File: _funcs_impl.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2056 lines) | stat: -rw-r--r-- 59,200 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
# mypy: ignore-errors

"""A thin pytorch / numpy compat layer.

Things imported from here have numpy-compatible signatures but operate on
pytorch tensors.
"""
# Contents of this module ends up in the main namespace via _funcs.py
# where type annotations are used in conjunction with the @normalizer decorator.
from __future__ import annotations

import builtins
import itertools
import operator
from typing import Optional, Sequence, TYPE_CHECKING

import torch

from . import _dtypes_impl, _util


if TYPE_CHECKING:
    from ._normalizations import (
        ArrayLike,
        ArrayLikeOrScalar,
        CastingModes,
        DTypeLike,
        NDArray,
        NotImplementedType,
        OutArray,
    )


def copy(
    a: ArrayLike, order: NotImplementedType = "K", subok: NotImplementedType = False
):
    return a.clone()


def copyto(
    dst: NDArray,
    src: ArrayLike,
    casting: Optional[CastingModes] = "same_kind",
    where: NotImplementedType = None,
):
    (src,) = _util.typecast_tensors((src,), dst.dtype, casting=casting)
    dst.copy_(src)


def atleast_1d(*arys: ArrayLike):
    res = torch.atleast_1d(*arys)
    if isinstance(res, tuple):
        return list(res)
    else:
        return res


def atleast_2d(*arys: ArrayLike):
    res = torch.atleast_2d(*arys)
    if isinstance(res, tuple):
        return list(res)
    else:
        return res


def atleast_3d(*arys: ArrayLike):
    res = torch.atleast_3d(*arys)
    if isinstance(res, tuple):
        return list(res)
    else:
        return res


def _concat_check(tup, dtype, out):
    if tup == ():
        raise ValueError("need at least one array to concatenate")

    """Check inputs in concatenate et al."""
    if out is not None and dtype is not None:
        # mimic numpy
        raise TypeError(
            "concatenate() only takes `out` or `dtype` as an "
            "argument, but both were provided."
        )


def _concat_cast_helper(tensors, out=None, dtype=None, casting="same_kind"):
    """Figure out dtypes, cast if necessary."""

    if out is not None or dtype is not None:
        # figure out the type of the inputs and outputs
        out_dtype = out.dtype.torch_dtype if dtype is None else dtype
    else:
        out_dtype = _dtypes_impl.result_type_impl(*tensors)

    # cast input arrays if necessary; do not broadcast them agains `out`
    tensors = _util.typecast_tensors(tensors, out_dtype, casting)

    return tensors


def _concatenate(
    tensors, axis=0, out=None, dtype=None, casting: Optional[CastingModes] = "same_kind"
):
    # pure torch implementation, used below and in cov/corrcoef below
    tensors, axis = _util.axis_none_flatten(*tensors, axis=axis)
    tensors = _concat_cast_helper(tensors, out, dtype, casting)
    return torch.cat(tensors, axis)


def concatenate(
    ar_tuple: Sequence[ArrayLike],
    axis=0,
    out: Optional[OutArray] = None,
    dtype: Optional[DTypeLike] = None,
    casting: Optional[CastingModes] = "same_kind",
):
    _concat_check(ar_tuple, dtype, out=out)
    result = _concatenate(ar_tuple, axis=axis, out=out, dtype=dtype, casting=casting)
    return result


def vstack(
    tup: Sequence[ArrayLike],
    *,
    dtype: Optional[DTypeLike] = None,
    casting: Optional[CastingModes] = "same_kind",
):
    _concat_check(tup, dtype, out=None)
    tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
    return torch.vstack(tensors)


row_stack = vstack


def hstack(
    tup: Sequence[ArrayLike],
    *,
    dtype: Optional[DTypeLike] = None,
    casting: Optional[CastingModes] = "same_kind",
):
    _concat_check(tup, dtype, out=None)
    tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
    return torch.hstack(tensors)


def dstack(
    tup: Sequence[ArrayLike],
    *,
    dtype: Optional[DTypeLike] = None,
    casting: Optional[CastingModes] = "same_kind",
):
    # XXX: in numpy 1.24 dstack does not have dtype and casting keywords
    # but {h,v}stack do.  Hence add them here for consistency.
    _concat_check(tup, dtype, out=None)
    tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
    return torch.dstack(tensors)


def column_stack(
    tup: Sequence[ArrayLike],
    *,
    dtype: Optional[DTypeLike] = None,
    casting: Optional[CastingModes] = "same_kind",
):
    # XXX: in numpy 1.24 column_stack does not have dtype and casting keywords
    # but row_stack does. (because row_stack is an alias for vstack, really).
    # Hence add these keywords here for consistency.
    _concat_check(tup, dtype, out=None)
    tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
    return torch.column_stack(tensors)


def stack(
    arrays: Sequence[ArrayLike],
    axis=0,
    out: Optional[OutArray] = None,
    *,
    dtype: Optional[DTypeLike] = None,
    casting: Optional[CastingModes] = "same_kind",
):
    _concat_check(arrays, dtype, out=out)

    tensors = _concat_cast_helper(arrays, dtype=dtype, casting=casting)
    result_ndim = tensors[0].ndim + 1
    axis = _util.normalize_axis_index(axis, result_ndim)
    return torch.stack(tensors, axis=axis)


def append(arr: ArrayLike, values: ArrayLike, axis=None):
    if axis is None:
        if arr.ndim != 1:
            arr = arr.flatten()
        values = values.flatten()
        axis = arr.ndim - 1
    return _concatenate((arr, values), axis=axis)


# ### split ###


def _split_helper(tensor, indices_or_sections, axis, strict=False):
    if isinstance(indices_or_sections, int):
        return _split_helper_int(tensor, indices_or_sections, axis, strict)
    elif isinstance(indices_or_sections, (list, tuple)):
        # NB: drop split=..., it only applies to split_helper_int
        return _split_helper_list(tensor, list(indices_or_sections), axis)
    else:
        raise TypeError("split_helper: ", type(indices_or_sections))


def _split_helper_int(tensor, indices_or_sections, axis, strict=False):
    if not isinstance(indices_or_sections, int):
        raise NotImplementedError("split: indices_or_sections")

    axis = _util.normalize_axis_index(axis, tensor.ndim)

    # numpy: l%n chunks of size (l//n + 1), the rest are sized l//n
    l, n = tensor.shape[axis], indices_or_sections

    if n <= 0:
        raise ValueError

    if l % n == 0:
        num, sz = n, l // n
        lst = [sz] * num
    else:
        if strict:
            raise ValueError("array split does not result in an equal division")

        num, sz = l % n, l // n + 1
        lst = [sz] * num

    lst += [sz - 1] * (n - num)

    return torch.split(tensor, lst, axis)


def _split_helper_list(tensor, indices_or_sections, axis):
    if not isinstance(indices_or_sections, list):
        raise NotImplementedError("split: indices_or_sections: list")
    # numpy expects indices, while torch expects lengths of sections
    # also, numpy appends zero-size arrays for indices above the shape[axis]
    lst = [x for x in indices_or_sections if x <= tensor.shape[axis]]
    num_extra = len(indices_or_sections) - len(lst)

    lst.append(tensor.shape[axis])
    lst = [
        lst[0],
    ] + [a - b for a, b in zip(lst[1:], lst[:-1])]
    lst += [0] * num_extra

    return torch.split(tensor, lst, axis)


def array_split(ary: ArrayLike, indices_or_sections, axis=0):
    return _split_helper(ary, indices_or_sections, axis)


def split(ary: ArrayLike, indices_or_sections, axis=0):
    return _split_helper(ary, indices_or_sections, axis, strict=True)


def hsplit(ary: ArrayLike, indices_or_sections):
    if ary.ndim == 0:
        raise ValueError("hsplit only works on arrays of 1 or more dimensions")
    axis = 1 if ary.ndim > 1 else 0
    return _split_helper(ary, indices_or_sections, axis, strict=True)


def vsplit(ary: ArrayLike, indices_or_sections):
    if ary.ndim < 2:
        raise ValueError("vsplit only works on arrays of 2 or more dimensions")
    return _split_helper(ary, indices_or_sections, 0, strict=True)


def dsplit(ary: ArrayLike, indices_or_sections):
    if ary.ndim < 3:
        raise ValueError("dsplit only works on arrays of 3 or more dimensions")
    return _split_helper(ary, indices_or_sections, 2, strict=True)


def kron(a: ArrayLike, b: ArrayLike):
    return torch.kron(a, b)


def vander(x: ArrayLike, N=None, increasing=False):
    return torch.vander(x, N, increasing)


