1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
# mypy: allow-untyped-defs
import dataclasses
import datetime
import tempfile
from collections import defaultdict
import torch
from torch.autograd import DeviceType
from .runtime.benchmarking import benchmarker
from .runtime.runtime_utils import create_bandwidth_info_str, get_num_bytes
_kernel_category_choices = [
"foreach",
"persistent_reduction",
"pointwise",
"reduction",
"split_scan",
"template",
]
def get_kernel_category_by_source_code(src_code):
"""
Similar to get_kernel_category but use the source code. Call this API
if we have not compile the src_code to module yet.
"""
choices = [
ch for ch in _kernel_category_choices if f"@triton_heuristics.{ch}" in src_code
]
if len(choices) == 1:
return choices[0]
else:
return "unknown"
def get_kernel_category(kernel_mod):
"""
Given the module defining a triton kernel, return the category of the kernel.
Category can be one of:
- pointwise
- reduction
- persistent_reduction
Currently we simply decide the category depending on what decorator is imported
by the kernel.
"""
choices = [ch for ch in _kernel_category_choices if ch in kernel_mod.__dict__]
if len(choices) == 1:
return choices[0]
else:
return "unknown"
def get_triton_kernel(mod):
from torch._inductor.runtime.triton_heuristics import CachingAutotuner
cand_list = [
v
for k, v in mod.__dict__.items()
if k.startswith("triton_") and isinstance(v, CachingAutotuner)
]
assert len(cand_list) == 1
return cand_list[0]
def benchmark_all_kernels(benchmark_name, benchmark_all_configs):
"""
An experimental API used only when config.benchmark_kernel is true.
Run the kernel benchmarks for all the kernels cached in PyCodeCache.
Used in the compiled modules.
Put this method here rather than codegen it for convenience since its implementation
does not change based on different graph modules being compiled.
"""
from torch._inductor.codecache import PyCodeCache
nfound = 0
for kernel_mod in PyCodeCache.modules:
kernel_key = kernel_mod.key
if not hasattr(kernel_mod, "get_args") or not hasattr(kernel_mod, "call"):
continue
triton_kernel = get_triton_kernel(kernel_mod)
kernel_category = get_kernel_category(kernel_mod)
args = kernel_mod.get_args()
num_in_out_ptrs = len(
[
arg_name
for arg_name in triton_kernel.fn.arg_names
if arg_name.startswith("in_out_ptr")
]
)
num_gb = triton_kernel.inductor_meta.get("kernel_num_gb", None)
if num_gb is None:
num_gb = get_num_bytes(*args, num_in_out_args=num_in_out_ptrs) / 1e9
def get_info_str(ms, n_regs, n_spills, shared, prefix=""):
if not any(x is None for x in [n_regs, n_spills, shared]):
kernel_detail_str = (
f" {n_regs:3} regs {n_spills:3} spills {shared:8} shared mem"
)
else:
kernel_detail_str = ""
gb_per_s = num_gb / (ms / 1e3)
return create_bandwidth_info_str(
ms, num_gb, gb_per_s, prefix=prefix, suffix=kernel_detail_str
)
kernel_desc = (
f"{benchmark_name:20} {kernel_category[:3].upper()} {kernel_key[:10]}"
)
if benchmark_all_configs:
assert hasattr(kernel_mod, "benchmark_all_configs")
bench_result = kernel_mod.benchmark_all_configs(args)
print(kernel_desc)
for launcher, ms in bench_result.items():
print(
f" {get_info_str(ms, launcher.n_regs, launcher.n_spills, launcher.shared)} @ {launcher.config}"
)
else:
ms = benchmarker.benchmark_gpu(lambda: kernel_mod.call(args), rep=40)
assert (
len(triton_kernel.launchers) == 1
), "Autotuner should have selected the best config"
launcher = triton_kernel.launchers[0]
print(
get_info_str(
ms,
launcher.n_regs,
launcher.n_spills,
launcher.shared,
prefix=f"{kernel_desc} ",
)
)
nfound += 1
if nfound == 0:
print(
"No kernel with benchmark functionality found. Make sure you run inductor with config.benchmark_kernel being True"
)
@dataclasses.dataclass
class ProfileEvent:
