1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
|
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import inspect
import logging
import weakref
from contextlib import contextmanager
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Set, Union
import torch
from torch import _C, _ops, Tensor
from torch.utils._exposed_in import exposed_in
from . import autograd, utils
device_types_t = Optional[Union[str, Sequence[str]]]
log = logging.getLogger(__name__)
@exposed_in("torch.library")
def custom_op(
name: str,
fn: Optional[Callable] = None,
/,
*,
mutates_args: Union[str, Iterable[str]],
device_types: device_types_t = None,
schema: Optional[str] = None,
) -> Any:
"""Wraps a function into custom operator.
Reasons why you may want to create a custom op include:
- Wrapping a third-party library or custom kernel to work with PyTorch
subsystems like Autograd.
- Preventing torch.compile/export/FX tracing from peeking inside your function.
This API is used as a decorator around a function (please see examples).
The provided function must have type hints; these are needed to interface
with PyTorch's various subsystems.
Args:
name (str): A name for the custom op that looks like "{namespace}::{name}",
e.g. "mylib::my_linear". The name is used as the op's stable identifier
in PyTorch subsystems (e.g. torch.export, FX graphs).
To avoid name collisions, please use your project name as the namespace;
e.g. all custom ops in pytorch/fbgemm use "fbgemm" as the namespace.
mutates_args (Iterable[str] or "unknown"): The names of args that the function mutates.
This MUST be accurate, otherwise, the behavior is undefined. If "unknown",
it pessimistically assumes that all inputs to the operator are being mutated.
device_types (None | str | Sequence[str]): The device type(s) the function
is valid for. If no device type is provided, then the function
is used as the default implementation for all device types.
Examples: "cpu", "cuda".
When registering a device-specific implementation for an operator that accepts no Tensors,
we require the operator to have a "device: torch.device argument".
schema (None | str): A schema string for the operator. If None
(recommended) we'll infer a schema for the operator from its type
annotations. We recommend letting us infer a schema unless you
have a specific reason not to.
Example: "(Tensor x, int y) -> (Tensor, Tensor)".
.. note::
We recommend not passing in a ``schema`` arg and instead letting us infer
it from the type annotations. It is error-prone to write your own schema.
You may wish to provide your own schema if our interpretation of
the type annotation is not what you want.
For more info on how to write a schema string, see
`here <https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/README.md#func>`_
Examples::
>>> import torch
>>> from torch import Tensor
>>> from torch.library import custom_op
>>> import numpy as np
>>>
>>> @custom_op("mylib::numpy_sin", mutates_args=())
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> x = torch.randn(3)
>>> y = numpy_sin(x)
>>> assert torch.allclose(y, x.sin())
>>>
>>> # Example of a custom op that only works for one device type.
>>> @custom_op("mylib::numpy_sin_cpu", mutates_args=(), device_types="cpu")
>>> def numpy_sin_cpu(x: Tensor) -> Tensor:
>>> x_np = x.numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np)
>>>
>>> x = torch.randn(3)
>>> y = numpy_sin_cpu(x)
>>> assert torch.allclose(y, x.sin())
>>>
>>> # Example of a custom op that mutates an input
>>> @custom_op("mylib::numpy_sin_inplace", mutates_args={"x"}, device_types="cpu")
>>> def numpy_sin_inplace(x: Tensor) -> None:
>>> x_np = x.numpy()
>>> np.sin(x_np, out=x_np)
>>>
>>> x = torch.randn(3)
>>> expected = x.sin()
>>> numpy_sin_inplace(x)
>>> assert torch.allclose(x, expected)
>>>
>>> # Example of a factory function
>>> @torch.library.custom_op("mylib::bar", mutates_args={}, device_types="cpu")
>>> def bar(device: torch.device) -> Tensor:
>>> return torch.ones(3)
>>>
>>> bar("cpu")
"""
def inner(fn):
import torch
if schema is None:
schema_str = torch.library.infer_schema(fn, mutates_args=mutates_args)
else:
schema_str = schema
namespace, opname = name.split("::")
result = CustomOpDef(namespace, opname, schema_str, fn)
if schema is not None:
# Check that schema's alias annotations match those of `mutates_args`.
expected = set()
for arg in result._opoverload._schema.arguments:
if arg.alias_info is not None and arg.alias_info.is_write:
expected.add(arg.name)
if expected != set(mutates_args):
raise ValueError(
f"Attempted to create a custom op with `mutates_args={mutates_args}` "
f"and `schema={schema}. The schema suggests that the op mutates {expected}"
f"which is different from what was provided to us in `mutates_args`. "
f"Please make these consistent."
