1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
|
# mypy: allow-untyped-defs
from __future__ import annotations
import collections
import contextlib
import dataclasses
import enum
import functools
import inspect
import io
import itertools
import logging
import math
import operator
import os
import platform
import re
import shutil
import sys
import tempfile
import textwrap
import time
import unittest
from datetime import datetime
from io import StringIO
from typing import (
Any,
Callable,
Dict,
Generic,
Iterable,
List,
NamedTuple,
Optional,
Protocol,
Sequence,
Set,
Tuple,
TYPE_CHECKING,
TypeVar,
Union,
ValuesView,
)
from typing_extensions import Concatenate, dataclass_transform, ParamSpec, TypeGuard
from unittest import mock
import sympy
import torch
from torch._inductor.runtime.hints import DeviceProperties
if TYPE_CHECKING:
from torch._prims_common import ELEMENTWISE_TYPE_PROMOTION_KIND
from torch.utils._pytree import tree_map_only
GPU_TYPES = ["cuda", "xpu"]
# defines here before import torch._dynamo is for avoiding circular import
# when get_gpu_type is imported from dynamo
@functools.lru_cache(None)
def get_gpu_type():
avail_gpus = [x for x in GPU_TYPES if getattr(torch, x).is_available()]
assert len(avail_gpus) <= 1
gpu_type = "cuda" if len(avail_gpus) == 0 else avail_gpus.pop()
return gpu_type
from torch._dynamo.device_interface import get_interface_for_device
from torch._dynamo.utils import detect_fake_mode
from torch.autograd import DeviceType
from torch.autograd.profiler_util import EventList
from torch.fx.passes.graph_transform_observer import GraphTransformObserver
from torch.fx.passes.shape_prop import ShapeProp
from torch.utils._sympy.functions import (
CeilDiv,
CleanDiv,
FloorDiv,
Identity,
ModularIndexing,
)
from torch.utils._sympy.symbol import make_symbol, SymT
from torch.utils._sympy.value_ranges import bound_sympy, ValueRanges
from . import config
from .runtime.runtime_utils import ceildiv as runtime_ceildiv
_IS_WINDOWS = sys.platform == "win32"
log = logging.getLogger(__name__)
_T = TypeVar("_T")
VarRanges = Dict[sympy.Expr, sympy.Expr]
InputType = Optional[Union[torch.Tensor, int, torch.SymInt]]
GPU_KERNEL_BIN_EXTS = {"cuda": ".cubin", "xpu": ".spv"}
GPU_ALIGN_BYTES = 16
ALIGNMENT = 16
ALIGN_BYTES = 64
assert (ALIGN_BYTES & (ALIGN_BYTES - 1)) == 0 and ALIGN_BYTES >= 8, "must be power of 2"
def _align(nbytes):
"""Round up to the nearest multiple of ALIGN_BYTES"""
return (nbytes + ALIGN_BYTES - 1) & -ALIGN_BYTES
def _is_aligned(v: sympy.Expr):
"""v can be statically proven to be a multiple of ALIGN_BYTES"""
if isinstance(v, (sympy.Add, sympy.Max)):
return all(map(_is_aligned, v.args))
return isinstance(v, align) or sympy.gcd(v, ALIGN_BYTES) == ALIGN_BYTES
class align(sympy.Function):
"""Symbolically round up to the nearest multiple of ALIGN_BYTES"""
nargs = (1,)
is_integer = True
@classmethod
def eval(cls, value: sympy.Expr) -> Optional[sympy.Expr]:
if isinstance(value, (int, sympy.Integer)):
return _align(int(value))
if _is_aligned(value):
return value
def do_bench_using_profiling(fn: Callable[[], Any], warmup=25, rep=100) -> float:
"""
Returns benchmark results by examining torch profiler events.
This could be more accurate as it doesn't count CPU side overhead.
However, this also requires manually excluding irrelevant event, e.g.
vectorized_elementwise_kernel which is used to fill L2 cache,
various CUDA events, etc, so could also be fragile.
"""
fn()
torch.cuda.synchronize()
cache = torch.empty(int(256e6 // 4), dtype=torch.int, device="cuda")
# Estimate the runtime of the function
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for _ in range(5):
cache.zero_()
fn()
end_event.record()
torch.cuda.synchronize()
estimate_ms = start_event.elapsed_time(end_event) / 5
# compute number of warmup and repeat
n_warmup = max(1, int(warmup / estimate_ms))
n_repeat = max(1, int(rep / estimate_ms))
# Warm-up
for _ in range(n_warmup):
fn()
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CUDA,
]
) as p:
# Benchmark
for i in range(n_repeat):
# we clear the L2 cache before each run
cache.zero_()
# record time of `fn`
fn()
# Record clocks
torch.cuda.synchronize()
log.debug("raw events")
log.debug(p.key_averages().table(sort_by="self_device_time_total", row_limit=-1))
filtered_events = EventList(
[
event
for event in p.events()
if event.device_type == DeviceType.CUDA and event.name != "Context Sync"
]
)
if len(filtered_events) % n_repeat != 0:
raise RuntimeError(
"Failed to divide all profiling events into #repeat groups. "
"#CUDA events: %d, #repeats: %s",
len(filtered_events),
n_repeat,
)
num_event_per_group = len(filtered_events) / n_repeat
actual_events = EventList(
[
event
for i, event in enumerate(filtered_events)
if i % num_event_per_group != 0
]
)
actual_events._build_tree()
actual_events = actual_events.key_averages()
log.debug("profiling time breakdown")
log.debug(actual_events.table(row_limit=-1))
res = sum(event.device_time_total for event in actual_events) / 1000.0 / n_repeat
log.debug("profiling results: %s ms", res)
return res
@functools.lru_cache(None)
def has_torchvision_roi_align() -> bool:
try:
from torchvision.ops import roi_align # noqa: F401
torch._C._dispatch_has_kernel_for_dispatch_key("torchvision::nms", "Meta")
return roi_align is not None and hasattr(
getattr(torch.ops, "torchvision", None), "roi_align"
)
except ImportError:
return False
except RuntimeError as e:
assert "torchvision::nms does not exist" in str(e)
return False
def decode_device(device: Union[Optional[torch.device], str]) -> torch.device:
if device is None:
return torch.tensor(0.0).device # default device
if isinstance(device, str):
device = torch.device(device)
if device.type not in ("cpu", "meta") and device.index is None:
device_interface = get_interface_for_device(device.type)
return torch.device(device.type, index=device_interface.Worker.current_device())
return device
def sympy_product(it: Iterable[sympy.Expr]) -> sympy.Expr:
return functools.reduce(operator.mul, it, sympy.S.One)
def sympy_dot(seq1: Sequence[sympy.Expr], seq2: Sequence[sympy.Expr]) -> sympy.Expr:
assert len(seq1) == len(seq2)
return sympy.expand(sum(a * b for a, b in zip(seq1, seq2)))
def unique(it: Iterable[_T]) -> ValuesView[_T]:
return {id(x): x for x in it}.values()
def ceildiv(
numer: Union[int, sympy.Expr], denom: Union[int, sympy.Expr]
) -> Union[int, sympy.Expr]:
if isinstance(numer, sympy.Expr) or isinstance(denom, sympy.Expr):
return CeilDiv(sympy.sympify(numer), sympy.sympify(denom))
# TODO: There is a bug in a call to this function, to repro:
# python benchmarks/dynamo/huggingface.py --inductor -d cuda --accuracy
# --amp --only YituTechConvBert --dynamic-shapes
assert isinstance(numer, int) and isinstance(
denom, int
), f"{numer}: {type(numer)}, {denom}: {type(denom)}"
return runtime_ceildiv(numer, denom)
def _type_of(key):
# Use the function here to get rid of dependencies on the Triton during the codegen.
# Refer to Triton implementation here:
# https://github.com/openai/triton/blob/98b5945d2aef679e00ebca8e07c35c3658ec76de/python/triton/runtime/jit.py#L238
# `None` is nullptr. Implicitly convert to *i8.
if key is None:
return "*i8"
dtype_str = str(key).split(".")[-1]
tys = {
"bool": "i1",
"float8e4nv": "fp8e4nv",
"float8e5": "fp8e5",
"float8e4b15": "fp8e4b15",
"float8e4b15x4": "fp8e4b15x4",
"float8_e4m3fn": "fp8e4nv",
"float8_e5m2": "fp8e5",
"float16": "fp16",
"bfloat16": "bf16",
"float32": "fp32",
"float64": "fp64",
"int8": "i8",
"int16": "i16",
"int32": "i32",
"int64": "i64",
"uint8": "u8",
"uint16": "u16",
"uint32": "u32",
"uint64": "u64",
}
# reinterpret can create triton type
for v in list(tys.values()):
tys[v] = v
return key if isinstance(key, str) else f"*{tys[dtype_str]}"
def convert_shape_to_inductor(
lst: Iterable[Union[int, torch.SymInt]]
) -> List[sympy.Expr]:
"""
Gets the shape and stride of a tensor. For non-symbolic tensors, this is
trivial. But for symbolic tensors, we need to map from SymIntNode into
sympy.Expr.
