1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
"""
Utilities for converting data types into structured JSON for dumping.
"""
import traceback
from typing import Any, Dict, List, Sequence, Set
import torch._logging._internal
INTERN_TABLE: Dict[str, int] = {}
DUMPED_FILES: Set[str] = set()
def intern_string(s: str) -> int:
r = INTERN_TABLE.get(s, None)
if r is None:
r = len(INTERN_TABLE)
INTERN_TABLE[s] = r
torch._logging._internal.trace_structured(
"str", lambda: (s, r), suppress_context=True
)
return r
def dump_file(filename: str) -> None:
if "eval_with_key" not in filename:
return
if filename in DUMPED_FILES:
return
DUMPED_FILES.add(filename)
from torch.fx.graph_module import _loader
torch._logging._internal.trace_structured(
"dump_file",
metadata_fn=lambda: {
"name": filename,
},
payload_fn=lambda: _loader.get_source(filename),
)
def from_traceback(tb: Sequence[traceback.FrameSummary]) -> List[Dict[str, Any]]:
# dict naming convention here coincides with
# python/combined_traceback.cpp
r = [
{
"line": frame.lineno,
"name": frame.name,
"filename": intern_string(frame.filename),
}
for frame in tb
]
return r
|