1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import inspect
import typing
from typing import List, Optional, Sequence, Union # noqa: F401
import torch
from torch import device, dtype, Tensor, types
from torch.utils._exposed_in import exposed_in
@exposed_in("torch.library")
def infer_schema(
prototype_function: typing.Callable,
/,
*,
mutates_args,
op_name: Optional[str] = None,
) -> str:
r"""Parses the schema of a given function with type hints. The schema is inferred from the
function's type hints, and can be used to define a new operator.
We make the following assumptions:
* None of the outputs alias any of the inputs or each other.
* | String type annotations "device, dtype, Tensor, types" without library specification are
| assumed to be torch.*. Similarly, string type annotations "Optional, List, Sequence, Union"
| without library specification are assumed to be typing.*.
* | Only the args listed in ``mutates_args`` are being mutated. If ``mutates_args`` is "unknown",
| it assumes that all inputs to the operator are being mutates.
Callers (e.g. the custom ops API) are responsible for checking these assumptions.
Args:
prototype_function: The function from which to infer a schema for from its type annotations.
op_name (Optional[str]): The name of the operator in the schema. If ``name`` is None, then the
name is not included in the inferred schema. Note that the input schema to
``torch.library.Library.define`` requires a operator name.
mutates_args ("unknown" | Iterable[str]): The arguments that are mutated in the function.
Returns:
The inferred schema.
Example:
>>> def foo_impl(x: torch.Tensor) -> torch.Tensor:
>>> return x.sin()
>>>
>>> infer_schema(foo_impl, op_name="foo", mutates_args={})
foo(Tensor x) -> Tensor
>>>
>>> infer_schema(foo_impl, mutates_args={})
(Tensor x) -> Tensor
"""
UNKNOWN_MUTATES = "unknown"
sig = inspect.signature(prototype_function)
def error_fn(what):
raise ValueError(
f"infer_schema(func): {what} " f"Got func with signature {sig})"
)
def convert_type_string(annotation_type: str):
try:
return eval(annotation_type)
except Exception as e:
error_fn(
f"Unsupported type annotation {annotation_type}. It is not a type."
)
params = []
seen_args = set()
saw_kwarg_only_arg = False
for idx, (name, param) in enumerate(sig.parameters.items()):
if not supported_param(param):
error_fn("We do not support positional-only args, varargs, or varkwargs.")
if param.kind == inspect.Parameter.KEYWORD_ONLY:
# The first time we see a kwarg-only arg, add "*" to the schema.
if not saw_kwarg_only_arg:
params.append("*")
saw_kwarg_only_arg = True
if param.annotation is inspect.Parameter.empty:
error_fn(f"Parameter {name} must have a type annotation.")
# The annotation might be converted to a string by annotation,
# we convert it to the actual type.
annotation_type = param.annotation
if type(annotation_type) == str:
annotation_type = convert_type_string(annotation_type)
if annotation_type not in SUPPORTED_PARAM_TYPES.keys():
if annotation_type.__origin__ is tuple:
list_type = tuple_to_list(annotation_type)
example_type_str = "\n\n"
# Only suggest the list type if this type is supported.
if list_type in SUPPORTED_PARAM_TYPES.keys():
example_type_str = f"For example, {list_type}.\n\n"
error_fn(
f"Parameter {name} has unsupported type {param.annotation}. "
f"We do not support Tuple inputs in schema. As a workaround, please try to use List instead. "
f"{example_type_str}"
f"The valid types are: {SUPPORTED_PARAM_TYPES.keys()}."
)
else:
error_fn(
f"Parameter {name} has unsupported type {param.annotation}. "
f"The valid types are: {SUPPORTED_PARAM_TYPES.keys()}."
)
schema_type = SUPPORTED_PARAM_TYPES[annotation_type]
if type(mutates_args) == str:
if mutates_args != UNKNOWN_MUTATES:
raise ValueError(
"mutates_args must either be a sequence of the names of "
"the arguments that are mutated or the string 'unknown'. "
)
if schema_type.startswith("Tensor"):
schema_type = f"Tensor(a{idx}!){schema_type[len('Tensor'):]}"
elif name in mutates_args:
if not schema_type.startswith("Tensor"):
error_fn(
f"Parameter {name} is in mutable_args but only Tensors or collections of Tensors can be mutated"
)
schema_type = f"Tensor(a{idx}!){schema_type[len('Tensor'):]}"
seen_args.add(name)
if param.default is inspect.Parameter.empty:
params.append(f"{schema_type} {name}")
else:
default_repr = None
if param.default is None or isinstance(param.default, (int, float, bool)):
default_repr = str(param.default)
elif isinstance(param.default, (str, torch.device)):
default_repr = f'"{param.default}"'
elif isinstance(param.default, torch.dtype):
dtype_repr = str(param.default)
torch_dot = "torch."
assert dtype_repr.startswith(torch_dot)
default_repr = dtype_repr[len(torch_dot) :]
else:
error_fn(
f"Parameter {name} has an unsupported default value type {type(param.default)}. "
f"Please file an issue on GitHub so we can prioritize this."