"""
return [sympy.sympify(i) for i in lst]
def convert_shape_to_symint(
lst: Iterable[Union[int, sympy.Expr]]
) -> List[Union[int, torch.SymInt]]:
"""
Takes a list of shapes from Inductor and converts them into symints (or just
ints if all shapes are static).
"""
from .virtualized import V
return [
(
i
if isinstance(i, int)
else (
int(i)
if isinstance(i, sympy.Integer)
else V.graph.sizevars.shape_env.create_symintnode(i, hint=None)
)
)
for i in lst
]
def is_view(op: torch._ops.OpOverload) -> bool:
"""
Does this op overload have aliasing
"""
assert isinstance(op, torch._ops.OpOverload)
return any(a.alias_info is not None for a in op._schema.arguments)
def is_pointwise_use(
use, is_pointwise_fn: Optional[Callable[[torch._ops.OpOverload], bool]] = None
) -> bool:
"""
Do all uses of this op have torch.Tag.pointwise or return True for optional `is_pointwise_fn`
Uses in views ops will follow the views uses
"""
if not use.op == "call_function":
return False
if not (
isinstance(use.target, torch._ops.OpOverload) or use.target is operator.getitem
):
return False
if use.target is operator.getitem or is_view(use.target):
return all(is_pointwise_use(u, is_pointwise_fn) for u in use.users)
return torch.Tag.pointwise in use.target.tags or (
is_pointwise_fn is not None and is_pointwise_fn(use.target)
)
def gen_gm_and_inputs(target, args, kwargs):
g = torch.fx.Graph()
graph_args = []
def add_tensor_arg(arg):
graph_args.append(arg)
return g.placeholder(f"arg{len(graph_args)}")
node = g.call_function(
target, *tree_map_only(torch.Tensor, add_tensor_arg, (args, kwargs))
)
if (
len(target._schema.returns) == 1
and str(target._schema.returns[0].type) == "Tensor"
):
node = (node,) # type: ignore[assignment]
g.output(node)
gm = torch.fx.GraphModule({}, g)
return gm, graph_args
def synchronize(device: str = "cuda") -> None:
if device == "cpu":
return
device_interface = get_interface_for_device(device)
if device_interface.is_available():
device_interface.synchronize()
def timed(
model: Callable[..., Any], example_inputs, times: int = 1, device: str = "cuda"
) -> float:
synchronize(device)
torch.manual_seed(1337)
t0 = time.perf_counter()
for _ in range(times):
result = model(*example_inputs)
synchronize(device)
t1 = time.perf_counter()
# GC the result after timing
assert result is not None # type: ignore[possibly-undefined]
return t1 - t0
def print_performance(
fn, args=(), times=10, repeat=10, baseline=1.0, device: str = "cuda"
):
timings = torch.tensor([timed(fn, args, times, device) for _ in range(repeat)])
took = torch.median(timings) / times
print(f"{took / baseline:.6f}")
return took
def precompute_method(obj: Any, method: str):
"""Replace obj.method() with a new method that returns a precomputed constant."""
result = getattr(obj, method)()
setattr(obj, method, lambda: result)
def precompute_methods(obj: Any, methods: List[str]):
"""Replace methods with new methods that returns a precomputed constants."""
for method in methods:
precompute_method(obj, method)
def cmp(a, b) -> int:
return int(a > b) - int(a < b)
def pad_listlike(x, size):
if len(x) == 1:
return type(x)([x[0]]) * size
else:
return x
# Used to ensure that iterating over a set is deterministic
def tuple_sorted(x: Tuple[_T, ...]) -> List[_T]:
if len(x) == 0:
return []
def sort_func(elem):
if isinstance(elem, str):
return elem
else:
# We expect `elem` to be `scheduler.BaseSchedulerNode` type here,
# but we are not able to do isinstance assert because of circular dependency
return elem.get_name()
return sorted(x, key=sort_func)
P = ParamSpec("P")
RV = TypeVar("RV", covariant=True)
class CachedMethod(Protocol, Generic[P, RV]):
@staticmethod
def clear_cache(self) -> None:
...
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> RV:
...
# See https://github.com/python/mypy/issues/13222#issuecomment-1193073470 to understand the type signature
def cache_on_self(fn: Callable[Concatenate[Any, P], RV]) -> CachedMethod[P, RV]:
name = fn.__name__
key = f"__{name}_cache"
# wrapper is likely on the hot path, compile a specialized version of it
ctx = {"fn": fn}
exec(
f"""\
def {name}_cache_on_self(self):
try:
return self.{key}
except AttributeError:
rv = fn(self)
object.__setattr__(self, "{key}", rv)
return rv
""".lstrip(),
ctx,
)
wrapper = functools.wraps(fn)(ctx[f"{name}_cache_on_self"])
def clear_cache(self):
if hasattr(self, key):
delattr(self, key)
wrapper.clear_cache = clear_cache # type: ignore[attr-defined]
return wrapper # type: ignore[return-value]
def aggregate_origins(node_schedule):
from . import ir
if isinstance(node_schedule, list):
return functools.reduce(
operator.or_,
[
node.node.origins
for node in node_schedule
if hasattr(node, "node") and node.node
],
set(),
)
elif isinstance(node_schedule, ir.ExternKernel):
return node_schedule.origins
else:
return set()
def get_fused_kernel_name(node_schedule, descriptive_names):
all_origins = aggregate_origins(node_schedule)
if descriptive_names == "original_aten":
# Bases the kernel name off of the top-level aten operator (i.e. pre-decompositions)
sources = [
origin.meta["original_aten"]._overloadpacket.__name__
for origin in all_origins
if origin.op == "call_function"
and "original_aten" in origin.meta
and origin.meta["original_aten"] is not None
]
sources = sorted(set(sources))
elif descriptive_names == "torch":
# Bases the kernel name off of the top-level "torch" operator (i.e. post-dynamo graph)
sources = []
for origin in all_origins:
if origin.op == "call_function" and "source_fn_stack" in origin.meta:
source_fn = origin.meta["source_fn_stack"][-1]
if isinstance(source_fn[1], str):
sources.append(source_fn[1])
else:
sources.append(source_fn[1].__name__)
sources = sorted(set(sources))
elif descriptive_names == "inductor_node":
sources = [
origin.name for origin in all_origins if origin.op == "call_function"
]
else:
raise NotImplementedError
sources = sources
return "_".join(["fused"] + sources)
def get_kernel_metadata(node_schedule, wrapper):
all_origins = aggregate_origins(node_schedule)
inductor_nodes = [origin for origin in all_origins if origin.op == "call_function"]
from_node_dict = collections.defaultdict(list)
original_aten_dict = collections.defaultdict(list)