category: str
key: str
self_device_time_ms: float
# the benchmark is run multiple times and we average the count across all the
# runs. It should be an integer but define a float just in case.
count: float
def parse_profile_event_list(
benchmark_name, event_list, wall_time_ms, nruns, device_name
):
def get_self_device_time(ev):
"""
ev.self_device_time_total is in microsecond. Convert to millisecond.
"""
return ev.self_device_time_total / 1000 / nruns
all_events = defaultdict(list)
def add_event(ev, category):
profile_ev = ProfileEvent(
category=category,
key=ev.key,
self_device_time_ms=get_self_device_time(ev),
count=ev.count / nruns, # average across all runs
)
all_events[category].append(profile_ev)
for ev in event_list:
assert not ev.is_legacy, "Don't support the legacy profiler"
if ev.device_type == DeviceType.CPU:
# ignore the event on CPU side
continue
category = "unknown"
if ev.key.startswith("triton_"):
if ev.key.startswith("triton_poi"):
category = "triton_pointwise"
elif ev.key.startswith("triton_red"):
category = "triton_reduction"
elif ev.key.startswith("triton_per"):
category = "triton_persistent_reduction"
else:
category = "triton_unknown"
add_event(ev, category)
def report_category(category, profile_events):
from tabulate import tabulate
profile_events.sort(key=lambda ev: ev.self_device_time_ms, reverse=True)
rows = []
total_time = 0.0
print(f"\n == {category} category kernels == ")
for ev in profile_events:
total_time += ev.self_device_time_ms
percent = f"{ev.self_device_time_ms / wall_time_ms * 100:.2f}%"
rows.append([ev.key[:120], ev.self_device_time_ms, ev.count, percent])
rows.append(
["Total", total_time, "", f"{total_time / wall_time_ms * 100:.2f}%"]
)
print(
tabulate(
rows,
headers=[
"Kernel",
f"Self {device_name.upper()} TIME (ms)",
"Count",
"Percent",
],
)
)
return total_time
def report():
category_list = [
"triton_pointwise",
"triton_reduction",
"triton_persistent_reduction",
"triton_unknown",
"unknown",
]
assert set(all_events.keys()).issubset(
set(category_list)
), f"{list(all_events.keys())}"
per_category_wall_time = {}
total_device_ms = 0.0
for category in category_list:
if category in all_events:
_time = report_category(category, all_events[category])
per_category_wall_time[category] = _time
total_device_ms += _time
device_busy_percent = f"{total_device_ms / wall_time_ms * 100:.2f}%"
print(
f"\nPercent of time when {device_name.upper()} is busy: {device_busy_percent}"
)
print(f"Total wall time {wall_time_ms:.3f} ms")