)
params.append(f"{schema_type} {name}={default_repr}")
if mutates_args != UNKNOWN_MUTATES:
mutates_args_not_seen = set(mutates_args) - seen_args
if len(mutates_args_not_seen) > 0:
error_fn(
f"{mutates_args_not_seen} in mutates_args were not found in "
f"the custom op's signature. "
f"mutates_args should contain the names of all args that the "
f"custom op mutates, or just the string 'unknown' if you don't know."
)
return_annotation = sig.return_annotation
if type(return_annotation) == str:
return_annotation = convert_type_string(return_annotation)
ret = parse_return(return_annotation, error_fn)
if op_name is not None:
return f"{op_name}({', '.join(params)}) -> {ret}"
return f"({', '.join(params)}) -> {ret}"
def derived_types(
base_type, cpp_type, list_base, optional_base_list, optional_list_base
):
result = [
(base_type, cpp_type),
(typing.Optional[base_type], f"{cpp_type}?"),
]
def derived_seq_types(typ):
return [
typing.Sequence[typ], # type: ignore[valid-type]
typing.List[typ], # type: ignore[valid-type]
]
if list_base:
result.extend(
(seq_typ, f"{cpp_type}[]") for seq_typ in derived_seq_types(base_type)
)
if optional_base_list:
result.extend(
(seq_typ, f"{cpp_type}?[]")
for seq_typ in derived_seq_types(typing.Optional[base_type])
)
if optional_list_base:
result.extend(
(typing.Optional[seq_typ], f"{cpp_type}[]?")
for seq_typ in derived_seq_types(base_type)
)
return result
def get_supported_param_types():
data = [
# (python type, schema type, type[] variant, type?[] variant, type[]? variant
(Tensor, "Tensor", True, True, False),
(int, "SymInt", True, False, True),
(float, "float", True, False, True),
(bool, "bool", True, False, True),
(str, "str", False, False, False),
(types.Number, "Scalar", True, False, False),
(dtype, "ScalarType", False, False, False),
(device, "Device", False, False, False),
]
result = []
for line in data:
result.extend(derived_types(*line))
return dict(result)
SUPPORTED_RETURN_TYPES = {
Tensor: "Tensor",
typing.List[Tensor]: "Tensor[]",
int: "SymInt",
float: "float",
bool: "bool",
types.Number: "Scalar",
}
def parse_return(annotation, error_fn):
if annotation is None:
return "()"
if annotation is inspect.Parameter.empty:
error_fn("No return type annotation was provided. Please add one.")
origin = typing.get_origin(annotation)
if origin is not tuple:
if annotation not in SUPPORTED_RETURN_TYPES.keys():
error_fn(
f"Return has unsupported type {annotation}. "
f"The valid types are: {SUPPORTED_RETURN_TYPES}."
)
return SUPPORTED_RETURN_TYPES[annotation]
args = typing.get_args(annotation)
for arg in args:
if arg not in SUPPORTED_RETURN_TYPES:
error_fn(
f"Return has unsupported type {annotation}. "
f"The valid types are: {SUPPORTED_RETURN_TYPES}."
)
return "(" + ", ".join([SUPPORTED_RETURN_TYPES[arg] for arg in args]) + ")"
SUPPORTED_PARAM_TYPES = get_supported_param_types()
def supported_param(param: inspect.Parameter) -> bool:
return param.kind in (
inspect.Parameter.POSITIONAL_OR_KEYWORD,
inspect.Parameter.KEYWORD_ONLY,
)
def tuple_to_list(tuple_type: typing.Type[typing.Tuple]) -> typing.Type[typing.List]:
"""
Convert `tuple_type` into a list type with the same type arguments. Assumes that `tuple_type` is typing.Tuple type.
"""
type_args = getattr(tuple_type, "__args__", None)
# Account for different python versions, e.g. python 3.8 would give ()
# but python 3.12 would give None.
if tuple_type is typing.Tuple or type_args == () or type_args is None:
# Handle the case of an empty tuple type
return typing.List
elif len(type_args) == 1:
# General case: create a List with the same type arguments
return typing.List[type_args[0]] # type: ignore[valid-type]
elif len(type_args) == 2 and type_args[1] is Ellipsis:
return typing.List[type_args[0]] # type: ignore[valid-type]
else:
return typing.List[typing.Union[tuple(type_args)]] # type: ignore[misc, return-value]
|