# ### linspace, geomspace, logspace and arange ###


def linspace(
    start: ArrayLike,
    stop: ArrayLike,
    num=50,
    endpoint=True,
    retstep=False,
    dtype: Optional[DTypeLike] = None,
    axis=0,
):
    if axis != 0 or retstep or not endpoint:
        raise NotImplementedError
    if dtype is None:
        dtype = _dtypes_impl.default_dtypes().float_dtype
    # XXX: raises TypeError if start or stop are not scalars
    return torch.linspace(start, stop, num, dtype=dtype)


def geomspace(
    start: ArrayLike,
    stop: ArrayLike,
    num=50,
    endpoint=True,
    dtype: Optional[DTypeLike] = None,
    axis=0,
):
    if axis != 0 or not endpoint:
        raise NotImplementedError
    base = torch.pow(stop / start, 1.0 / (num - 1))
    logbase = torch.log(base)
    return torch.logspace(
        torch.log(start) / logbase,
        torch.log(stop) / logbase,
        num,
        base=base,
    )


def logspace(
    start,
    stop,
    num=50,
    endpoint=True,
    base=10.0,
    dtype: Optional[DTypeLike] = None,
    axis=0,
):
    if axis != 0 or not endpoint:
        raise NotImplementedError
    return torch.logspace(start, stop, num, base=base, dtype=dtype)


def arange(
    start: Optional[ArrayLikeOrScalar] = None,
    stop: Optional[ArrayLikeOrScalar] = None,
    step: Optional[ArrayLikeOrScalar] = 1,
    dtype: Optional[DTypeLike] = None,
    *,
    like: NotImplementedType = None,
):
    if step == 0:
        raise ZeroDivisionError
    if stop is None and start is None:
        raise TypeError
    if stop is None:
        # XXX: this breaks if start is passed as a kwarg:
        # arange(start=4) should raise (no stop) but doesn't
        start, stop = 0, start
    if start is None:
        start = 0

    # the dtype of the result
    if dtype is None:
        dtype = (
            _dtypes_impl.default_dtypes().float_dtype
            if any(_dtypes_impl.is_float_or_fp_tensor(x) for x in (start, stop, step))
            else _dtypes_impl.default_dtypes().int_dtype
        )
    work_dtype = torch.float64 if dtype.is_complex else dtype

    # RuntimeError: "lt_cpu" not implemented for 'ComplexFloat'. Fall back to eager.
    if any(_dtypes_impl.is_complex_or_complex_tensor(x) for x in (start, stop, step)):
        raise NotImplementedError

    if (step > 0 and start > stop) or (step < 0 and start < stop):
        # empty range
        return torch.empty(0, dtype=dtype)

    result = torch.arange(start, stop, step, dtype=work_dtype)
    result = _util.cast_if_needed(result, dtype)
    return result


# ### zeros/ones/empty/full ###


def empty(
    shape,
    dtype: Optional[DTypeLike] = None,
    order: NotImplementedType = "C",
    *,
    like: NotImplementedType = None,
):
    if dtype is None:
        dtype = _dtypes_impl.default_dtypes().float_dtype
    return torch.empty(shape, dtype=dtype)


# NB: *_like functions deliberately deviate from numpy: it has subok=True
# as the default; we set subok=False and raise on anything else.


def empty_like(
    prototype: ArrayLike,
    dtype: Optional[DTypeLike] = None,
    order: NotImplementedType = "K",
    subok: NotImplementedType = False,
    shape=None,
):
    result = torch.empty_like(prototype, dtype=dtype)
    if shape is not None:
        result = result.reshape(shape)
    return result


def full(
    shape,
    fill_value: ArrayLike,
    dtype: Optional[DTypeLike] = None,
    order: NotImplementedType = "C",
    *,
    like: NotImplementedType = None,
):
    if isinstance(shape, int):
        shape = (shape,)
    if dtype is None:
        dtype = fill_value.dtype
    if not isinstance(shape, (tuple, list)):
        shape = (shape,)
    return torch.full(shape, fill_value, dtype=dtype)


def full_like(
    a: ArrayLike,
    fill_value,
    dtype: Optional[DTypeLike] = None,
    order: NotImplementedType = "K",
    subok: NotImplementedType = False,
    shape=None,
):
    # XXX: fill_value broadcasts
    result = torch.full_like(a, fill_value, dtype=dtype)
    if shape is not None:
        result = result.reshape(shape)
    return result


def ones(
    shape,
    dtype: Optional[DTypeLike] = None,
    order: NotImplementedType = "C",
    *,
    like: NotImplementedType = None,
):
    if dtype is None:
        dtype = _dtypes_impl.default_dtypes().float_dtype
    return torch.ones(shape, dtype=dtype)


def ones_like(
    a: ArrayLike,
    dtype: Optional[DTypeLike] = None,
    order: NotImplementedType = "K",
    subok: NotImplementedType = False,
    shape=None,
):
    result = torch.ones_like(a, dtype=dtype)
    if shape is not None:
        result = result.reshape(shape)
    return result


def zeros(
    shape,
    dtype: Optional[DTypeLike] = None,
    order: NotImplementedType = "C",
    *,
    like: NotImplementedType = None,
):
    if dtype is None:
        dtype = _dtypes_impl.default_dtypes().float_dtype
    return torch.zeros(shape, dtype=dtype)


def zeros_like(
    a: ArrayLike,
    dtype: Optional[DTypeLike] = None,
    order: NotImplementedType = "K",
    subok: NotImplementedType = False,
    shape=None,
):
    result = torch.zeros_like(a, dtype=dtype)
    if shape is not None:
        result = result.reshape(shape)
    return result


# ### cov & corrcoef ###


def _xy_helper_corrcoef(x_tensor, y_tensor=None, rowvar=True):
    """Prepare inputs for cov and corrcoef."""