# output such a line so we can gather such line from all compiled modules from all
# benchmarks and tabulate it!
# Columns: benchmark_name, pointwise_percent, reduction_percent, persistent_reduction_percent,
# unknown_category_percent, device_busy_percent, wall_time_ms
tabulate_line = f"Output for tabulate: {benchmark_name}"
for category in category_list:
percent = (
f"{per_category_wall_time.get(category, 0.0) / wall_time_ms * 100:.2f}%"
)
tabulate_line += f", {percent}"
tabulate_line += f", {device_busy_percent}, {wall_time_ms:.3f}ms"
print(tabulate_line)
report()
def perf_profile(
wall_time_ms, times, repeat, benchmark_name, benchmark_compiled_module_fn
):
with torch.profiler.profile(record_shapes=True) as p:
benchmark_compiled_module_fn(times=times, repeat=repeat)
path = f"{tempfile.gettempdir()}/compiled_module_profile.json"
p.export_chrome_trace(path)
print(f"Profiling result for a compiled module of benchmark {benchmark_name}:")
print(f"Chrome trace for the profile is written to {path}")
event_list = p.key_averages(group_by_input_shape=True)
print(event_list.table(sort_by="self_device_time_total", row_limit=10))
parse_profile_event_list(
benchmark_name, event_list, wall_time_ms, times * repeat, p.use_device
)
def ncu_analyzer(benchmark_name, benchmark_compiled_module_fn):
import inspect
import os
import subprocess
module_file = inspect.getfile(benchmark_compiled_module_fn)
module_dir = os.path.dirname(module_file)
module_name = os.path.splitext(os.path.basename(module_file))[0]
ncu_dir = tempfile.gettempdir()
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
ncu_output = os.path.join(ncu_dir, f"ncu_output_{timestamp}.ncu-rep")
python_cmd = (
f"""import sys; sys.path.insert(0, '{module_dir}'); """
f"""from {module_name} import benchmark_compiled_module; """
"""benchmark_compiled_module(times=1, repeat=1)"""
)
ncu_cmd = [
"ncu",
"--target-processes",
"all",
"--replay-mode",
"kernel",
"--kernel-name-base",
"function",
"--print-units",
"base",
"--set",
"full",
"--import-source",
"yes",
"--force-overwrite",
"--export",
ncu_output,
"python",
"-c",
python_cmd,
]
try:
subprocess.run(ncu_cmd, check=True)
print(f"\nNCU profiling results for benchmark {benchmark_name}:")
print(f"NCU report has been written to {ncu_output}")
except subprocess.CalledProcessError as e:
print(f"NCU profiling failed with error: {e}")
return
def collect_memory_snapshot(benchmark_compiled_module_fn):
assert torch.cuda.is_available()
torch.cuda.memory._record_memory_history(max_entries=100000)
benchmark_compiled_module_fn(times=10, repeat=1) # run 10 times
snapshot_path = f"{tempfile.gettempdir()}/memory_snapshot.pickle"
torch.cuda.memory._dump_snapshot(snapshot_path)
torch.cuda.memory._record_memory_history(enabled=None)
print(f"The collect memory snapshot has been written to {snapshot_path}")
def compiled_module_main(benchmark_name, benchmark_compiled_module_fn):
"""
This is the function called in __main__ block of a compiled module.
"""
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--benchmark-kernels",
"-k",
action="store_true",
help="Whether to benchmark each individual kernels",
)
parser.add_argument(
"--benchmark-all-configs",
"-c",
action="store_true",
help="Whether to benchmark each individual config for a kernel",
)
parser.add_argument(
"--profile",
"-p",
action="store_true",
help="Whether to profile the compiled module",
)
parser.add_argument(
"--cuda-memory-snapshot",
action="store_true",
help="""
Whether to collect CUDA memory snapshot. Refer to
"https://pytorch.org/blog/understanding-gpu-memory-1/
for details about how to visualize the collected snapshot
""",
)
parser.add_argument(
"--ncu",
action="store_true",
help="Whether to run ncu analysis",
)
args = parser.parse_args()
if args.benchmark_kernels:
benchmark_all_kernels(benchmark_name, args.benchmark_all_configs)
else:
times = 10
repeat = 10
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
wall_time_ms = benchmark_compiled_module_fn(times=times, repeat=repeat) * 1000
if torch.cuda.is_available():
peak_mem = torch.cuda.max_memory_allocated()
print(f"Peak GPU memory usage {peak_mem/1e6:.3f} MB")
if torch.cuda.is_available() and args.cuda_memory_snapshot:
collect_memory_snapshot(benchmark_compiled_module_fn)
if args.profile:
perf_profile(
wall_time_ms,
times,
repeat,
benchmark_name,
benchmark_compiled_module_fn,
)
if args.ncu:
ncu_analyzer(benchmark_name, benchmark_compiled_module_fn)
|