# Attempt to sort `inductor_nodes` topologically. Note that the case
# where `inductor_nodes` contains nodes from multiple graph instances
# is not supported. An example of this is conditional statements.
single_graph = None
if len(inductor_nodes):
unique_graphs = {n.graph for n in inductor_nodes}
if len(unique_graphs) == 1:
single_graph = inductor_nodes[0].graph
# create a map of idx -> node and cache it
if not hasattr(single_graph, "_inductor_kernel_metadata_node_to_idx_map"):
node_to_idx_map = {}
for idx, n in enumerate(single_graph.nodes):
node_to_idx_map[n] = idx
single_graph._inductor_kernel_metadata_node_to_idx_map = node_to_idx_map
inductor_nodes.sort(
key=lambda n: single_graph._inductor_kernel_metadata_node_to_idx_map[n]
)
for node in inductor_nodes:
if "original_aten" in node.meta and node.meta["original_aten"] is not None:
key = str(node.meta["original_aten"]._overloadpacket)
original_aten_dict[key].append(node.name)
if "from_node" in node.meta:
key = node.meta["from_node"][0].name
from_node_dict[key].append(node.name)
sort_str = "Topologically Sorted" if single_graph is not None else "Unsorted"
metadata = (
f"{wrapper.comment} {sort_str} Source Nodes: [{', '.join(from_node_dict.keys())}], "
f"Original ATen: [{', '.join(original_aten_dict.keys())}]"
)
# trace back to original node here
detailed_metadata = [f"{wrapper.comment} Source node to ATen node mapping:"]
for original_node, nodes in sorted(from_node_dict.items()):
detailed_metadata.append(
f"{wrapper.comment} {original_node} => {', '.join(sorted(nodes))}"
)
# print the aot_autograd graph fragment
if single_graph is not None:
detailed_metadata.append(f"{wrapper.comment} Graph fragment:")
for n in inductor_nodes:
# TODO(future): maybe refactor torch/fx/graph.py to make it easy to
# generate python code for graph fragments
detailed_metadata.append(f"{wrapper.comment} {n.format_node()}")
return metadata, "\n".join(detailed_metadata)
def dominated_nodes(
initial_queue: Iterable[torch.fx.Node], skip_filter=None
) -> Set[torch.fx.Node]:
"""Returns the set of nodes whose values depend on those within initial_queue"""
initial_queue = list(initial_queue)
dominated_set = set(initial_queue)
while initial_queue:
node = initial_queue.pop()
for user in node.users:
if skip_filter and skip_filter(user):
continue
if user not in dominated_set:
dominated_set.add(user)
initial_queue.append(user)
return dominated_set
def gather_origins(args, kwargs):
import itertools
from . import ir
def is_unrealized_node(n):
if isinstance(n, ir.TensorBox):
return is_unrealized_node(n.data)
if isinstance(n, ir.StorageBox):
return is_unrealized_node(n.data)
return isinstance(n, ir.IRNode) and isinstance(n, ir.Pointwise)
kwarg_origins = [val.origins for val in kwargs.values() if is_unrealized_node(val)]
arg_origins = [arg.origins for arg in args if is_unrealized_node(arg)]
return set(itertools.chain(*arg_origins, *kwarg_origins))
def sympy_str(expr: sympy.Expr) -> str:
"""
Normal sympy str is very slow, this is a lot faster. The result are
somewhat worse, as it doesn't do as much simplification. So don't
use this for final codegen.
"""
if isinstance(expr, sympy.Symbol):
return expr.name
if isinstance(expr, sympy.Add):
return " + ".join(map(sympy_str, expr.args))
if isinstance(expr, sympy.Mul):
return " * ".join(map(sympy_str, expr.args))
if isinstance(expr, (ModularIndexing, CleanDiv, FloorDiv, Identity)):
return f"{expr.func.__name__}({', '.join(map(sympy_str, expr.args))})"
return str(expr)
def get_bounds_index_expr(index):
from .virtualized import V
# If this expression does not come from an FX node, we compute its bounds
if (
config.compute_all_bounds
and (fx_node := getattr(V.interpreter, "current_node", None))
and fx_node.target != "index_expr"
):
return bound_sympy(index)
else:
return ValueRanges.unknown()
def sympy_index_symbol_with_prefix(prefix: SymT, idx: int) -> sympy.Symbol:
"""
Used to generate an integer-nonnegative symbol.
"""
# This should never be used for creating shape/stride symbols, as those
# should all be allocated before Inductor.
assert prefix != SymT.SIZE
# NOTE: shape symbols are positive (> 0), but index variables are only
# non-negative (>= 0).
return make_symbol(prefix, idx, integer=True, nonnegative=True)
def generate_assert(check):
return (check or config.debug_index_asserts) and config.assert_indirect_indexing
def sympy_index_symbol(name: str) -> sympy.Symbol:
"""
Used to generate an integer-nonnegative symbol.
"""
# This should never be used for creating shape/stride symbols, as those
# should all be allocated before Inductor.
assert name[0] != "s"
# NOTE: shape symbols are positive (> 0), but index variables are only
# non-negative (>= 0).
return sympy.Symbol(name, integer=True, nonnegative=True)
def sympy_subs(expr: sympy.Expr, replacements: Dict[sympy.Expr, Any]) -> sympy.Expr:
"""
When the passed replacement symbol v is a string, it is converted to a symbol with name v that
have the same replaced expression integer and nonnegative properties.
"""
def to_symbol(replaced, replacement):
assert isinstance(replaced, sympy.Expr)
if isinstance(replacement, str):
return sympy.Symbol(
replacement,
integer=replaced.is_integer, # type: ignore[attr-defined]
nonnegative=replaced.is_nonnegative, # type: ignore[attr-defined]
)
else:
return replacement
# xreplace is faster than subs, but is way more picky
return sympy.sympify(expr).xreplace(
{k: to_symbol(k, v) for k, v in replacements.items()}
)
def is_symbolic(a: Any) -> TypeGuard[Union[torch.SymInt, torch.Tensor]]:
return isinstance(a, torch.SymInt) or (
isinstance(a, torch.Tensor)
and any(is_symbolic(x) for x in itertools.chain(a.size(), a.stride()))
)
def any_is_symbolic(*args: Any) -> bool:
return any(is_symbolic(a) for a in args)
def get_first_incompatible_cudagraph_node(
gm: torch.fx.GraphModule,
) -> Optional[torch.fx.Node]:
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols
forbidden_set = {
"aten._fused_moving_avg_obs_fq_helper.default",
"aten._fused_moving_avg_obs_fq_helper_functional.default",
"fbgemm.dense_to_jagged.default",
"fbgemm.jagged_to_padded_dense.default",
"run_and_save_rng_state",
"run_with_rng_state",
"aten._local_scalar_dense",
# Technically, it's not necessary to ban this, because an
# assert_scalar with constant arguments can be validly run
# with CUDA graphs, but the operator is also pointless with
# constant arguments, so might as well ban
"aten._assert_scalar",
}
if torch.are_deterministic_algorithms_enabled():
forbidden_set.update(
{
"aten._unsafe_index_put.default",
"aten._unsafe_masked_index_put_accumulate.default",
"aten.index_put.default",
"aten.index_put_.default",
"aten.scatter.src",
"aten.scatter.reduce",
"aten.scatter.value_reduce",
"aten.scatter_add_",
"aten.scatter_add.default",
"aten.scatter_reduce.two",
"aten.scatter_reduce_.two",
"aten.scatter_reduce.two_out",
}
)
for node in gm.graph.nodes:
if str(node.target) in forbidden_set:
return node
if (val := node.meta.get("val")) is not None and free_unbacked_symbols(val):
return node
return None
def output_node(gm: torch.fx.GraphModule):
"""Get the output node from an FX graph"""
last_node = next(iter(reversed(gm.graph.nodes)))
assert last_node.op == "output"
return last_node
_registered_caches: List[Any] = []
def clear_on_fresh_inductor_cache(obj: Any):
"""
Use this decorator to register any caches that should be cache_clear'd
with fresh_inductor_cache().
"""
if not hasattr(obj, "cache_clear") or not callable(obj.cache_clear):
raise AttributeError(f"{obj} does not have a cache_clear method")
_registered_caches.append(obj)
return obj
def clear_inductor_caches():
"""
Clear all registered caches.
"""
for obj in _registered_caches:
obj.cache_clear()
@contextlib.contextmanager
def fresh_inductor_cache(cache_entries=None, dir=None, delete=True):
"""
Contextmanager that provides a clean tmp cachedir for inductor.
Optionally, pass a dict as 'cache_entries' to get a list of filenames and sizes
generated with this cache instance.
"""
clear_inductor_caches()
inductor_cache_dir = tempfile.mkdtemp(dir=dir)
try:
with mock.patch.dict(
os.environ, {"TORCHINDUCTOR_CACHE_DIR": inductor_cache_dir}
):
log.debug("Using inductor cache dir %s", inductor_cache_dir)
triton_cache_dir = os.path.join(inductor_cache_dir, "triton")
with mock.patch.dict(os.environ, {"TRITON_CACHE_DIR": triton_cache_dir}):
yield
if isinstance(cache_entries, dict):
assert len(cache_entries) == 0, "expected empty cache_entries dict"
if os.path.exists(triton_cache_dir):
files = os.listdir(triton_cache_dir)
cache_entries.update(
{
f: os.path.getsize(os.path.join(triton_cache_dir, f))
for f in files
if ".lock" not in f
}
)
if delete:
shutil.rmtree(inductor_cache_dir)
except Exception:
if not _IS_WINDOWS:
"""
Windows can't delete the loaded modules, because the modules binaries are opened.