    # https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/function_base.py#L2636
    if y_tensor is not None:
        # make sure x and y are at least 2D
        ndim_extra = 2 - x_tensor.ndim
        if ndim_extra > 0:
            x_tensor = x_tensor.view((1,) * ndim_extra + x_tensor.shape)
        if not rowvar and x_tensor.shape[0] != 1:
            x_tensor = x_tensor.mT
        x_tensor = x_tensor.clone()

        ndim_extra = 2 - y_tensor.ndim
        if ndim_extra > 0:
            y_tensor = y_tensor.view((1,) * ndim_extra + y_tensor.shape)
        if not rowvar and y_tensor.shape[0] != 1:
            y_tensor = y_tensor.mT
        y_tensor = y_tensor.clone()

        x_tensor = _concatenate((x_tensor, y_tensor), axis=0)

    return x_tensor


def corrcoef(
    x: ArrayLike,
    y: Optional[ArrayLike] = None,
    rowvar=True,
    bias=None,
    ddof=None,
    *,
    dtype: Optional[DTypeLike] = None,
):
    if bias is not None or ddof is not None:
        # deprecated in NumPy
        raise NotImplementedError
    xy_tensor = _xy_helper_corrcoef(x, y, rowvar)

    is_half = (xy_tensor.dtype == torch.float16) and xy_tensor.is_cpu
    if is_half:
        # work around torch's "addmm_impl_cpu_" not implemented for 'Half'"
        dtype = torch.float32

    xy_tensor = _util.cast_if_needed(xy_tensor, dtype)
    result = torch.corrcoef(xy_tensor)

    if is_half:
        result = result.to(torch.float16)

    return result


def cov(
    m: ArrayLike,
    y: Optional[ArrayLike] = None,
    rowvar=True,
    bias=False,
    ddof=None,
    fweights: Optional[ArrayLike] = None,
    aweights: Optional[ArrayLike] = None,
    *,
    dtype: Optional[DTypeLike] = None,
):
    m = _xy_helper_corrcoef(m, y, rowvar)

    if ddof is None:
        ddof = 1 if bias == 0 else 0

    is_half = (m.dtype == torch.float16) and m.is_cpu
    if is_half:
        # work around torch's "addmm_impl_cpu_" not implemented for 'Half'"
        dtype = torch.float32

    m = _util.cast_if_needed(m, dtype)
    result = torch.cov(m, correction=ddof, aweights=aweights, fweights=fweights)

    if is_half:
        result = result.to(torch.float16)

    return result


def _conv_corr_impl(a, v, mode):
    dt = _dtypes_impl.result_type_impl(a, v)
    a = _util.cast_if_needed(a, dt)
    v = _util.cast_if_needed(v, dt)

    padding = v.shape[0] - 1 if mode == "full" else mode

    if padding == "same" and v.shape[0] % 2 == 0:
        # UserWarning: Using padding='same' with even kernel lengths and odd
        # dilation may require a zero-padded copy of the input be created
        # (Triggered internally at pytorch/aten/src/ATen/native/Convolution.cpp:1010.)
        raise NotImplementedError("mode='same' and even-length weights")

    # NumPy only accepts 1D arrays; PyTorch requires 2D inputs and 3D weights
    aa = a[None, :]
    vv = v[None, None, :]

    result = torch.nn.functional.conv1d(aa, vv, padding=padding)

    # torch returns a 2D result, numpy returns a 1D array
    return result[0, :]


def convolve(a: ArrayLike, v: ArrayLike, mode="full"):
    # NumPy: if v is longer than a, the arrays are swapped before computation
    if a.shape[0] < v.shape[0]:
        a, v = v, a

    # flip the weights since numpy does and torch does not
    v = torch.flip(v, (0,))

    return _conv_corr_impl(a, v, mode)


def correlate(a: ArrayLike, v: ArrayLike, mode="valid"):
    v = torch.conj_physical(v)
    return _conv_corr_impl(a, v, mode)


# ### logic & element selection ###


def bincount(x: ArrayLike, /, weights: Optional[ArrayLike] = None, minlength=0):
    if x.numel() == 0:
        # edge case allowed by numpy
        x = x.new_empty(0, dtype=int)

    int_dtype = _dtypes_impl.default_dtypes().int_dtype
    (x,) = _util.typecast_tensors((x,), int_dtype, casting="safe")

    return torch.bincount(x, weights, minlength)


def where(
    condition: ArrayLike,
    x: Optional[ArrayLikeOrScalar] = None,
    y: Optional[ArrayLikeOrScalar] = None,
    /,
):
    if (x is None) != (y is None):
        raise ValueError("either both or neither of x and y should be given")

    if condition.dtype != torch.bool:
        condition = condition.to(torch.bool)

    if x is None and y is None:
        result = torch.where(condition)
    else:
        result = torch.where(condition, x, y)
    return result


# ###### module-level queries of object properties


def ndim(a: ArrayLike):
    return a.ndim


def shape(a: ArrayLike):
    return tuple(a.shape)


def size(a: ArrayLike, axis=None):
    if axis is None:
        return a.numel()
    else:
        return a.shape[axis]


# ###### shape manipulations and indexing


def expand_dims(a: ArrayLike, axis):
    shape = _util.expand_shape(a.shape, axis)
    return a.view(shape)  # never copies


def flip(m: ArrayLike, axis=None):
    # XXX: semantic difference: np.flip returns a view, torch.flip copies
    if axis is None:
        axis = tuple(range(m.ndim))
    else:
        axis = _util.normalize_axis_tuple(axis, m.ndim)
    return torch.flip(m, axis)


def flipud(m: ArrayLike):
    return torch.flipud(m)


def fliplr(m: ArrayLike):
    return torch.fliplr(m)


def rot90(m: ArrayLike, k=1, axes=(0, 1)):
    axes = _util.normalize_axis_tuple(axes, m.ndim)
    return torch.rot90(m, k, axes)


# ### broadcasting and indices ###


def broadcast_to(array: ArrayLike, shape, subok: NotImplementedType = False):
    return torch.broadcast_to(array, size=shape)


# This is a function from tuples to tuples, so we just reuse it
from torch import broadcast_shapes


def broadcast_arrays(*args: ArrayLike, subok: NotImplementedType = False):
    return torch.broadcast_tensors(*args)


def meshgrid(*xi: ArrayLike, copy=True, sparse=False, indexing="xy"):
    ndim = len(xi)

    if indexing not in ["xy", "ij"]:
        raise ValueError("Valid values for `indexing` are 'xy' and 'ij'.")

    s0 = (1,) * ndim
    output = [x.reshape(s0[:i] + (-1,) + s0[i + 1 :]) for i, x in enumerate(xi)]

    if indexing == "xy" and ndim > 1:
        # switch first and second axis
        output[0] = output[0].reshape((1, -1) + s0[2:])
        output[1] = output[1].reshape((-1, 1) + s0[2:])

    if not sparse:
        # Return the full N-D matrix (not only the 1-D vector)
        output = torch.broadcast_tensors(*output)

    if copy:
        output = [x.clone() for x in output]

    return list(output)  # match numpy, return a list


def indices(dimensions, dtype: Optional[DTypeLike] = int, sparse=False):
    # https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numeric.py#L1691-L1791
    dimensions = tuple(dimensions)
    N = len(dimensions)
    shape = (1,) * N
    if sparse:
        res = ()
    else:
        res = torch.empty((N,) + dimensions, dtype=dtype)
    for i, dim in enumerate(dimensions):
        idx = torch.arange(dim, dtype=dtype).reshape(
            shape[:i] + (dim,) + shape[i + 1 :]
        )
        if sparse:
            res = res + (idx,)
        else:
            res[i] = idx
    return res


# ### tri*-something ###


def tril(m: ArrayLike, k=0):
    return torch.tril(m, k)


def triu(m: ArrayLike, k=0):
    return torch.triu(m, k)


def tril_indices(n, k=0, m=None):
    if m is None:
        m = n
    return torch.tril_indices(n, m, offset=k)


def triu_indices(n, k=0, m=None):
    if m is None:
        m = n
    return torch.triu_indices(n, m, offset=k)


def tril_indices_from(arr: ArrayLike, k=0):
    if arr.ndim != 2:
        raise ValueError("input array must be 2-d")
    # Return a tensor rather than a tuple to avoid a graphbreak
    return torch.tril_indices(arr.shape[0], arr.shape[1], offset=k)


def triu_indices_from(arr: ArrayLike, k=0):
    if arr.ndim != 2:
        raise ValueError("input array must be 2-d")
    # Return a tensor rather than a tuple to avoid a graphbreak
    return torch.triu_indices(arr.shape[0], arr.shape[1], offset=k)


def tri(
    N,
    M=None,
    k=0,
    dtype: Optional[DTypeLike] = None,
    *,
    like: NotImplementedType = None,
):
    if M is None:
        M = N
    tensor = torch.ones((N, M), dtype=dtype)
    return torch.tril(tensor, diagonal=k)