)
result.register_kernel(device_types)(fn)
return result
if fn is None:
return inner
return inner(fn)
class CustomOpDef:
"""CustomOpDef is a wrapper around a function that turns it into a custom op.
It has various methods for registering additional behavior for this
custom op.
You should not instantiate CustomOpDef directly; instead, use the
:func:`torch.library.custom_op` API.
"""
def __init__(self, namespace: str, name: str, schema: str, fn: Callable) -> None:
# Fields used to interface with the PyTorch dispatcher
self._namespace = namespace
self._name = name
self._schema = schema
self._init_fn = fn
self._backend_fns: Dict[Union[str, None], Callable] = {}
self._abstract_fn: Optional[Callable] = None
self._setup_context_fn: Optional[Callable] = None
self._backward_fn: Optional[Callable] = None
self._torch_dispatch_fns: Dict[type, Callable] = {}
self._vmap_fn: Optional[Callable] = None
self._lib = get_library_allowing_overwrite(self._namespace, self._name)
self._register_to_dispatcher()
self._disabled_kernel: Set = set()
OPDEFS[self._qualname] = self
@property
def _qualname(self) -> str:
return f"{self._namespace}::{self._name}"
def __repr__(self) -> str:
return f"<CustomOpDef({self._qualname})>"
@contextmanager
def set_kernel_enabled(self, device_type: str, enabled: bool = True):
"""
Disable or re-enable an already registered kernel for this custom operator.
If the kernel is already disabled/enabled, this is a no-op.
Note:
If a kernel is first disabled and then registered, it is disabled until enabled again.
Args:
device_type (str): The device type to disable/enable the kernel for.
disable (bool): Whether to disable or enable the kernel.
Example:
>>> inp = torch.randn(1)
>>>
>>> # define custom op `f`.
>>> @custom_op("mylib::f", mutates_args=())
>>> def f(x: Tensor) -> Tensor:
>>> return torch.zeros(1)
>>>
>>> print(f(inp)) # tensor([0.]), default kernel
>>>
>>> @f.register_kernel("cpu")
>>> def _(x):
>>> return torch.ones(1)
>>>
>>> print(f(inp)) # tensor([1.]), CPU kernel
>>>
>>> # temporarily disable the CPU kernel
>>> with f.set_kernel_enabled("cpu", enabled = False):
>>> print(f(inp)) # tensor([0.]) with CPU kernel disabled
"""
action = "enable" if enabled else "disable"
originally_disabled = device_type in self._disabled_kernel
if device_type not in self._backend_fns:
log.warning(
"Attempted to %s kernel for %s but no kernel was registered for this device type.",
action,
device_type,
)
if not enabled:
if originally_disabled:
log.warning(
"Attempted to disable kernel for %s but it was already disabled.",
device_type,
)
else:
self._disabled_kernel.add(device_type)
else: # enable the kernel
if not originally_disabled:
log.warning(
"Attempted to enable kernel for %s but it was already enabled.",
device_type,
)
else:
self._disabled_kernel.remove(device_type)
try:
yield
finally:
# restore original state
if originally_disabled:
self._disabled_kernel.add(device_type)
else:
self._disabled_kernel.discard(device_type)
def register_kernel(
self, device_types: device_types_t, fn: Optional[Callable] = None, /
) -> Callable:
"""Register an implementation for a device type for this operator.
Some valid device_types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu".
This API may be used as a decorator.
Args:
fn (Callable): The function to register as the implementation for
the given device types.
device_types (str | Sequence[str]): The device device_types to register an impl to.