TODO: discuss if have better solution to handle this issue.
"""
log.warning("on error, temporary cache dir kept at %s", inductor_cache_dir)
raise
finally:
clear_inductor_caches()
def argsort(seq) -> List[int]:
# preserve original order for equal strides
getter = seq.__getitem__
a_r = range(len(seq))
return list(reversed(sorted(a_r, key=getter, reverse=True))) # noqa: C413
def argsort_sym(
shape_env, seq: Sequence[Union[int, torch.SymInt, sympy.Expr]]
) -> List[int]:
def cmp(a, b):
a_idx, a_val = a
b_idx, b_val = b
def evaluate(expr):
if isinstance(expr, bool):
return expr
return shape_env.evaluate_expr(expr, size_oblivious=True)
if evaluate(a_val < b_val):
return -1
if evaluate(a_val > b_val):
return 1
# If strides are the same, prefer the original order.
# (this matches argsort's algorithm).
# For strides = [2048, 2048, 16, 1], this is
# [3, 2, 1, 0].
if a_idx < b_idx:
return 1
if a_idx > b_idx:
return -1
return 0
# Strategy: convert all symints to sympy.Expr, then use a custom comparator
exprs = [
(idx, s.node.expr if isinstance(s, torch.SymInt) else s)
for idx, s in enumerate(seq)
]
exprs = sorted(exprs, key=functools.cmp_to_key(cmp))
result = [idx for idx, _ in exprs]
return result
@functools.lru_cache(8)
def get_dtype_size(dtype):
return torch.empty((), dtype=dtype).element_size()
class LineContext(NamedTuple):
context: Any
class IndentedBuffer:
tabwidth = 4
def __init__(self, initial_indent=0):
self._lines = []
self._indent = initial_indent
def getvaluewithlinemap(self) -> tuple[str, list[tuple[int, LineContext]]]:
buf = StringIO()
p = 1
linemap = []
for line in self._lines:
if isinstance(line, DeferredLineBase):
line = line()
if line is None:
continue
elif isinstance(line, LineContext):
linemap.append((p, line.context))
continue
assert isinstance(line, str)
buf.write(line)
buf.write("\n")
p += 1 + line.count("\n")
return buf.getvalue(), linemap
def getvalue(self) -> str:
v, _ = self.getvaluewithlinemap()
return v
def getrawvalue(self) -> str:
buf = StringIO()
for line in self._lines:
if isinstance(line, DeferredLineBase):
line = line()
if line is None:
continue
elif isinstance(line, LineContext):
continue
assert isinstance(line, str)
# backslash implies line continuation
if line.endswith("\\"):
buf.write(line[:-1])
else:
buf.write(line)
buf.write("\n")
return buf.getvalue()
def clear(self):
self._lines.clear()
def __bool__(self):
return bool(self._lines)
def prefix(self):
return " " * (self._indent * self.tabwidth)
def newline(self):
self.writeline("\n")
def writeline(self, line):
if isinstance(line, LineContext):
self._lines.append(line)
elif isinstance(line, DeferredLineBase):
self._lines.append(line.with_prefix(self.prefix()))
elif line.strip():
self._lines.append(f"{self.prefix()}{line}")
else:
self._lines.append("")
def writelines(self, lines):
for line in lines:
self.writeline(line)
def indent(self, offset=1):
@contextlib.contextmanager
def ctx():
self._indent += offset
try:
yield
finally:
self._indent -= offset
return ctx()
def do_indent(self, offset=1):
self._indent += offset
def do_unindent(self, offset=1):
self._indent -= offset
def splice(self, other_code, strip=False):
if isinstance(other_code, IndentedBuffer):
dedent = float("inf")
for line in other_code._lines:
if not isinstance(line, LineContext) and line:
dedent = min(dedent, len(line) - len(line.lstrip()))
if math.isinf(dedent):
dedent = 0
for line in other_code._lines:
if isinstance(line, LineContext):
self._lines.append(line)
else:
IndentedBuffer.writeline(self, line[int(dedent) :])
else:
other_code = textwrap.dedent(other_code)
if strip:
other_code = other_code.lstrip()
if not other_code:
return
other_code = other_code.rstrip()
for line in other_code.split("\n"):
self.writeline(line)
def map(self, func: Callable[[Any], Any]) -> IndentedBuffer:
res = IndentedBuffer(initial_indent=self._indent)
res._lines = [func(line) for line in self._lines]
return res
def __repr__(self):
return f"{type(self)}({self.getvalue()})"
def __add__(self, other):
assert self._indent == other._indent
res = IndentedBuffer(initial_indent=self._indent)
res.writelines(self._lines)
res.writelines(other._lines)
return res
class FakeIndentedBuffer(IndentedBuffer):
def __init__(self) -> None:
super().__init__()
def __getattribute__(self, name):
if name == "__class__": # Allow access to the class attribute
return object.__getattribute__(self, name)
raise RuntimeError(
f"Tried to call self.{name} on FakeIndentedBuffer. This buffer"
"is currently used on TritonTemplateKernel to prevent actual"
"writes to the body without explicitly specifying the body with"
"`TritonTemplateKernel.set_subgraph_body(name)`"
)
@contextlib.contextmanager
def restore_stdout_stderr(initial_stdout, initial_stderr):
try:
yield
finally:
sys.stdout = initial_stdout
sys.stderr = initial_stderr
class DeferredLineBase:
"""A line that can be 'unwritten' at a later time"""
def __init__(self, line):
if not line.strip():
line = ""
self.line = line
def __call__(self) -> Optional[str]:
"""Returns either self.line or None to indicate the line has been 'unwritten'"""
raise NotImplementedError
def _new_line(self, line: str) -> DeferredLineBase:
"""Returns a new deferred line with the same condition"""
raise NotImplementedError
def with_prefix(self, prefix):
return self._new_line(f"{prefix}{self.line}")
def lstrip(self):
return self._new_line(self.line.lstrip())
def __getitem__(self, index):
return self._new_line(self.line[index])
def __bool__(self):
return bool(self.line)
def __len__(self):
return len(self.line)
class DelayReplaceLine(DeferredLineBase):
"""At end of codegen call `line.replace(key, value_fn())`"""
def __init__(self, key: str, value_fn: Callable[[], str], line: str):
super().__init__(line)
self.key = key
self.value_fn = value_fn
def __call__(self) -> str:
return self.line.replace(self.key, self.value_fn())
def _new_line(self, line: str) -> DelayReplaceLine:
return DelayReplaceLine(self.key, self.value_fn, line)
@functools.lru_cache(None)
def is_big_gpu(index_or_device: Union[int, torch.device] = 0) -> bool:
if isinstance(index_or_device, torch.device):
device = index_or_device
else:
device = torch.device("cuda", index_or_device)
prop = DeviceProperties.create(device)
# SM logic is not relevant to ROCm gpus
# Arbitrarily skipping the older models
if torch.version.hip:
assert prop.major is not None
if prop.major < 9 or prop.major == 10:
log.warning("GPU arch does not support max_autotune_gemm mode usage")
return False
return True
min_sms = 68 # 3080
avail_sms = prop.multi_processor_count
if avail_sms < min_sms:
log.warning(
"Not enough SMs to use max_autotune_gemm mode",
extra={"min_sms": min_sms, "avail_sms": avail_sms},
)
return False
return True
def use_max_autotune() -> bool:
return (
config.max_autotune or config.max_autotune_gemm or config.search_autotune_cache
)
def _use_template_for_cuda(layout, allowed_layout_dtypes: List[torch.dtype]) -> bool:
return (
layout.device.type == "cuda"
and layout.dtype in allowed_layout_dtypes
and is_big_gpu(layout.device)
)
def _use_autotune_backend(backend: str) -> bool:
return backend.upper() in [
x.strip() for x in config.max_autotune_gemm_backends.upper().split(",")
]
def _use_conv_autotune_backend(backend: str) -> bool:
return backend.upper() in [
x.strip() for x in config.max_autotune_conv_backends.upper().split(",")
]
def use_triton_template(layout, *, enable_int32=False, enable_float8=False):
from .codegen.common import BackendFeature, has_backend_feature
layout_dtypes = [torch.float16, torch.bfloat16, torch.float32]
if enable_int32:
layout_dtypes = [torch.float16, torch.bfloat16, torch.float32, torch.int32]
if enable_float8:
layout_dtypes.extend([torch.float8_e4m3fn, torch.float8_e5m2])
return (
(
(
layout.device.type == "cuda"
and _use_template_for_cuda(layout, layout_dtypes)
)
or (layout.device.type == "cpu" and layout.dtype in layout_dtypes)
)
and use_max_autotune()
and _use_autotune_backend("TRITON")
and has_backend_feature(layout.device, BackendFeature.TRITON_TEMPLATES)
)
def use_cutlass_template(layout, m, n, k):
from .virtualized import V
gemm_size = V.graph.sizevars.size_hint(m * n * k, fallback=-1)
if gemm_size <= 0 or gemm_size < config.cuda.cutlass_backend_min_gemm_size:
return False
from .codegen.cuda.cutlass_utils import try_import_cutlass
# Do not use cutlass template on ROCm
if torch.version.hip:
return False
layout_dtypes = [torch.float16, torch.bfloat16, torch.float32, torch.int32]
res = (
_use_template_for_cuda(layout, layout_dtypes)
and use_max_autotune()
and _use_autotune_backend("CUTLASS")
)
if res:
if not try_import_cutlass():
log.warning(
"Failed to import CUTLASS lib. Please check whether "
"_inductor.config.cuda.cutlass_dir is set correctly. "
"Skipping CUTLASS backend for now."