# ### equality, equivalence, allclose ###


def isclose(a: ArrayLike, b: ArrayLike, rtol=1.0e-5, atol=1.0e-8, equal_nan=False):
    dtype = _dtypes_impl.result_type_impl(a, b)
    a = _util.cast_if_needed(a, dtype)
    b = _util.cast_if_needed(b, dtype)
    return torch.isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)


def allclose(a: ArrayLike, b: ArrayLike, rtol=1e-05, atol=1e-08, equal_nan=False):
    dtype = _dtypes_impl.result_type_impl(a, b)
    a = _util.cast_if_needed(a, dtype)
    b = _util.cast_if_needed(b, dtype)
    return torch.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)


def _tensor_equal(a1, a2, equal_nan=False):
    # Implementation of array_equal/array_equiv.
    if a1.shape != a2.shape:
        return False
    cond = a1 == a2
    if equal_nan:
        cond = cond | (torch.isnan(a1) & torch.isnan(a2))
    return cond.all().item()


def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan=False):
    return _tensor_equal(a1, a2, equal_nan=equal_nan)


def array_equiv(a1: ArrayLike, a2: ArrayLike):
    # *almost* the same as array_equal: _equiv tries to broadcast, _equal does not
    try:
        a1_t, a2_t = torch.broadcast_tensors(a1, a2)
    except RuntimeError:
        # failed to broadcast => not equivalent
        return False
    return _tensor_equal(a1_t, a2_t)


def nan_to_num(
    x: ArrayLike, copy: NotImplementedType = True, nan=0.0, posinf=None, neginf=None
):
    # work around RuntimeError: "nan_to_num" not implemented for 'ComplexDouble'
    if x.is_complex():
        re = torch.nan_to_num(x.real, nan=nan, posinf=posinf, neginf=neginf)
        im = torch.nan_to_num(x.imag, nan=nan, posinf=posinf, neginf=neginf)
        return re + 1j * im
    else:
        return torch.nan_to_num(x, nan=nan, posinf=posinf, neginf=neginf)


# ### put/take_along_axis ###


def take(
    a: ArrayLike,
    indices: ArrayLike,
    axis=None,
    out: Optional[OutArray] = None,
    mode: NotImplementedType = "raise",
):
    (a,), axis = _util.axis_none_flatten(a, axis=axis)
    axis = _util.normalize_axis_index(axis, a.ndim)
    idx = (slice(None),) * axis + (indices, ...)
    result = a[idx]
    return result


def take_along_axis(arr: ArrayLike, indices: ArrayLike, axis):
    (arr,), axis = _util.axis_none_flatten(arr, axis=axis)
    axis = _util.normalize_axis_index(axis, arr.ndim)
    return torch.take_along_dim(arr, indices, axis)


def put(
    a: NDArray,
    indices: ArrayLike,
    values: ArrayLike,
    mode: NotImplementedType = "raise",
):
    v = values.type(a.dtype)
    # If indices is larger than v, expand v to at least the size of indices. Any
    # unnecessary trailing elements are then trimmed.
    if indices.numel() > v.numel():
        ratio = (indices.numel() + v.numel() - 1) // v.numel()
        v = v.unsqueeze(0).expand((ratio,) + v.shape)
    # Trim unnecessary elements, regardless if v was expanded or not. Note
    # np.put() trims v to match indices by default too.
    if indices.numel() < v.numel():
        v = v.flatten()
        v = v[: indices.numel()]
    a.put_(indices, v)
    return None


def put_along_axis(arr: ArrayLike, indices: ArrayLike, values: ArrayLike, axis):
    (arr,), axis = _util.axis_none_flatten(arr, axis=axis)
    axis = _util.normalize_axis_index(axis, arr.ndim)

    indices, values = torch.broadcast_tensors(indices, values)
    values = _util.cast_if_needed(values, arr.dtype)
    result = torch.scatter(arr, axis, indices, values)
    arr.copy_(result.reshape(arr.shape))
    return None


def choose(
    a: ArrayLike,
    choices: Sequence[ArrayLike],
    out: Optional[OutArray] = None,
    mode: NotImplementedType = "raise",
):
    # First, broadcast elements of `choices`
    choices = torch.stack(torch.broadcast_tensors(*choices))

    # Use an analog of `gather(choices, 0, a)` which broadcasts `choices` vs `a`:
    # (taken from https://github.com/pytorch/pytorch/issues/9407#issuecomment-1427907939)
    idx_list = [
        torch.arange(dim).view((1,) * i + (dim,) + (1,) * (choices.ndim - i - 1))
        for i, dim in enumerate(choices.shape)
    ]

    idx_list[0] = a
    return choices[idx_list].squeeze(0)


# ### unique et al. ###


def unique(
    ar: ArrayLike,
    return_index: NotImplementedType = False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    *,
    equal_nan: NotImplementedType = True,
):
    (ar,), axis = _util.axis_none_flatten(ar, axis=axis)
    axis = _util.normalize_axis_index(axis, ar.ndim)

    result = torch.unique(
        ar, return_inverse=return_inverse, return_counts=return_counts, dim=axis
    )

    return result


def nonzero(a: ArrayLike):
    return torch.nonzero(a, as_tuple=True)


def argwhere(a: ArrayLike):
    return torch.argwhere(a)


def flatnonzero(a: ArrayLike):
    return torch.flatten(a).nonzero(as_tuple=True)[0]


def clip(
    a: ArrayLike,
    min: Optional[ArrayLike] = None,
    max: Optional[ArrayLike] = None,
    out: Optional[OutArray] = None,
):
    return torch.clamp(a, min, max)


def repeat(a: ArrayLike, repeats: ArrayLikeOrScalar, axis=None):
    return torch.repeat_interleave(a, repeats, axis)


def tile(A: ArrayLike, reps):
    if isinstance(reps, int):
        reps = (reps,)
    return torch.tile(A, reps)


def resize(a: ArrayLike, new_shape=None):
    # implementation vendored from
    # https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/fromnumeric.py#L1420-L1497
    if new_shape is None:
        return a

    if isinstance(new_shape, int):
        new_shape = (new_shape,)

    a = a.flatten()

    new_size = 1
    for dim_length in new_shape:
        new_size *= dim_length
        if dim_length < 0:
            raise ValueError("all elements of `new_shape` must be non-negative")

    if a.numel() == 0 or new_size == 0:
        # First case must zero fill. The second would have repeats == 0.
        return torch.zeros(new_shape, dtype=a.dtype)

    repeats = -(-new_size // a.numel())  # ceil division
    a = concatenate((a,) * repeats)[:new_size]

    return reshape(a, new_shape)


# ### diag et al. ###


def diagonal(a: ArrayLike, offset=0, axis1=0, axis2=1):
    axis1 = _util.normalize_axis_index(axis1, a.ndim)
    axis2 = _util.normalize_axis_index(axis2, a.ndim)
    return torch.diagonal(a, offset, axis1, axis2)


def trace(
    a: ArrayLike,
    offset=0,
    axis1=0,
    axis2=1,
    dtype: Optional[DTypeLike] = None,
    out: Optional[OutArray] = None,
):
    result = torch.diagonal(a, offset, dim1=axis1, dim2=axis2).sum(-1, dtype=dtype)
    return result


def eye(
    N,
    M=None,
    k=0,
    dtype: Optional[DTypeLike] = None,
    order: NotImplementedType = "C",
    *,
    like: NotImplementedType = None,
):
    if dtype is None:
        dtype = _dtypes_impl.default_dtypes().float_dtype
    if M is None:
        M = N
    z = torch.zeros(N, M, dtype=dtype)
    z.diagonal(k).fill_(1)
    return z


def identity(n, dtype: Optional[DTypeLike] = None, *, like: NotImplementedType = None):
    return torch.eye(n, dtype=dtype)


def diag(v: ArrayLike, k=0):
    return torch.diag(v, k)


def diagflat(v: ArrayLike, k=0):
    return torch.diagflat(v, k)


def diag_indices(n, ndim=2):
    idx = torch.arange(n)
    return (idx,) * ndim


def diag_indices_from(arr: ArrayLike):
    if not arr.ndim >= 2:
        raise ValueError("input array must be at least 2-d")
    # For more than d=2, the strided formula is only valid for arrays with
    # all dimensions equal, so we check first.
    s = arr.shape
    if s[1:] != s[:-1]:
        raise ValueError("All dimensions of input must be of equal length")
    return diag_indices(s[0], arr.ndim)


def fill_diagonal(a: ArrayLike, val: ArrayLike, wrap=False):
    if a.ndim < 2:
        raise ValueError("array must be at least 2-d")
    if val.numel() == 0 and not wrap:
        a.fill_diagonal_(val)
        return a

    if val.ndim == 0:
        val = val.unsqueeze(0)