Examples::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> import torch
>>> from torch import Tensor
>>> from torch.library import custom_op
>>> import numpy as np
>>>
>>> # Create a custom op that works on cpu
>>> @custom_op("mylib::numpy_sin", mutates_args=(), device_types="cpu")
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> x_np = x.numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np)
>>>
>>> # Add implementations for the cuda device
>>> @numpy_sin.register_kernel("cuda")
>>> def _(x):
>>> x_np = x.cpu().numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> x_cpu = torch.randn(3)
>>> x_cuda = x_cpu.cuda()
>>> assert torch.allclose(numpy_sin(x_cpu), x_cpu.sin())
>>> assert torch.allclose(numpy_sin(x_cuda), x_cuda.sin())
"""
def inner(fn):
if device_types is None or isinstance(device_types, str):
dtypes: List[Union[str, None]] = [device_types]
else:
dtypes = list(device_types)
for device_type in dtypes:
if device_type not in self._backend_fns:
def backend_impl(*args, **kwargs):
result = self._backend_fns[device_type](*args, **kwargs)
def get_module():
fn = self._backend_fns[device_type]
return inspect.getmodule(fn)
utils.check_aliasing_constraint(
self._name,
utils.iter_tensors(args, kwargs),
result,
get_module,
)
return result
if device_type is None:
self._lib.impl(
self._name, backend_impl, "CompositeExplicitAutograd"
)
else:
self._lib.impl(
self._name,
backend_impl,
_C._dispatch_key_for_device(device_type),
)
# Wrap function to choose between the default implementation or the device-specific
# implementation depending on if the kernel is disabled.
@torch._disable_dynamo
def wrapped_fn(*args, **kwargs):
if device_type in self._disabled_kernel:
return self._init_fn(*args, **kwargs)
else:
return fn(*args, **kwargs)
self._backend_fns[device_type] = wrapped_fn
return fn
if device_types is not None and not utils.has_tensor_arg(
self._opoverload._schema
):
device_arg_index = utils.get_device_arg_index(self._opoverload._schema)
if device_arg_index is None:
raise ValueError(
"Functions without tensor inputs are required to have a `device: torch.device` argument"
)
self._register_backend_select_dispatcher(device_arg_index)
# See NOTE: [Supporting decorator and non-decorator usage]
if fn is None:
return inner
return inner(fn)
def register_fake(self, fn: Callable, /) -> Callable:
r"""Register a FakeTensor implementation for this custom op.
This is necessary to get the operator to work efficiently with torch.compile.
The Fake impl (sometimes also known as a meta kernel or abstract impl)
specifies the behavior of this operator on Tensors that carry no data.
Given some input Tensors with certain properties
(sizes/strides/storage_offset/device), it specifies what the properties of
the output Tensors are.
Please see :func:`torch.library.impl_abstract` for more details.
Args:
fn (Callable): The function to register as the FakeTensor
implementation.
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> # Example 1: an operator without data-dependent output shape
>>> @torch.library.custom_op("mylib::linear", mutates_args=())
>>> def linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
>>> return (x @ weight.t()) + bias
>>>
>>> @linear.register_fake
>>> def _(x, weight, bias):
>>> assert x.dim() == 2
>>> assert weight.dim() == 2
>>> assert bias.dim() == 1
>>> assert x.shape[1] == weight.shape[1]
>>> assert weight.shape[0] == bias.shape[0]
>>> assert x.device == weight.device
>>> return x.new_empty(x.size(0), weight.size(0))
>>>
>>> x = torch.randn(2, 2)
>>> weight = torch.randn(2, 2)
>>> bias = torch.randn(2)
>>> # xdoctest: +SKIP("Requires Python <= 3.11")
>>> out = torch.compile(linear, fullgraph=True)(x, weight, bias)
>>> # xdoctest: +SKIP("Requires Python <= 3.11")
>>> assert torch.allclose(out, torch.nn.functional.linear(x, weight, bias))
>>>
>>> # Example 2: an operator with data-dependent output shape
>>> @torch.library.custom_op("mylib::nonzero", mutates_args=())
>>> def nonzero(x: Tensor) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> res = np.stack(np.nonzero(x_np), axis=1)
>>> return torch.tensor(res, device=x.device)
>>>
>>> @nonzero.register_fake
>>> def _(x):
>>> # Number of nonzero-elements is data-dependent.
>>> # Since we cannot peek at the data in an abstract impl,
>>> # we use the ctx object to construct a new symint that
>>> # represents the data-dependent size.