)
return False
return res
@functools.lru_cache(None)
def _rocm_native_device_arch_name(device):
return torch.cuda.get_device_properties(device).gcnArchName
@functools.lru_cache(None)
def try_import_ck_lib():
try:
import ck4inductor # type: ignore[import]
from ck4inductor.universal_gemm.gen_instances import ( # type: ignore[import]
gen_ops_library,
gen_ops_preselected,
)
from ck4inductor.universal_gemm.op import ( # type: ignore[import]
CKGemmOperation,
)
package_dirname = os.path.dirname(ck4inductor.__file__)
except ImportError:
def gen_ops_library():
return []
def gen_ops_preselected():
return []
class CKGemmOperation: # type: ignore[no-redef]
pass
package_dirname = None
return package_dirname, gen_ops_library, gen_ops_preselected, CKGemmOperation
def use_ck_template(layout):
# config knobs check 1
if not use_max_autotune():
return False
# platform check
if not torch.version.hip:
return False
# tensors must be on GPU
if not layout.device.type == "cuda":
return False
# hardware check
# if config arch list is not specified, get the native arch from the device properties
native_arch = _rocm_native_device_arch_name(layout.device)
requested_archs = {k.split(":")[0]: k for k in config.rocm.arch} or {
native_arch.split(":")[0]: native_arch
}
requested_supported_archs = [
requested_archs[k]
for k in requested_archs.keys() & config.rocm.ck_supported_arch
]
if not requested_supported_archs:
return False
# supported input dtypes
if layout.dtype not in [torch.float16, torch.bfloat16, torch.float32]:
return False
ck_package_dirname, _, _, _ = try_import_ck_lib()
if not ck_package_dirname:
log.warning("Please pip install Composable Kernel package")
return False
if config.is_fbcode():
config.rocm.ck_dir = ck_package_dirname
if not config.rocm.ck_dir:
log.warning("Please set TORCHINDUCTOR_CK_DIR env variable")
return False
if ck_package_dirname != config.rocm.ck_dir:
log.warning("Invalid path to CK library")
return False
return True
def use_ck_gemm_template(layout, m, n, k):
from .virtualized import V
return (
_use_autotune_backend("CK")
and use_ck_template(layout)
and V.graph.sizevars.size_hint(m * n * k, fallback=-1) > 0
)
def use_ck_conv_template(layout):
return _use_conv_autotune_backend("CK") and use_ck_template(layout)
def _use_template_for_cpu(layout):
return use_max_autotune() and layout.device.type == "cpu"
def use_cpp_bmm_template(layout, mat1, mat2):
return (
use_cpp_gemm_template(layout, mat1, mat2, require_constant_mat2=False)
and mat1.layout.is_contiguous()
)
def use_cpp_gemm_template(
layout, mat1, mat2, mat2_transposed=False, require_constant_mat2=True
):
from . import ir
from .codegen.cpp_micro_gemm import create_micro_gemm
from .codegen.cpp_utils import get_gemm_template_output_and_compute_dtype
from .kernel.mm_common import mm_args
if not _use_template_for_cpu(layout) or not _use_autotune_backend("CPP"):
return False
if not config.cpp.weight_prepack:
return False
int8_gemm = mat1.get_dtype() == torch.uint8
layout_dtypes = [torch.float32, torch.bfloat16, torch.half, torch.uint8]
m, n, k, layout, mat1, mat2 = mm_args(
mat1,
mat2,
out_dtype=layout.dtype if int8_gemm else None,
mat2_transposed=mat2_transposed,
)
# TODO(jgong5): support dynamic shapes for n or k
if has_free_symbols((n, k)):
return False
if isinstance(mat2, ir.BaseView):
mat2 = mat2.unwrap_view()
output_dtype, _ = get_gemm_template_output_and_compute_dtype(mat1.get_dtype())
micro_gemm = create_micro_gemm(
"micro_gemm",
m,
n,
k,
input_dtype=mat1.get_dtype(),
input2_dtype=mat2.get_dtype(),
output_dtype=output_dtype,
num_threads=parallel_num_threads(),
)
def is_last_dim_stride1(x):
x.freeze_layout()
return x.get_stride()[-1] == 1
return (
layout.dtype in layout_dtypes
and micro_gemm is not None
and is_last_dim_stride1(mat1) # TODO(jgong5): support transposed input
and isinstance(mat2, ir.StorageBox)
and (mat2.is_module_buffer() or not require_constant_mat2)
)
def use_aten_gemm_kernels():
return not use_max_autotune() or _use_autotune_backend("ATEN")
class DebugDirManager:
counter = itertools.count(0)
prev_debug_name: str
def __init__(self) -> None:
self.id = next(DebugDirManager.counter)
def __enter__(self):
self.prev_debug_name = torch._dynamo.config.debug_dir_root
self.new_name = f"{self.prev_debug_name}_tmp_{self.id}"
torch._dynamo.config.debug_dir_root = self.new_name
def __exit__(self, *args):
shutil.rmtree(self.new_name)
torch._dynamo.config.debug_dir_root = self.prev_debug_name
def run_and_get_code(fn, *args, **kwargs) -> Tuple[Any, List[str]]:
from .graph import GraphLowering
source_codes: List[str] = []
def save_output_code(code: str):
source_codes.append(code)
with mock.patch.object(GraphLowering, "save_output_code", save_output_code):
torch._dynamo.reset()
result = fn(*args, **kwargs)
return result, source_codes
def run_fw_bw_and_get_code(fn):
def run_with_backward():
result = fn()
result.sum().backward()
return result
return run_and_get_code(run_with_backward)
def get_code(fn, *args, **kwargs):
"""Get the inductor-generated code, but skip any actual compilation or running."""
from .graph import GraphLowering
source_codes: List[str] = []
def save_output_code(code: str):
source_codes.append(code)
def patched_compile_to_module(self: GraphLowering):
class DummyModule:
"""This is empty to replace the generated triton module"""
def __init__(self) -> None:
pass
def call(self, *args, **kwargs):
# Don't do anything when called
pass
code, _ = (
self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen()
)
# Skip all the actual compiling.
nonlocal save_output_code
save_output_code(code)
return DummyModule()
with mock.patch.object(
GraphLowering, "compile_to_module", patched_compile_to_module
), mock.patch.object(GraphLowering, "save_output_code", save_output_code):
torch._dynamo.reset()
# Note the return here is None
_ = fn(*args, **kwargs)
return source_codes
def get_triton_code(fn, *args, **kwargs):
source_codes = get_code(fn, *args, **kwargs)
# Can have two outputs if backwards was eagerly compiled
assert (
1 <= len(source_codes) <= 2
), f"expected one or two code outputs got {len(source_codes)}"
return source_codes[0]
def run_and_get_triton_code(fn, *args, **kwargs):
_, source_codes = run_and_get_code(fn, *args, **kwargs)
# Can have two outputs if backwards was eagerly compiled
assert (
1 <= len(source_codes) <= 2
), f"expected one or two code outputs got {len(source_codes)}"
return source_codes[0]
def run_and_get_graph_lowering(fn, *args, **kwargs):
from torch._inductor.graph import GraphLowering
from torch._inductor.output_code import CompiledFxGraph
real_init = CompiledFxGraph.__init__
graph_lowerings = []
def fake_init(*args, **kwargs):
real_init(*args, **kwargs)
graph = args[2]
assert isinstance(graph, GraphLowering)
graph_lowerings.append(graph)
with mock.patch.object(CompiledFxGraph, "__init__", fake_init):
result = fn(*args, **kwargs)
return result, graph_lowerings
@contextlib.contextmanager
def override_lowering(aten_op, override_fn):
"""
Override the lowering of aten_op with override_fn.