    # torch.Tensor.fill_diagonal_ only accepts scalars
    # If the size of val is too large, then val is trimmed
    if a.ndim == 2:
        tall = a.shape[0] > a.shape[1]
        # wrap does nothing for wide matrices...
        if not wrap or not tall:
            # Never wraps
            diag = a.diagonal()
            diag.copy_(val[: diag.numel()])
        else:
            # wraps and tall... leaving one empty line between diagonals?!
            max_, min_ = a.shape
            idx = torch.arange(max_ - max_ // (min_ + 1))
            mod = idx % min_
            div = idx // min_
            a[(div * (min_ + 1) + mod, mod)] = val[: idx.numel()]
    else:
        idx = diag_indices_from(a)
        # a.shape = (n, n, ..., n)
        a[idx] = val[: a.shape[0]]

    return a


def vdot(a: ArrayLike, b: ArrayLike, /):
    # 1. torch only accepts 1D arrays, numpy flattens
    # 2. torch requires matching dtype, while numpy casts (?)
    t_a, t_b = torch.atleast_1d(a, b)
    if t_a.ndim > 1:
        t_a = t_a.flatten()
    if t_b.ndim > 1:
        t_b = t_b.flatten()

    dtype = _dtypes_impl.result_type_impl(t_a, t_b)
    is_half = dtype == torch.float16 and (t_a.is_cpu or t_b.is_cpu)
    is_bool = dtype == torch.bool

    # work around torch's "dot" not implemented for 'Half', 'Bool'
    if is_half:
        dtype = torch.float32
    elif is_bool:
        dtype = torch.uint8

    t_a = _util.cast_if_needed(t_a, dtype)
    t_b = _util.cast_if_needed(t_b, dtype)

    result = torch.vdot(t_a, t_b)

    if is_half:
        result = result.to(torch.float16)
    elif is_bool:
        result = result.to(torch.bool)

    return result


def tensordot(a: ArrayLike, b: ArrayLike, axes=2):
    if isinstance(axes, (list, tuple)):
        axes = [[ax] if isinstance(ax, int) else ax for ax in axes]

    target_dtype = _dtypes_impl.result_type_impl(a, b)
    a = _util.cast_if_needed(a, target_dtype)
    b = _util.cast_if_needed(b, target_dtype)

    return torch.tensordot(a, b, dims=axes)


def dot(a: ArrayLike, b: ArrayLike, out: Optional[OutArray] = None):
    dtype = _dtypes_impl.result_type_impl(a, b)
    is_bool = dtype == torch.bool
    if is_bool:
        dtype = torch.uint8

    a = _util.cast_if_needed(a, dtype)
    b = _util.cast_if_needed(b, dtype)

    if a.ndim == 0 or b.ndim == 0:
        result = a * b
    else:
        result = torch.matmul(a, b)

    if is_bool:
        result = result.to(torch.bool)

    return result


def inner(a: ArrayLike, b: ArrayLike, /):
    dtype = _dtypes_impl.result_type_impl(a, b)
    is_half = dtype == torch.float16 and (a.is_cpu or b.is_cpu)
    is_bool = dtype == torch.bool

    if is_half:
        # work around torch's "addmm_impl_cpu_" not implemented for 'Half'"
        dtype = torch.float32
    elif is_bool:
        dtype = torch.uint8

    a = _util.cast_if_needed(a, dtype)
    b = _util.cast_if_needed(b, dtype)

    result = torch.inner(a, b)

    if is_half:
        result = result.to(torch.float16)
    elif is_bool:
        result = result.to(torch.bool)
    return result


def outer(a: ArrayLike, b: ArrayLike, out: Optional[OutArray] = None):
    return torch.outer(a, b)


def cross(a: ArrayLike, b: ArrayLike, axisa=-1, axisb=-1, axisc=-1, axis=None):
    # implementation vendored from
    # https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numeric.py#L1486-L1685
    if axis is not None:
        axisa, axisb, axisc = (axis,) * 3

    # Check axisa and axisb are within bounds
    axisa = _util.normalize_axis_index(axisa, a.ndim)
    axisb = _util.normalize_axis_index(axisb, b.ndim)

    # Move working axis to the end of the shape
    a = torch.moveaxis(a, axisa, -1)
    b = torch.moveaxis(b, axisb, -1)
    msg = "incompatible dimensions for cross product\n(dimension must be 2 or 3)"
    if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3):
        raise ValueError(msg)

    # Create the output array
    shape = broadcast_shapes(a[..., 0].shape, b[..., 0].shape)
    if a.shape[-1] == 3 or b.shape[-1] == 3:
        shape += (3,)
        # Check axisc is within bounds
        axisc = _util.normalize_axis_index(axisc, len(shape))
    dtype = _dtypes_impl.result_type_impl(a, b)
    cp = torch.empty(shape, dtype=dtype)

    # recast arrays as dtype
    a = _util.cast_if_needed(a, dtype)
    b = _util.cast_if_needed(b, dtype)

    # create local aliases for readability
    a0 = a[..., 0]
    a1 = a[..., 1]
    if a.shape[-1] == 3:
        a2 = a[..., 2]
    b0 = b[..., 0]
    b1 = b[..., 1]
    if b.shape[-1] == 3:
        b2 = b[..., 2]
    if cp.ndim != 0 and cp.shape[-1] == 3:
        cp0 = cp[..., 0]
        cp1 = cp[..., 1]
        cp2 = cp[..., 2]

    if a.shape[-1] == 2:
        if b.shape[-1] == 2:
            # a0 * b1 - a1 * b0
            cp[...] = a0 * b1 - a1 * b0
            return cp
        else:
            assert b.shape[-1] == 3
            # cp0 = a1 * b2 - 0  (a2 = 0)
            # cp1 = 0 - a0 * b2  (a2 = 0)
            # cp2 = a0 * b1 - a1 * b0
            cp0[...] = a1 * b2
            cp1[...] = -a0 * b2
            cp2[...] = a0 * b1 - a1 * b0
    else:
        assert a.shape[-1] == 3
        if b.shape[-1] == 3:
            cp0[...] = a1 * b2 - a2 * b1
            cp1[...] = a2 * b0 - a0 * b2
            cp2[...] = a0 * b1 - a1 * b0
        else:
            assert b.shape[-1] == 2
            cp0[...] = -a2 * b1
            cp1[...] = a2 * b0
            cp2[...] = a0 * b1 - a1 * b0

    return torch.moveaxis(cp, -1, axisc)


def einsum(*operands, out=None, dtype=None, order="K", casting="safe", optimize=False):
    # Have to manually normalize *operands and **kwargs, following the NumPy signature
    # We have a local import to avoid poluting the global space, as it will be then
    # exported in funcs.py
    from ._ndarray import ndarray
    from ._normalizations import (
        maybe_copy_to,
        normalize_array_like,
        normalize_casting,
        normalize_dtype,
        wrap_tensors,
    )

    dtype = normalize_dtype(dtype)
    casting = normalize_casting(casting)
    if out is not None and not isinstance(out, ndarray):
        raise TypeError("'out' must be an array")
    if order != "K":
        raise NotImplementedError("'order' parameter is not supported.")