>>> ctx = torch.library.get_ctx()
>>> nnz = ctx.new_dynamic_size()
>>> shape = [nnz, x.dim()]
>>> result = x.new_empty(shape, dtype=torch.int64)
>>> return result
>>>
>>> x = torch.tensor([0, 1, 2, 0, 0, 1])
>>> # xdoctest: +SKIP("Requires Python <= 3.11")
>>> out = torch.compile(nonzero, fullgraph=True)(x)
>>> # xdoctest: +SKIP("Requires Python <= 3.11")
>>> assert torch.allclose(out, x.nonzero())
"""
self._abstract_fn = fn
return fn
def register_torch_dispatch(
self, torch_dispatch_class: Any, fn: Optional[Callable] = None, /
) -> Callable:
r"""Registers a torch_dispatch rule for the given operator and ``torch_dispatch_class``.
This allows for open registration to specify the behavior between the operator
and the ``torch_dispatch_class`` without needing to modify the ``torch_dispatch_class``
or the operator directly.
Please see :func:`torch.library.register_torch_dispatch` for examples and more details.
"""
def register(fn):
if torch_dispatch_class not in self._torch_dispatch_fns:
def inner(*args, **kwargs):
return self._torch_dispatch_fns[torch_dispatch_class](
*args, **kwargs
)
self._lib._register_torch_dispatch_rule(
self._name, torch_dispatch_class, inner
)
self._torch_dispatch_fns[torch_dispatch_class] = fn
return fn
if fn is None:
return register
else:
return register(fn)
def register_autograd(
self,
backward: Callable,
/,
*,
setup_context: Optional[Callable] = None,
) -> None:
r"""Register a backward formula for this custom op.
In order for an operator to work with autograd, you need to register
a backward formula:
1. You must tell us how to compute gradients during the backward pass
by providing us a "backward" function.
2. If you need any values from the forward to compute gradients, you can
use `setup_context` to save values for backward.
``backward_fn`` runs during the backward pass. It accepts ``(ctx, *grads)``:
- ``grads`` is one or more gradients. The number of gradients matches
the number of outputs of the operator.
The ``ctx`` object is `the same ctx object <context_method_mixins>`_ used by
:class:`torch.autograd.Function`. The semantics of ``backward_fn`` are the
same as :meth:`torch.autograd.Function.backward`.
``setup_context(ctx, inputs, output)`` runs during the forward pass.
Please save quantities needed for backward onto the ``ctx`` object via
either :meth:`torch.autograd.function.FunctionCtx.save_for_backward`
or assigning them as attributes of ``ctx``. If your custom op has
kwarg-only arguments, we expect the signature of ``setup_context``
to be ``setup_context(ctx, inputs, keyword_only_inputs, output)``.
Both ``setup_context_fn`` and ``backward_fn`` must be traceable. That is,
they may not directly access :meth:`torch.Tensor.data_ptr` and they must
not depend on or mutate global state. If you need a non-traceable backward,
you can make it a separate custom_op that you call inside ``backward_fn``.
If you need different autograd behavior on different devices, then we
recommend creating two different custom operators, one for each device
that needs different behavior, and switching between them at runtime.
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> @torch.library.custom_op("mylib::numpy_sin", mutates_args=())
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> def setup_context(ctx, inputs, output) -> Tensor:
>>> x, = inputs
>>> ctx.save_for_backward(x)
>>>
>>> def backward(ctx, grad):
>>> x, = ctx.saved_tensors
>>> return grad * x.cos()
>>>
>>> numpy_sin.register_autograd(backward, setup_context=setup_context)
>>>
>>> x = torch.randn(3, requires_grad=True)
>>> y = numpy_sin(x)
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
>>> assert torch.allclose(grad_x, x.cos())
>>>
>>> # Example with a keyword-only arg
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
>>> def numpy_mul(x: Tensor, *, val: float) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> y_np = x_np * val
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> def setup_context(ctx, inputs, keyword_only_inputs, output) -> Tensor:
>>> ctx.val = keyword_only_inputs["val"]
>>>
>>> def backward(ctx, grad):
>>> return grad * ctx.val
>>>
>>> numpy_mul.register_autograd(backward, setup_context=setup_context)
>>>
>>> x = torch.randn(3, requires_grad=True)
>>> y = numpy_mul(x, val=3.14)
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
>>> assert torch.allclose(grad_x, torch.full_like(x, 3.14))
"""
schema = self._opoverload._schema
if not utils.is_functional_schema(schema):
raise RuntimeError(
f"Cannot register autograd formula for non-functional operator "
f"{self} with schema {schema}. Please create "
f"a functional operator and register an autograd formula for that."