The first argument of override_fn is the original lowering fn.
"""
from torch._inductor import lowering
orig_fn = lowering.lowerings[aten_op]
try:
lowering.lowerings[aten_op] = functools.partial(override_fn, orig_fn)
yield
finally:
lowering.lowerings[aten_op] = orig_fn
def add_scheduler_init_hook(pre_fn, post_fn=None):
"""
Add hook functions to be called at the beginning and end of Scheduler.__init__.
Used for unit tests.
"""
from torch._inductor.scheduler import Scheduler
orig_fn = Scheduler.__init__
def wrapper(scheduler, nodes):
pre_fn(scheduler, nodes)
out = orig_fn(scheduler, nodes)
if post_fn:
post_fn(scheduler, nodes)
return out
return unittest.mock.patch.object(Scheduler, "__init__", wrapper)
def developer_warning(msg):
"""
Warnings that will be actionable for PyTorch developers, but not
end users. Allows us to easily disable them in stable releases but
keep them on for nightly builds.
"""
if config.developer_warnings:
log.warning(msg)
else:
log.info(msg)
def get_benchmark_name():
"""
An experimental API used only when config.benchmark_kernel is true.
The benchmark name is only available at codegen time. So we can not
directly call it in benchmark_all_kernels which is run after codegen.
The function assumes the argument after --only is the benchmark name.
It works for torchbench.py/hugginface.py/timm_models.py. But for ad-hoc
scripts, this function may return None.
There are 2 flavors of --only argument we need handle:
1. --only model_name
2. --only=model_name
"""
try:
idx = sys.argv.index("--only")
if (
idx + 1 < len(sys.argv)
and len(sys.argv[idx + 1]) > 0
and sys.argv[idx + 1][0] != "-"
):
return sys.argv[idx + 1]
except ValueError:
pass
for arg in sys.argv:
if arg.startswith("--only="):
return arg[len("--only=") :]
def is_ones(items):
return all(x == 1 for x in items)
def is_zeros(items):
return all(x == 0 for x in items)
def is_cpu_device(inputs):
return all(
item.device == torch.device("cpu")
for item in inputs
if isinstance(item, torch.Tensor)
)
def get_sympy_Expr_dtype(val: sympy.Expr) -> torch.dtype:
assert isinstance(
val, sympy.Expr
), "only support sympy.Expr as input to get_sympy_Expr_dtype"
if val.is_integer: # type: ignore[attr-defined]
return torch.int64
else:
return torch.float64
@contextlib.contextmanager
def maybe_profile(should_profile, *args, **kwargs):
if should_profile:
with torch.profiler.profile(*args, **kwargs) as p:
yield p
else:
yield
def parallel_num_threads():
threads = config.cpp.threads
if threads < 1:
threads = torch.get_num_threads()
return threads
@functools.lru_cache(None)
def get_backend_num_stages():
from .runtime.triton_helpers import get_backend_options
options = get_backend_options()
return options.get("num_stages", 2 if torch.version.hip else 3)
@functools.lru_cache(None)
def get_device_tflops(dtype):
from triton.testing import get_max_simd_tflops, get_max_tensorcore_tflops
assert dtype in (torch.float16, torch.bfloat16, torch.float32)
if inspect.signature(get_max_simd_tflops).parameters.get("clock_rate"):
# Triton API change in https://github.com/openai/triton/pull/2293
from torch._utils_internal import max_clock_rate
sm_clock = max_clock_rate()
if dtype in (torch.float16, torch.bfloat16):
return get_max_tensorcore_tflops(dtype, sm_clock)
if torch.backends.cuda.matmul.allow_tf32:
return get_max_tensorcore_tflops(torch.float32, sm_clock)
else:
return get_max_simd_tflops(torch.float32, sm_clock)
else:
if dtype in (torch.float16, torch.bfloat16):
return get_max_tensorcore_tflops(dtype)
if torch.backends.cuda.matmul.allow_tf32:
return get_max_tensorcore_tflops(torch.float32)
else:
return get_max_simd_tflops(torch.float32)
@functools.lru_cache(None)
def get_gpu_dram_gbps() -> int:
from triton.testing import get_dram_gbps
return get_dram_gbps()
def get_gpu_shared_memory() -> int:
from triton.runtime import driver
return driver.active.utils.get_device_properties(0).get("max_shared_mem", 0)
def is_welford_reduction(reduction_type: str) -> bool:
return reduction_type.startswith("welford")
def reduction_num_outputs(reduction_type: str) -> int:
return 3 if is_welford_reduction(reduction_type) else 1
def is_linux() -> bool:
return platform.system() == "Linux"
def is_windows() -> bool:
return sys.platform == "win32"
def has_free_symbols(itr: Iterable[Any]) -> bool:
return any(isinstance(x, sympy.Expr) and not x.is_number for x in itr)
def is_dynamic(*args) -> bool:
from . import ir
for t in args:
if isinstance(
t, (ir.TensorBox, ir.StorageBox, ir.BaseView, ir.ComputedBuffer, ir.Buffer)
):
if has_free_symbols(t.maybe_get_size() or ()) or has_free_symbols(
t.maybe_get_stride() or ()
):
return True
elif not isinstance(t, ir.IRNode):
continue
else:
raise TypeError(f"unexpected type for is_dynamic {type(t)}")
return False
# Placeholder strings used in triton codegen.
class Placeholder(enum.Enum):
# The placeholder for the actual name of a triton kernel.
# e.g. for "def triton_" it would be "triton_"
KERNEL_NAME = "KERNEL_NAME"
# The descriptive name of the triton kernel; when unique_kernel_names = False, this
# placeholder will be replaced with a string with more information.
DESCRIPTIVE_NAME = "DESCRIPTIVE_NAME"
def pass_execution_and_save(func, gm, inp, msg):
from .pattern_matcher import stable_topological_sort
with tempfile.NamedTemporaryFile(
mode="w",
encoding="utf-8",
delete=False,
) as f:
before_io = io.StringIO()
after_io = io.StringIO()
ShapeProp(gm=gm, fake_mode=detect_fake_mode(inp)).propagate(*inp)
print(f"Before:\n{gm.graph}", file=f)
print(gm.graph, file=before_io)
start_time = datetime.now()
with GraphTransformObserver(gm, msg):
func(gm.graph)
time_elapsed = datetime.now() - start_time
# recompile graph
stable_topological_sort(gm.graph)
gm.graph.lint()
gm.recompile()
print(f"After:\n{gm.graph}", file=f)
print(gm.graph, file=after_io)
t = before_io.getvalue() == after_io.getvalue()
log.info(
"%s, save before/after graph to %s, graph before/after are the same = %s, time elapsed = %s",
msg,
f.name,
t,
time_elapsed,
)
def is_collective(node, op=None):
from . import ir
return (
type(node) == ir._CollectiveKernel and (op is None or node.op_overload is op)