    # parse arrays and normalize them
    sublist_format = not isinstance(operands[0], str)
    if sublist_format:
        # op, str, op, str ... [sublistout] format: normalize every other argument

        # - if sublistout is not given, the length of operands is even, and we pick
        #   odd-numbered elements, which are arrays.
        # - if sublistout is given, the length of operands is odd, we peel off
        #   the last one, and pick odd-numbered elements, which are arrays.
        #   Without [:-1], we would have picked sublistout, too.
        array_operands = operands[:-1][::2]
    else:
        # ("ij->", arrays) format
        subscripts, array_operands = operands[0], operands[1:]

    tensors = [normalize_array_like(op) for op in array_operands]
    target_dtype = _dtypes_impl.result_type_impl(*tensors) if dtype is None else dtype

    # work around 'bmm' not implemented for 'Half' etc
    is_half = target_dtype == torch.float16 and all(t.is_cpu for t in tensors)
    if is_half:
        target_dtype = torch.float32

    is_short_int = target_dtype in [torch.uint8, torch.int8, torch.int16, torch.int32]
    if is_short_int:
        target_dtype = torch.int64

    tensors = _util.typecast_tensors(tensors, target_dtype, casting)

    from torch.backends import opt_einsum

    try:
        # set the global state to handle the optimize=... argument, restore on exit
        if opt_einsum.is_available():
            old_strategy = torch.backends.opt_einsum.strategy
            old_enabled = torch.backends.opt_einsum.enabled

            # torch.einsum calls opt_einsum.contract_path, which runs into
            # https://github.com/dgasmith/opt_einsum/issues/219
            # for strategy={True, False}
            if optimize is True:
                optimize = "auto"
            elif optimize is False:
                torch.backends.opt_einsum.enabled = False

            torch.backends.opt_einsum.strategy = optimize

        if sublist_format:
            # recombine operands
            sublists = operands[1::2]
            has_sublistout = len(operands) % 2 == 1
            if has_sublistout:
                sublistout = operands[-1]
            operands = list(itertools.chain.from_iterable(zip(tensors, sublists)))
            if has_sublistout:
                operands.append(sublistout)

            result = torch.einsum(*operands)
        else:
            result = torch.einsum(subscripts, *tensors)

    finally:
        if opt_einsum.is_available():
            torch.backends.opt_einsum.strategy = old_strategy
            torch.backends.opt_einsum.enabled = old_enabled

    result = maybe_copy_to(out, result)
    return wrap_tensors(result)


# ### sort and partition ###


def _sort_helper(tensor, axis, kind, order):
    if tensor.dtype.is_complex:
        raise NotImplementedError(f"sorting {tensor.dtype} is not supported")
    (tensor,), axis = _util.axis_none_flatten(tensor, axis=axis)
    axis = _util.normalize_axis_index(axis, tensor.ndim)

    stable = kind == "stable"

    return tensor, axis, stable


def sort(a: ArrayLike, axis=-1, kind=None, order: NotImplementedType = None):
    # `order` keyword arg is only relevant for structured dtypes; so not supported here.
    a, axis, stable = _sort_helper(a, axis, kind, order)
    result = torch.sort(a, dim=axis, stable=stable)
    return result.values


def argsort(a: ArrayLike, axis=-1, kind=None, order: NotImplementedType = None):
    a, axis, stable = _sort_helper(a, axis, kind, order)
    return torch.argsort(a, dim=axis, stable=stable)


def searchsorted(
    a: ArrayLike, v: ArrayLike, side="left", sorter: Optional[ArrayLike] = None
):
    if a.dtype.is_complex:
        raise NotImplementedError(f"searchsorted with dtype={a.dtype}")

    return torch.searchsorted(a, v, side=side, sorter=sorter)


# ### swap/move/roll axis ###


def moveaxis(a: ArrayLike, source, destination):
    source = _util.normalize_axis_tuple(source, a.ndim, "source")
    destination = _util.normalize_axis_tuple(destination, a.ndim, "destination")
    return torch.moveaxis(a, source, destination)


def swapaxes(a: ArrayLike, axis1, axis2):
    axis1 = _util.normalize_axis_index(axis1, a.ndim)
    axis2 = _util.normalize_axis_index(axis2, a.ndim)
    return torch.swapaxes(a, axis1, axis2)


def rollaxis(a: ArrayLike, axis, start=0):
    # Straight vendor from:
    # https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numeric.py#L1259
    #
    # Also note this function in NumPy is mostly retained for backwards compat
    # (https://stackoverflow.com/questions/29891583/reason-why-numpy-rollaxis-is-so-confusing)
    # so let's not touch it unless hard pressed.
    n = a.ndim
    axis = _util.normalize_axis_index(axis, n)
    if start < 0:
        start += n
    msg = "'%s' arg requires %d <= %s < %d, but %d was passed in"
    if not (0 <= start < n + 1):
        raise _util.AxisError(msg % ("start", -n, "start", n + 1, start))
    if axis < start:
        # it's been removed
        start -= 1
    if axis == start:
        # numpy returns a view, here we try returning the tensor itself
        # return tensor[...]
        return a
    axes = list(range(0, n))
    axes.remove(axis)
    axes.insert(start, axis)
    return a.view(axes)


def roll(a: ArrayLike, shift, axis=None):
    if axis is not None:
        axis = _util.normalize_axis_tuple(axis, a.ndim, allow_duplicate=True)
        if not isinstance(shift, tuple):
            shift = (shift,) * len(axis)
    return torch.roll(a, shift, axis)


# ### shape manipulations ###


def squeeze(a: ArrayLike, axis=None):
    if axis == ():
        result = a
    elif axis is None:
        result = a.squeeze()
    else:
        if isinstance(axis, tuple):
            result = a
            for ax in axis:
                result = a.squeeze(ax)
        else:
            result = a.squeeze(axis)
    return result


def reshape(a: ArrayLike, newshape, order: NotImplementedType = "C"):
    # if sh = (1, 2, 3), numpy allows both .reshape(sh) and .reshape(*sh)
    newshape = newshape[0] if len(newshape) == 1 else newshape
    return a.reshape(newshape)


# NB: cannot use torch.reshape(a, newshape) above, because of
# (Pdb) torch.reshape(torch.as_tensor([1]), 1)
# *** TypeError: reshape(): argument 'shape' (position 2) must be tuple of SymInts, not int


def transpose(a: ArrayLike, axes=None):
    # numpy allows both .transpose(sh) and .transpose(*sh)
    # also older code uses axes being a list
    if axes in [(), None, (None,)]:
        axes = tuple(reversed(range(a.ndim)))
    elif len(axes) == 1:
        axes = axes[0]
    return a.permute(axes)


def ravel(a: ArrayLike, order: NotImplementedType = "C"):
    return torch.flatten(a)


def diff(
    a: ArrayLike,
    n=1,
    axis=-1,
    prepend: Optional[ArrayLike] = None,
    append: Optional[ArrayLike] = None,
):
    axis = _util.normalize_axis_index(axis, a.ndim)

    if n < 0:
        raise ValueError(f"order must be non-negative but got {n}")

    if n == 0:
        # match numpy and return the input immediately
        return a

    if prepend is not None:
        shape = list(a.shape)
        shape[axis] = prepend.shape[axis] if prepend.ndim > 0 else 1
        prepend = torch.broadcast_to(prepend, shape)

    if append is not None:
        shape = list(a.shape)
        shape[axis] = append.shape[axis] if append.ndim > 0 else 1
        append = torch.broadcast_to(append, shape)

    return torch.diff(a, n, axis=axis, prepend=prepend, append=append)