)
self._backward_fn = backward
self._setup_context_fn = setup_context
def _register_to_dispatcher(self) -> None:
if torch._running_with_deploy():
utils.warn_deploy(stacklevel=5)
return
lib = self._lib
schema_str = self._name + self._schema
cpp_schema = _C.parse_schema(schema_str)
if utils.has_kwarg_only_tensors(cpp_schema):
# If you want to support this, the progression is:
# - supporting kwarg-only Tensors that are non-differentiable
# - supporting kwarg-only Tensors (regardless of differentiability)
raise NotImplementedError(
f"custom_op with kwarg-only Tensor args. Please make your "
f"tensors not kwarg-only. Got: {schema_str}"
)
lib.define(
schema_str,
tags=[_C.Tag.pt2_compliant_tag, _C.Tag.needs_fixed_stride_order],
)
self._opoverload = utils.lookup_op(self._qualname)
def fake_impl(*args, **kwargs):
if self._abstract_fn is None:
if utils.can_generate_trivial_fake_impl(self._opoverload):
return None
raise RuntimeError(
f"There was no fake impl registered for {self}. "
f"This is necessary for torch.compile/export/fx tracing to work. "
f"Please use `{self._init_fn.__name__}.register_fake` to add an "
f"fake impl."
)
return self._abstract_fn(*args, **kwargs)
lib._register_fake(self._name, fake_impl, _stacklevel=4)
autograd_impl = autograd.make_autograd_impl(self._opoverload, self)
lib.impl(self._name, autograd_impl, "Autograd", with_keyset=True)
schema = self._opoverload._schema
if schema.is_mutable:
mutated_idxs, mutated_keys = utils.mutated_args_kwargs(schema)
def adinplaceorview_impl(keyset, *args, **kwargs):
for idx in mutated_idxs:
increment_version(args[idx])
for key in mutated_keys:
increment_version(kwargs[key])
with _C._AutoDispatchBelowADInplaceOrView():
return self._opoverload.redispatch(
keyset & _C._after_ADInplaceOrView_keyset, *args, **kwargs
)
lib.impl(
self._name,
adinplaceorview_impl,
"ADInplaceOrView",
with_keyset=True,
)
def _register_backend_select_dispatcher(self, device_arg_index: int):
"""
Switch on the device argument to select the correct backend to dispatch to.
"""
def backend_select(keyset, *args, **kwargs):
device = args[device_arg_index].type
if device not in self._backend_fns:
raise RuntimeError(
f"{self._name} does not have a kernel registered for {device}. "
"Please use register_kernel to do so."
)
dispatch_key = _C._dispatch_key_for_device(device)
dispatch_key = getattr(_C.DispatchKey, dispatch_key)
return self._opoverload.redispatch(
_C.DispatchKeySet(dispatch_key), *args, **kwargs
)
self._lib.impl(self._name, backend_select, "BackendSelect", with_keyset=True)
def __call__(self, *args, **kwargs):
return self._opoverload(*args, **kwargs)
def register_vmap(
self,
func: Optional[Callable] = None,
):
r"""Register a vmap implementation to support :func:`torch.vmap` for this custom op.
This API may be used as a decorator.
In order for an operator to work with :func:`torch.vmap`, you may need to register a
vmap implementation in the following signature:
``vmap_func(info, in_dims: Tuple[Optional[int]], *args, **kwargs)``,
where ``*args`` and ``**kwargs`` are the arguments and kwargs for ``op``.
It specifies how do we compute the batched version of ``op`` given inputs with an additional
dimension (specified by ``in_dims``).
For each arg in ``args``, ``in_dims`` has a corresponding ``Optional[int]``. It is ``None``
if the arg is not a Tensor or if the arg is not being vmapped over, otherwise, it is an integer
specifying what dimension of the Tensor is being vmapped over.
``info`` is a collection of additional metadata that may be helpful:
``info.batch_size`` specifies the size of the dimension being vmapped over, while
``info.randomness`` is the ``randomness`` option that was passed to :func:`torch.vmap`.
