIndexing(x2, 1, mod)
return index
def expand_floor_div(
self, index: sympy.Expr
) -> Union[bool, Tuple[sympy.Expr, sympy.Expr]]:
"""
Expand the FloorDiv to the entire expression so that the expression may
be simplfied.
E.g., for a 2D contiguous tensor with shape [a, 2 * b], and index variables
x1, x2, index expression 'x1 * 2b + x2' can be easily combined.
But index expression 'x1 * b + x2 // 2' can not.
By expanding the FloorDiv to the entire expression, we get
'(x1 * 2b + x2) // 2'. This transformation allows us to merge loops
for the numerator!
Return false if this optimization can be applied;
Return the new expression and the denominator otherwise.
The original expression will be equivalent to 'new_expression // denominator'
"""
if not isinstance(index, sympy.Add):
return False
terms = index.args
if len(terms) < 2:
return False
floor_div_index = -1
varlist = []
factorlist = []
for idx, term in enumerate(terms):
if isinstance(term, sympy.Mul):
# For dynamic shape, term like '2*s1*x1' has 3 child nodes.
# - A integer for 2
# - A symbol for s1
# - A symbol for x1
# Skip for now.
if len(term.args) != 2:
return False
factor, var = term.args
varlist.append(var)
factorlist.append(factor)
if not isinstance(factor, sympy.Integer) or not isinstance(
var, sympy.Symbol
):
return False
# It's easier to reason about the correceness of the transformation
# for non-negative integers.
if not self.statically_known_geq(var, 0):
return False
elif isinstance(term, FloorDiv):
var, factor = term.args
if not isinstance(factor, sympy.Integer) or not isinstance(
var, sympy.Symbol
):
return False
if not self.statically_known_geq(var, 0):
return False
if floor_div_index >= 0:
# can not handle multi FloorDiv yet
return False
floor_div_index = idx
varlist.append(var)
# this factor is denominator
factorlist.append(factor)
else:
return False
if floor_div_index < 0:
return False
# Construct the new expression and remember the denominator
denominator = factorlist[floor_div_index]
new_index = sympy.S.Zero
for var, factor, idx in zip(varlist, factorlist, itertools.count()):
if idx == floor_div_index:
new_index += var
else:
new_index += (factor * denominator) * var
return new_index, denominator
def join_dimensions(expr: Expr) -> Expr:
if not isinstance(expr, sympy.Add) or not expr.has(ModularIndexing):
return expr # fast exit path
return _join_dimensions_cached(expr)
@functools.lru_cache(256)
def _join_dimensions_cached(expr: Expr) -> Expr:
"""
ModularIndexing(i0, 1, 32) + 32 * ModularIndexing(i0, 32, 4)
becomes
ModularIndexing(i0, 1, 128)
ModularIndexing(i0, 1, 32) + 32 * FloorDiv(i0, 32)
becomes i0
This type of pattern can come from view operations
"""
assert isinstance(expr, sympy.Add)
scale = sympy.Wild("scale", exclude=[0], integer=True)
base = sympy.Wild("base", integer=True)
divisor = sympy.Wild("divisor", integer=True)
mod1 = sympy.Wild("modulus", integer=True)
mod2 = sympy.Wild("modulus2", integer=True)
for term1 in expr.args:
m1 = term1.match(scale * ModularIndexing(base, divisor, mod1))
if m1:
for term2 in expr.args:
m2 = term2.match(
m1[scale]
* m1[mod1]
* ModularIndexing(m1[base], m1[divisor] * m1[mod1], mod2)
)
if m2 and term1 != term2:
expr = join_dimensions(
expr
- term1
- term2
+ m1[scale]
* ModularIndexing(m1[base], m1[divisor], m1[mod1] * m2[mod2])
)
return expr
for term1 in expr.args:
m1 = term1.match(scale * ModularIndexing(base, divisor, mod1))
if m1:
for term2 in expr.args:
m2 = term2.match(
m1[scale] * m1[mod1] * FloorDiv(m1[base], m1[divisor] * m1[mod1])
)
if m2 is not None: # in case of success we get an empty dict here
expr = join_dimensions(
expr
- term1
- term2
+ m1[scale] * FloorDiv(m1[base], m1[divisor])
)
return expr
return expr
class SimplifyIndexing(V.WrapperHandler): # type: ignore[name-defined]
"""
A wrapper around .virtualize.ops that uses var range information to
simplify ModularIndexing/FloorDiv.
"""
def __init__(self, inner, var_ranges: VarRanges) -> None:
super().__init__(inner)
self.name = "SimplifyIndexing"
self._simplify: Callable[
[Expr], Expr
] = lambda index: V.graph.sizevars.simplify_with_ranges(index, var_ranges)
def load(self, name: str, index: sympy.Expr):
return self._inner.load(name, self._simplify(index))
def store(self, name, index, value, mode=None):
return self._inner.store(name, self._simplify(index), value, mode=mode)
def store_reduction(self, name, index, value):
return self._inner.store_reduction(name, self._simplify(index), value)
def index_expr(self, index, dtype):
return self._inner.index_expr(self._simplify(index), dtype)
def check_bounds(self, index, size, lower, upper):
return self._inner.check_bounds(self._simplify(index), size, lower, upper)
|