# ### math functions ###


def angle(z: ArrayLike, deg=False):
    result = torch.angle(z)
    if deg:
        result = result * (180 / torch.pi)
    return result


def sinc(x: ArrayLike):
    return torch.sinc(x)


# NB: have to normalize *varargs manually
def gradient(f: ArrayLike, *varargs, axis=None, edge_order=1):
    N = f.ndim  # number of dimensions

    varargs = _util.ndarrays_to_tensors(varargs)

    if axis is None:
        axes = tuple(range(N))
    else:
        axes = _util.normalize_axis_tuple(axis, N)

    len_axes = len(axes)
    n = len(varargs)
    if n == 0:
        # no spacing argument - use 1 in all axes
        dx = [1.0] * len_axes
    elif n == 1 and (_dtypes_impl.is_scalar(varargs[0]) or varargs[0].ndim == 0):
        # single scalar or 0D tensor for all axes (np.ndim(varargs[0]) == 0)
        dx = varargs * len_axes
    elif n == len_axes:
        # scalar or 1d array for each axis
        dx = list(varargs)
        for i, distances in enumerate(dx):
            distances = torch.as_tensor(distances)
            if distances.ndim == 0:
                continue
            elif distances.ndim != 1:
                raise ValueError("distances must be either scalars or 1d")
            if len(distances) != f.shape[axes[i]]:
                raise ValueError(
                    "when 1d, distances must match "
                    "the length of the corresponding dimension"
                )
            if not (distances.dtype.is_floating_point or distances.dtype.is_complex):
                distances = distances.double()

            diffx = torch.diff(distances)
            # if distances are constant reduce to the scalar case
            # since it brings a consistent speedup
            if (diffx == diffx[0]).all():
                diffx = diffx[0]
            dx[i] = diffx
    else:
        raise TypeError("invalid number of arguments")

    if edge_order > 2:
        raise ValueError("'edge_order' greater than 2 not supported")

    # use central differences on interior and one-sided differences on the
    # endpoints. This preserves second order-accuracy over the full domain.

    outvals = []

    # create slice objects --- initially all are [:, :, ..., :]
    slice1 = [slice(None)] * N
    slice2 = [slice(None)] * N
    slice3 = [slice(None)] * N
    slice4 = [slice(None)] * N

    otype = f.dtype
    if _dtypes_impl.python_type_for_torch(otype) in (int, bool):
        # Convert to floating point.
        # First check if f is a numpy integer type; if so, convert f to float64
        # to avoid modular arithmetic when computing the changes in f.
        f = f.double()
        otype = torch.float64

    for axis, ax_dx in zip(axes, dx):
        if f.shape[axis] < edge_order + 1:
            raise ValueError(
                "Shape of array too small to calculate a numerical gradient, "
                "at least (edge_order + 1) elements are required."
            )
        # result allocation
        out = torch.empty_like(f, dtype=otype)

        # spacing for the current axis (NB: np.ndim(ax_dx) == 0)
        uniform_spacing = _dtypes_impl.is_scalar(ax_dx) or ax_dx.ndim == 0

        # Numerical differentiation: 2nd order interior
        slice1[axis] = slice(1, -1)
        slice2[axis] = slice(None, -2)
        slice3[axis] = slice(1, -1)
        slice4[axis] = slice(2, None)

        if uniform_spacing:
            out[tuple(slice1)] = (f[tuple(slice4)] - f[tuple(slice2)]) / (2.0 * ax_dx)
        else:
            dx1 = ax_dx[0:-1]
            dx2 = ax_dx[1:]
            a = -(dx2) / (dx1 * (dx1 + dx2))
            b = (dx2 - dx1) / (dx1 * dx2)
            c = dx1 / (dx2 * (dx1 + dx2))
            # fix the shape for broadcasting
            shape = [1] * N
            shape[axis] = -1
            a = a.reshape(shape)
            b = b.reshape(shape)
            c = c.reshape(shape)
            # 1D equivalent -- out[1:-1] = a * f[:-2] + b * f[1:-1] + c * f[2:]
            out[tuple(slice1)] = (
                a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
            )

        # Numerical differentiation: 1st order edges
        if edge_order == 1:
            slice1[axis] = 0
            slice2[axis] = 1
            slice3[axis] = 0
            dx_0 = ax_dx if uniform_spacing else ax_dx[0]
            # 1D equivalent -- out[0] = (f[1] - f[0]) / (x[1] - x[0])
            out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0

            slice1[axis] = -1
            slice2[axis] = -1
            slice3[axis] = -2
            dx_n = ax_dx if uniform_spacing else ax_dx[-1]
            # 1D equivalent -- out[-1] = (f[-1] - f[-2]) / (x[-1] - x[-2])
            out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n

        # Numerical differentiation: 2nd order edges
        else:
            slice1[axis] = 0
            slice2[axis] = 0
            slice3[axis] = 1
            slice4[axis] = 2
            if uniform_spacing:
                a = -1.5 / ax_dx
                b = 2.0 / ax_dx
                c = -0.5 / ax_dx
            else:
                dx1 = ax_dx[0]
                dx2 = ax_dx[1]
                a = -(2.0 * dx1 + dx2) / (dx1 * (dx1 + dx2))
                b = (dx1 + dx2) / (dx1 * dx2)
                c = -dx1 / (dx2 * (dx1 + dx2))
            # 1D equivalent -- out[0] = a * f[0] + b * f[1] + c * f[2]
            out[tuple(slice1)] = (
                a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
            )

            slice1[axis] = -1
            slice2[axis] = -3
            slice3[axis] = -2
            slice4[axis] = -1
            if uniform_spacing:
                a = 0.5 / ax_dx
                b = -2.0 / ax_dx
                c = 1.5 / ax_dx
            else:
                dx1 = ax_dx[-2]
                dx2 = ax_dx[-1]
                a = (dx2) / (dx1 * (dx1 + dx2))
                b = -(dx2 + dx1) / (dx1 * dx2)
                c = (2.0 * dx2 + dx1) / (dx2 * (dx1 + dx2))
            # 1D equivalent -- out[-1] = a * f[-3] + b * f[-2] + c * f[-1]
            out[tuple(slice1)] = (
                a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
            )

        outvals.append(out)

        # reset the slice object in this dimension to ":"
        slice1[axis] = slice(None)
        slice2[axis] = slice(None)
        slice3[axis] = slice(None)
        slice4[axis] = slice(None)

    if len_axes == 1:
        return outvals[0]
    else:
        return outvals


# ### Type/shape etc queries ###


def round(a: ArrayLike, decimals=0, out: Optional[OutArray] = None):
    if a.is_floating_point():
        result = torch.round(a, decimals=decimals)
    elif a.is_complex():
        # RuntimeError: "round_cpu" not implemented for 'ComplexFloat'
        result = torch.complex(
            torch.round(a.real, decimals=decimals),
            torch.round(a.imag, decimals=decimals),
        )
    else:
        # RuntimeError: "round_cpu" not implemented for 'int'
        result = a
    return result


around = round
round_ = round


def real_if_close(a: ArrayLike, tol=100):
    if not torch.is_complex(a):
        return a
    if tol > 1:
        # Undocumented in numpy: if tol < 1, it's an absolute tolerance!
        # Otherwise, tol > 1 is relative tolerance, in units of the dtype epsilon
        # https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/type_check.py#L577
        tol = tol * torch.finfo(a.dtype).eps

    mask = torch.abs(a.imag) < tol
    return a.real if mask.all() else a


def real(a: ArrayLike):
    return torch.real(a)


def imag(a: ArrayLike):
    if a.is_complex():
        return a.imag
    return torch.zeros_like(a)


def iscomplex(x: ArrayLike):
    if torch.is_complex(x):
        return x.imag != 0
    return torch.zeros_like(x, dtype=torch.bool)


def isreal(x: ArrayLike):
    if torch.is_complex(x):
        return x.imag == 0
    return torch.ones_like(x, dtype=torch.bool)


def iscomplexobj(x: ArrayLike):
    return torch.is_complex(x)


def isrealobj(x: ArrayLike):
    return not torch.is_complex(x)


def isneginf(x: ArrayLike, out: Optional[OutArray] = None):
    return torch.isneginf(x)


def isposinf(x: ArrayLike, out: Optional[OutArray] = None):
    return torch.isposinf(x)


def i0(x: ArrayLike):
    return torch.special.i0(x)


def isscalar(a):
    # We need to use normalize_array_like, but we don't want to export it in funcs.py
    from ._normalizations import normalize_array_like

    try:
        t = normalize_array_like(a)
        return t.numel() == 1
    except Exception:
        return False


