File: structured.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (56 lines) | stat: -rw-r--r-- 1,311 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
Utilities for converting data types into structured JSON for dumping.
"""

import traceback
from typing import Any, Dict, List, Sequence, Set

import torch._logging._internal


INTERN_TABLE: Dict[str, int] = {}


DUMPED_FILES: Set[str] = set()


def intern_string(s: str) -> int:
    r = INTERN_TABLE.get(s, None)
    if r is None:
        r = len(INTERN_TABLE)
        INTERN_TABLE[s] = r
        torch._logging._internal.trace_structured(
            "str", lambda: (s, r), suppress_context=True
        )
    return r


def dump_file(filename: str) -> None:
    if "eval_with_key" not in filename:
        return
    if filename in DUMPED_FILES:
        return
    DUMPED_FILES.add(filename)
    from torch.fx.graph_module import _loader

    torch._logging._internal.trace_structured(
        "dump_file",
        metadata_fn=lambda: {
            "name": filename,
        },
        payload_fn=lambda: _loader.get_source(filename),
    )


def from_traceback(tb: Sequence[traceback.FrameSummary]) -> List[Dict[str, Any]]:
    # dict naming convention here coincides with
    # python/combined_traceback.cpp
    r = [
        {
            "line": frame.lineno,
            "name": frame.name,
            "filename": intern_string(frame.filename),
        }
        for frame in tb
    ]
    return r