) or (
# TODO: this is a temporary solution to ensure that we can identify torchrec's
# communication ops. But in order to allow better communication and computation
# overlap, torchrec's communication ops should be not used.
type(node) == ir.FallbackKernel
and (
# NOTE: the `hasattr()` check is to bypass errors such as the following:
# AttributeError: '_OpNamespace' 'torchrec' object has no attribute 'all_to_all_single'
(
hasattr(torch.ops.torchrec, "all_to_all_single")
and node.op_overload == torch.ops.torchrec.all_to_all_single.default
)
or (
hasattr(torch.ops.torchrec, "all_gather_into_tensor")
and node.op_overload
== torch.ops.torchrec.all_gather_into_tensor.default
)
or (
hasattr(torch.ops.torchrec, "reduce_scatter_tensor")
and node.op_overload == torch.ops.torchrec.reduce_scatter_tensor.default
)
)
)
def is_wait(node):
from . import ir
return type(node) == ir._WaitKernel
def contains_collective(snode):
from torch._inductor.scheduler import BaseSchedulerNode, GroupedSchedulerNode
assert isinstance(snode, BaseSchedulerNode)
if isinstance(snode, GroupedSchedulerNode):
return any(contains_collective(x) for x in snode.snodes)
else:
return is_collective(snode.node)
def contains_wait(snode):
from torch._inductor.scheduler import BaseSchedulerNode, GroupedSchedulerNode
assert isinstance(snode, BaseSchedulerNode)
if isinstance(snode, GroupedSchedulerNode):
return any(contains_wait(x) for x in snode.snodes)
else:
return is_wait(snode.node)
def is_fallback_op(node, op):
from . import ir
if isinstance(op, torch._ops.OpOverload):
op = {op}
return isinstance(node, ir.FallbackKernel) and node.op_overload in op
def buf_name_to_fused_snode(buf_name, name_to_buf, name_to_fused_node):
return name_to_fused_node[name_to_buf[buf_name].defining_op.get_name()]
def find_recursive_deps_of_node(
snode, collected_node_set, name_to_buf, name_to_fused_node, criteria_cb=None
):
if criteria_cb and criteria_cb(snode):
return
collected_node_set.add(snode)
for dep in snode.unmet_dependencies:
defining_op_for_dep = buf_name_to_fused_snode(
dep.name, name_to_buf, name_to_fused_node
)
if defining_op_for_dep in collected_node_set:
continue
find_recursive_deps_of_node(
defining_op_for_dep,
collected_node_set,
name_to_buf,
name_to_fused_node,
criteria_cb=criteria_cb,
)
def find_recursive_users_of_node(
snode, collected_node_set, name_to_buf, name_to_fused_node, criteria_cb=None
):
if criteria_cb and criteria_cb(snode):
return
collected_node_set.add(snode)
for o in snode.get_outputs():
for user in o.users:
assert user.node is not None
if user.node.get_name() == "OUTPUT":
continue
if user.node.get_name() not in name_to_fused_node:
continue
user_op = name_to_fused_node[user.node.get_name()]
if user_op in collected_node_set:
continue
find_recursive_users_of_node(
user_op,
collected_node_set,
name_to_buf,
name_to_fused_node,
criteria_cb=criteria_cb,
)
def num_fw_fixed_arguments(dynamo_gm_num_inputs: int, aot_fw_gm_num_inputs: int):
"Computes the number of inputs to the aot fw graph which have fixed addresses (params and buffers)"
num_rng_seed_offset_inputs = (
2 if torch._functorch.config.functionalize_rng_ops else 0
)
# AOT won't lift any parameters if we're inlining NN Modules
# however desugaring subclasses will still add arguments
# resulted in extra fixed inputs https://github.com/pytorch/pytorch/issues/130502
if (
torch._dynamo.config.inline_inbuilt_nn_modules
and not torch._dynamo.utils.is_parameter_freezing()
):
return 0
return aot_fw_gm_num_inputs - dynamo_gm_num_inputs - num_rng_seed_offset_inputs
def count_tangents(fx_g: torch.fx.GraphModule):
"""
Infers which inputs are static for a backwards graph
"""
def is_saved_tensor(x):
return (
"tangents" not in x.name
and "bwd_seed" not in x.name
and "bwd_base_offset" not in x.name
)
arg_count = 0
static_arg_idxs = []
for n in fx_g.graph.nodes:
if n.op == "placeholder":
if is_saved_tensor(n):
static_arg_idxs.append(arg_count)
arg_count += 1
assert static_arg_idxs == list(range(len(static_arg_idxs)))
return len(static_arg_idxs)
@dataclasses.dataclass
class BoxedBool:
value: bool
def __bool__(self):
return self.value
@staticmethod
def disable(obj):
if isinstance(obj, BoxedBool):
obj.value = False
return obj
return False
@contextlib.contextmanager
def collect_defined_kernels(kernel_list):
from .codegen.wrapper import PythonWrapperCodegen
orig_define_kernel = PythonWrapperCodegen.define_kernel
def new_define_kernel(wrapper, name, kernel_code, metadata, *args, **kwargs):
nonlocal kernel_list
kernel_list.append(kernel_code)
return orig_define_kernel(wrapper, name, kernel_code, metadata, *args, **kwargs)
with unittest.mock.patch.object(
PythonWrapperCodegen, "define_kernel", new_define_kernel
):
yield
def get_cloned_parameter_buffer_name(name: str):
return name + "__original__"
def is_gpu(device: Optional[str]):
assert isinstance(device, str) or device is None, device
return device in GPU_TYPES
def device_need_guard(device: str):
assert isinstance(device, str)
return is_gpu(device)
def needs_fallback_due_to_atomic_add_limitations(dtype):
# tl.atomic add has bfloat16 support in fbcode
# but not in OSS https://github.com/pytorch/pytorch/issues/97016
# we will fallback until the code is upstreamed to OSS
if config.is_fbcode() and dtype == torch.bfloat16:
return False
else:
return dtype in {torch.int64, torch.bool, torch.bfloat16}
def use_scatter_fallback(
op_overload: torch._ops.OpOverload,
reduction_type,
self_dtype,
src_dtype,
src_device_type,
src_is_tensor,
):
if (
op_overload.overloadpacket
in (torch.ops.aten.scatter_reduce_, torch.ops.aten.scatter_reduce)
and reduction_type is None
):
return False
reduce_ty = (
"add" if op_overload.overloadpacket == torch.ops.aten.scatter_ else "sum"
)
return (
reduction_type not in {None, reduce_ty}
or (
src_is_tensor
and is_gpu(src_device_type)
and needs_fallback_due_to_atomic_add_limitations(src_dtype)
)
or (
op_overload.overloadpacket == torch.ops.aten.scatter_reduce_
and reduction_type == "sum"
and src_is_tensor
and src_device_type == "cpu"
and config.cpp.fallback_scatter_reduce_sum
and (config.cpp.dynamic_threads or parallel_num_threads() != 1)
)
or (reduction_type == reduce_ty and self_dtype in {torch.bool, torch.int64})
or torch.are_deterministic_algorithms_enabled()
)
def dump_node_schedule(node_schedule):
"""
An API that can be used in pdb to dump a node_schedule.
Right mainly dump the read/write dependencies but can add more as needed.
"""
from torch._inductor.codegen.simd import DisableReduction, EnableReduction
from torch._inductor.scheduler import SchedulerNode
print(f"Node schedule with {len(node_schedule)} nodes")
for idx, node in enumerate(node_schedule):
print(f" {idx:3}:")
if node is EnableReduction:
print("enable reduction")
elif node is DisableReduction:
print("disable reduction")
elif isinstance(node, SchedulerNode):
is_red = node.is_reduction()
print(f"{'red' if is_red else 'pw'} scheduler node")
if is_red:
assert node.node is not None
print(f"original reduction hint {node.node.data.reduction_hint}") # type: ignore[attr-defined]
print("ReadDep:")
for dep in node.read_writes.reads:
print(dep)
print("WriteDep:")
for dep in node.read_writes.writes:
print(dep)
else:
raise RuntimeError(f"Unrecognized node type: {type(node)}")
def tensor_is_aligned(tensor: torch.Tensor):
# See Note: [Input Alignment handling in Inductor]
# Right now, we don't try to guard on the alignment of the storage offset.
# When this comment was written, non-symbolic storage_offsets are not guarded on
# but symbolic storage_offsets are. For consistency, we suppress guard creation
# upon performing this check: that ensures that we don't add recompiles when we
# add this logic.
from torch.fx.experimental.symbolic_shapes import statically_known_true
return statically_known_true(
(tensor.storage_offset() * get_dtype_size(tensor.dtype)) % GPU_ALIGN_BYTES == 0
)
def should_assume_input_aligned(example_input: torch.Tensor):
# See Note: [Input Alignment handling in Inductor]
# right now, we only care about alignment for cuda tensors.
if not is_gpu(example_input.device.type):
return False
return config.assume_aligned_inputs or tensor_is_aligned(example_input)
def maybe_get_suppress_shape_guards_ctx():
# Try to get TracingContext.try_get().fake_mode.shape_env.suppress_guards()
# If it's not available, return a nullcontext.
# If we're dealing with cudagraphs, we might not have a tracing_context
tracing_context = torch._guards.TracingContext.try_get()
if not tracing_context:
return contextlib.nullcontext()
# In standalone inductor compile mode, we might not have a shape_env attached to the fake mode
shape_env = tracing_context.fake_mode.shape_env
if not shape_env:
return contextlib.nullcontext()
return shape_env.suppress_guards()
def run_and_get_cpp_code(fn, *args, **kwargs):