# ### Filter windows ###


def hamming(M):
    dtype = _dtypes_impl.default_dtypes().float_dtype
    return torch.hamming_window(M, periodic=False, dtype=dtype)


def hanning(M):
    dtype = _dtypes_impl.default_dtypes().float_dtype
    return torch.hann_window(M, periodic=False, dtype=dtype)


def kaiser(M, beta):
    dtype = _dtypes_impl.default_dtypes().float_dtype
    return torch.kaiser_window(M, beta=beta, periodic=False, dtype=dtype)


def blackman(M):
    dtype = _dtypes_impl.default_dtypes().float_dtype
    return torch.blackman_window(M, periodic=False, dtype=dtype)


def bartlett(M):
    dtype = _dtypes_impl.default_dtypes().float_dtype
    return torch.bartlett_window(M, periodic=False, dtype=dtype)


# ### Dtype routines ###

# vendored from https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/type_check.py#L666


array_type = [
    [torch.float16, torch.float32, torch.float64],
    [None, torch.complex64, torch.complex128],
]
array_precision = {
    torch.float16: 0,
    torch.float32: 1,
    torch.float64: 2,
    torch.complex64: 1,
    torch.complex128: 2,
}


def common_type(*tensors: ArrayLike):
    is_complex = False
    precision = 0
    for a in tensors:
        t = a.dtype
        if iscomplexobj(a):
            is_complex = True
        if not (t.is_floating_point or t.is_complex):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = builtins.max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision]


# ### histograms ###


def histogram(
    a: ArrayLike,
    bins: ArrayLike = 10,
    range=None,
    normed=None,
    weights: Optional[ArrayLike] = None,
    density=None,
):
    if normed is not None:
        raise ValueError("normed argument is deprecated, use density= instead")

    if weights is not None and weights.dtype.is_complex:
        raise NotImplementedError("complex weights histogram.")

    is_a_int = not (a.dtype.is_floating_point or a.dtype.is_complex)
    is_w_int = weights is None or not weights.dtype.is_floating_point
    if is_a_int:
        a = a.double()

    if weights is not None:
        weights = _util.cast_if_needed(weights, a.dtype)

    if isinstance(bins, torch.Tensor):
        if bins.ndim == 0:
            # bins was a single int
            bins = operator.index(bins)
        else:
            bins = _util.cast_if_needed(bins, a.dtype)

    if range is None:
        h, b = torch.histogram(a, bins, weight=weights, density=bool(density))
    else:
        h, b = torch.histogram(
            a, bins, range=range, weight=weights, density=bool(density)
        )

    if not density and is_w_int:
        h = h.long()
    if is_a_int:
        b = b.long()

    return h, b


def histogram2d(
    x,
    y,
    bins=10,
    range: Optional[ArrayLike] = None,
    normed=None,
    weights: Optional[ArrayLike] = None,
    density=None,
):
    # vendored from https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/twodim_base.py#L655-L821
    if len(x) != len(y):
        raise ValueError("x and y must have the same length.")

    try:
        N = len(bins)
    except TypeError:
        N = 1

    if N != 1 and N != 2:
        bins = [bins, bins]

    h, e = histogramdd((x, y), bins, range, normed, weights, density)

    return h, e[0], e[1]


def histogramdd(
    sample,
    bins=10,
    range: Optional[ArrayLike] = None,
    normed=None,
    weights: Optional[ArrayLike] = None,
    density=None,
):
    # have to normalize manually because `sample` interpretation differs
    # for a list of lists and a 2D array
    if normed is not None:
        raise ValueError("normed argument is deprecated, use density= instead")

    from ._normalizations import normalize_array_like, normalize_seq_array_like

    if isinstance(sample, (list, tuple)):
        sample = normalize_array_like(sample).T
    else:
        sample = normalize_array_like(sample)

    sample = torch.atleast_2d(sample)

    if not (sample.dtype.is_floating_point or sample.dtype.is_complex):
        sample = sample.double()

    # bins is either an int, or a sequence of ints or a sequence of arrays
    bins_is_array = not (
        isinstance(bins, int) or builtins.all(isinstance(b, int) for b in bins)
    )
    if bins_is_array:
        bins = normalize_seq_array_like(bins)
        bins_dtypes = [b.dtype for b in bins]
        bins = [_util.cast_if_needed(b, sample.dtype) for b in bins]

    if range is not None:
        range = range.flatten().tolist()

    if weights is not None:
        # range=... is required : interleave min and max values per dimension
        mm = sample.aminmax(dim=0)
        range = torch.cat(mm).reshape(2, -1).T.flatten()
        range = tuple(range.tolist())
        weights = _util.cast_if_needed(weights, sample.dtype)
        w_kwd = {"weight": weights}
    else:
        w_kwd = {}

    h, b = torch.histogramdd(sample, bins, range, density=bool(density), **w_kwd)

    if bins_is_array:
        b = [_util.cast_if_needed(bb, dtyp) for bb, dtyp in zip(b, bins_dtypes)]

    return h, b


# ### odds and ends


def min_scalar_type(a: ArrayLike, /):
    # https://github.com/numpy/numpy/blob/maintenance/1.24.x/numpy/core/src/multiarray/convert_datatype.c#L1288

    from ._dtypes import DType

    if a.numel() > 1:
        # numpy docs: "For non-scalar array a, returns the vector's dtype unmodified."
        return DType(a.dtype)

    if a.dtype == torch.bool:
        dtype = torch.bool

    elif a.dtype.is_complex:
        fi = torch.finfo(torch.float32)
        fits_in_single = a.dtype == torch.complex64 or (
            fi.min <= a.real <= fi.max and fi.min <= a.imag <= fi.max
        )
        dtype = torch.complex64 if fits_in_single else torch.complex128

    elif a.dtype.is_floating_point:
        for dt in [torch.float16, torch.float32, torch.float64]:
            fi = torch.finfo(dt)
            if fi.min <= a <= fi.max:
                dtype = dt
                break
    else:
        # must be integer
        for dt in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]:
            # Prefer unsigned int where possible, as numpy does.
            ii = torch.iinfo(dt)
            if ii.min <= a <= ii.max:
                dtype = dt
                break

    return DType(dtype)


def pad(array: ArrayLike, pad_width: ArrayLike, mode="constant", **kwargs):
    if mode != "constant":
        raise NotImplementedError
    value = kwargs.get("constant_values", 0)
    # `value` must be a python scalar for torch.nn.functional.pad
    typ = _dtypes_impl.python_type_for_torch(array.dtype)
    value = typ(value)

    pad_width = torch.broadcast_to(pad_width, (array.ndim, 2))
    pad_width = torch.flip(pad_width, (0,)).flatten()

    return torch.nn.functional.pad(array, tuple(pad_width), value=value)