The return of the function ``func`` is a tuple of ``(output, out_dims)``. Similar to ``in_dims``,
``out_dims`` should be of the same structure as ``output`` and contain one ``out_dim``
per output that specifies if the output has the vmapped dimension and what index it is in.
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>> from typing import Tuple
>>>
>>> def to_numpy(tensor):
>>> return tensor.cpu().numpy()
>>>
>>> lib = torch.library.Library("mylib", "FRAGMENT")
>>> @torch.library.custom_op("mylib::numpy_cube", mutates_args=())
>>> def numpy_cube(x: Tensor) -> Tuple[Tensor, Tensor]:
>>> x_np = to_numpy(x)
>>> dx = torch.tensor(3 * x_np ** 2, device=x.device)
>>> return torch.tensor(x_np ** 3, device=x.device), dx
>>>
>>> def numpy_cube_vmap(info, in_dims, x):
>>> result = numpy_cube(x)
>>> return result, (in_dims[0], in_dims[0])
>>>
>>> numpy_cube.register_vmap(numpy_cube_vmap)
>>>
>>> x = torch.randn(3)
>>> torch.vmap(numpy_cube)(x)
>>>
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
>>> def numpy_mul(x: Tensor, y: Tensor) -> Tensor:
>>> return torch.tensor(to_numpy(x) * to_numpy(y), device=x.device)
>>>
>>> @numpy_mul.register_vmap
>>> def numpy_mul_vmap(info, in_dims, x, y):
>>> x_bdim, y_bdim = in_dims
>>> x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
>>> y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
>>> result = x * y
>>> result = result.movedim(-1, 0)
>>> return result, 0
>>>
>>>
>>> x = torch.randn(3)
>>> y = torch.randn(3)
>>> torch.vmap(numpy_mul)(x, y)
"""
from torch._functorch.autograd_function import custom_function_call_vmap_helper
from torch._functorch.pyfunctorch import retrieve_current_functorch_interpreter
def register(func):
need_register = self._vmap_fn is None
self._vmap_fn = func
if need_register:
def wrapped_func(keyset, *args, **kwargs):
interpreter = retrieve_current_functorch_interpreter()
return custom_function_call_vmap_helper(
interpreter, self._vmap_fn, self._opoverload, *args, **kwargs
)
self._lib.impl(
self._name, wrapped_func, "FuncTorchBatched", with_keyset=True
)
if func is None:
return register
else:
return register(func)
def increment_version(val: Any) -> None:
if isinstance(val, Tensor):
torch.autograd.graph.increment_version(val)
elif isinstance(val, (tuple, list)):
for v in val:
if isinstance(v, Tensor):
torch.autograd.graph.increment_version(v)
# NOTE: [Supporting decorator and non-decorator usage]
#
# Some APIs may be both used as a decorator and not as a decorator.
# For example:
#
# >>> def fn(x):
# >>> return x.sin()
# >>>
# >>> # Usage 1: not as a decorator
# >>> numpy_sin.register_kernel("cuda", fn)
# >>>
# >>> # Usage 2: as a decorator
# >>> @numpy_sin.register_kernel("cuda")
# >>> def fn2(x):
# >>> return x.sin
#
# The way we support this is that `register_kernel` accepts an optional `fn`.
# If `fn` is provided (Usage 1), then we know that the user is using it not
# as a decorator.
# If `fn` is not provided (Usage 2), then `register_kernel` needs to return a
# decorator.
OPDEF_TO_LIB: Dict[str, "torch.library.Library"] = {}
OPDEFS: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
def get_library_allowing_overwrite(
namespace: str, name: str
) -> "torch.library.Library":
qualname = f"{namespace}::{name}"
if qualname in OPDEF_TO_LIB:
OPDEF_TO_LIB[qualname]._destroy()
del OPDEF_TO_LIB[qualname]
lib = torch.library.Library(namespace, "FRAGMENT") # noqa: TOR901
OPDEF_TO_LIB[qualname] = lib
return lib
def _maybe_get_opdef(
op: Union[CustomOpDef, _ops.OpOverload, str]
) -> Optional[CustomOpDef]:
if isinstance(op, CustomOpDef):
return op
if isinstance(op, _ops.OpOverload):
op = op._name
assert isinstance(op, str)
if op in OPDEFS:
return OPDEFS[op]
return None
|