# We use the patch context manager instead of using it as a decorator.
# In this way, we can ensure that the attribute is patched and unpatched correctly
# even if this run_and_get_cpp_code function is called multiple times.
with unittest.mock.patch.object(config, "debug", True):
torch._dynamo.reset()
import io
import logging
log_capture_string = io.StringIO()
ch = logging.StreamHandler(log_capture_string)
from torch._inductor.codecache import output_code_log
output_code_log.addHandler(ch)
prev_level = output_code_log.level
output_code_log.setLevel(logging.DEBUG)
result = fn(*args, **kwargs)
s = log_capture_string.getvalue()
output_code_log.setLevel(prev_level)
output_code_log.removeHandler(ch)
return result, s
def shape_env_from_inputs(inputs: Sequence[InputType]):
shape_env = None
fake_mode = detect_fake_mode(inputs)
# TODO(voz): It would be nice to enable this assert, but there are lots of tests that
# pass in real inputs for now.
# if len(inputs) > 0:
# assert fake_mode is not None, breakpoint()
if fake_mode is not None:
return fake_mode.shape_env
# When there are no tensor inputs, get shape_env from the first SymInt.
for input in inputs:
if isinstance(input, torch.SymInt):
return input.node.shape_env
# TODO(voz): Should we always have one anyway?
return None
def align_inputs_from_check_idxs(
model: Callable[[List[InputType]], Any],
inputs_to_check: Sequence[int],
) -> Callable[[List[InputType]], Any]:
if len(inputs_to_check) == 0:
return model
def run(new_inputs: List[InputType]):
copy_misaligned_inputs(new_inputs, inputs_to_check)
return model(new_inputs)
return run
def clone_preserve_strides(x: torch.Tensor):
if 0 in x.size():
# Short-circuits if the shape has no elements
needed_size = 0
else:
needed_size = (
sum((shape - 1) * stride for shape, stride in zip(x.size(), x.stride())) + 1
)
buffer = torch.as_strided(x, (needed_size,), (1,)).clone()
return torch.as_strided(buffer, x.size(), x.stride())
def copy_misaligned_inputs(
new_inputs: List[InputType], check_inputs_idxs: Sequence[int]
) -> None:
for i in check_inputs_idxs:
_inp = new_inputs[i]
assert isinstance(_inp, torch.Tensor)
if _inp.data_ptr() % ALIGNMENT:
new_inputs[i] = clone_preserve_strides(_inp)
def remove_unaligned_input_idxs(
inputs: Sequence[InputType],
static_input_idxs: Sequence[int],
) -> Sequence[int]:
"""
We require all inputs to be aligned, so introduce a copy for any
that aren't.
"""
aligned_static_input_idxs = []
for idx in static_input_idxs:
input = inputs[idx]
if isinstance(input, torch.Tensor) and (input.data_ptr() % ALIGNMENT) == 0:
aligned_static_input_idxs.append(idx)
if len(aligned_static_input_idxs) != len(static_input_idxs):
return aligned_static_input_idxs
return static_input_idxs
def expr_fits_within_32bit(e: sympy.Expr):
from .virtualized import V
int_max = torch.iinfo(torch.int32).max
size_hint = V.graph.sizevars.size_hint
has_hint = V.graph.sizevars.shape_env.has_hint
# Allow for unhinted e as long as we can still statically prove
# (e.g., via ValueRanges) that it is still in bounds
if V.graph.sizevars.is_expr_static_and_true(e <= int_max):
return True
# Otherwise, the hint MUST exist and be in range
return has_hint(e) and size_hint(e) <= int_max
def set_tracing_context_output_strides(example_inputs, compiled_graph):
# Return the output strides to the caller via TracingContext
context = torch._guards.TracingContext.try_get()
if context is not None and context.output_strides is not None:
assert len(context.output_strides) == 0
shape_env = shape_env_from_inputs(example_inputs)
for exprs in compiled_graph.output_strides:
if exprs is None:
context.output_strides.append(None)
else:
fakify_first_call = False
if ctx := torch._guards.TracingContext.try_get():
fakify_first_call = ctx.fakify_first_call
def map_expr(e):
if shape_env is None:
return int(e)
if fakify_first_call:
return shape_env.deserialize_symexpr(e)
return shape_env.evaluate_symexpr(e)
context.output_strides.append(tuple(map_expr(e) for e in exprs))
def should_use_remote_fx_graph_cache():
if config.fx_graph_remote_cache is not None:
return config.fx_graph_remote_cache
if not config.is_fbcode():
return False
if torch._utils_internal.is_fb_unit_test():
return False
try:
from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION
except ModuleNotFoundError:
return False
return REMOTE_CACHE_VERSION >= torch._utils_internal.justknobs_getval_int(
"pytorch/remote_cache:fx_graph_memcache_version"
)
def normalize_name(name: str) -> str:
return re.sub(r"[^a-zA-Z0-9_]", "_", name)
# correct cases where Triton types names don't match PyTorch
_triton_type_mapping = {
"tl.bool": "tl.int1",
"tl.float8_e4m3fn": "tl.float8e4nv",
"tl.float8_e5m2": "tl.float8e5",
"tl.float8_e4m3fnuz": "tl.float8e4b8",
"tl.float8_e5m2fnuz": "tl.float8e5b16",
}
_torch_triton_mapping = {v: k for k, v in _triton_type_mapping.items()}
_triton_type_re = re.compile(r"^.*[.]")
def triton_type(dtype: torch.dtype) -> str:
"""Convert torch.dtype to triton type"""
triton_type_name = _triton_type_re.sub("tl.", str(dtype))
return _triton_type_mapping.get(triton_type_name, triton_type_name)
def triton_type_to_torch(dtype: str) -> torch.dtype:
adjusted_type = _torch_triton_mapping.get(dtype, dtype)
type_name = adjusted_type.replace("tl.", "")
out_dtype = getattr(torch, type_name)
assert isinstance(out_dtype, torch.dtype)
return out_dtype
def is_same_tensor(data: torch.Tensor, value: torch.Tensor):
return (
not data.is_mkldnn
and data.size() == value.size()
and data.stride() == value.stride()
and data.dtype == value.dtype
and data.device == value.device
and data.untyped_storage().data_ptr() == value.untyped_storage().data_ptr()
and data.storage_offset() == value.storage_offset()
)
def is_same_mkldnn_tensor(data: torch.Tensor, value: torch.Tensor):
return (
data.is_mkldnn
and data.size() == value.size()
and data.dtype == value.dtype
and data.device == value.device
and torch.ops.mkldnn.data_ptr(data) == torch.ops.mkldnn.data_ptr(value)
)
@functools.lru_cache(None)
def boolean_ops():
return (
"isinf",
"isnan",
"logical_not",
"logical_and",
"signbit",
"and_",
"le",
"lt",
"ge",
"gt",
"eq",
"ne",
"or_", # TODO should remove this op
"xor",
)
@dataclasses.dataclass
class OpDtypeRule:
type_promotion_kind: ELEMENTWISE_TYPE_PROMOTION_KIND
override_return_dtype: Optional[torch.dtype]
op_dtype_propagation_rules: Dict[str, OpDtypeRule] = {}
def register_op_dtype_propagation_rules(
name,
type_promotion_kind: ELEMENTWISE_TYPE_PROMOTION_KIND,
override_return_dtype: Optional[torch.dtype],
):
op_dtype_propagation_rules[name] = OpDtypeRule(
type_promotion_kind, override_return_dtype
)
def upcast_compute_type(dtype: torch.dtype) -> torch.dtype:
"""Maybe upcast [b]float16 to float32"""
if config.triton.codegen_upcast_to_fp32 and (
dtype in (torch.float16, torch.bfloat16)
):
return torch.float32
return dtype
@dataclass_transform(frozen_default=True)
def ir_dataclass(cls=None, /, *, frozen: bool = True):
def wrap(cls: _T) -> _T:
if sys.version_info >= (3, 10):
return dataclasses.dataclass(cls, kw_only=True, frozen=frozen) # type: ignore[call-overload]
else:
# Polyfill for python=3.9. kw_only simply introduces an extra check
# that only kwargs are used (and is not available on 3.9)
return dataclasses.dataclass(cls, frozen=frozen)
if cls is None:
return wrap
return wrap(cls)
def get_donated_idxs() -> Optional[List[int]]:
tracing_context = torch._guards.TracingContext.try_get()
if tracing_context is not None and tracing_context.fw_metadata:
return tracing_context.fw_metadata.bw_donated_idxs
return None
|