File: rng_prims.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (319 lines) | stat: -rw-r--r-- 11,528 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# mypy: allow-untyped-defs
from typing import Optional, Tuple

import torch
import torch.utils._pytree as pytree
from torch import _prims
from torch._C import DispatchKey
from torch._higher_order_ops.utils import autograd_not_implemented
from torch._ops import HigherOrderOperator
from torch._prims_common import CUDARngStateHelper, make_contiguous_strides_for
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import (
    disable_proxy_modes_tracing,
    ProxyTorchDispatchMode,
    track_tensor_tree,
)
from torch.types import _device, _dtype


def throw_on_non_cuda(device):
    raise RuntimeError(
        f"You are trying to functionalize a {device.type} RNG operator but {device.type} does not "
        f"use Philox/counter-based RNG. Therefore, functionalizing a {device.type} RNG operator is "
        "not supported. We are discussing the possibility of a Philox-based RNG implementation for CPU."
    )


def register_rng_prim(name, schema, impl_aten, impl_meta, doc, tags=None):
    rngprim_def = torch.library.custom_op(
        "rngprims::" + name, impl_aten, mutates_args=(), schema=schema
    )
    rngprim_def.register_fake(impl_meta)

    prim_packet = getattr(torch._ops.ops.rngprims, name)
    prim = prim_packet.default
    if tags:
        prim._tags = tags

    for p in (prim_packet, prim):
        p.__doc__ = doc
        p.return_type = torch._prims_common.RETURN_TYPE.NEW  # type: ignore[attr-defined]

        p.schema = name + schema
        p.impl_aten = impl_aten
        p.prim_meta_impl = impl_meta


# Philox rand offsets could be shared in future with other philox ops, so
# keeping these functions in global scope.
def philox_rand_offset_meta(
    shape: torch.Size,
):
    return _prims.TensorLike(torch.tensor(0, dtype=torch.int64))


def philox_rand_offset(
    shape: torch.Size,
):
    # For impl, look at the function calc_execution_policy in the file
    # aten/src/ATen/native/cuda/DistributionTemplates.h. The impl was copied at
    # commit hash 72aa0667bd16707d50eb8fa337092a1f5d11dfb6
    numel_scalar = 1
    for dim_size in shape:
        numel_scalar *= dim_size
    numel = torch.scalar_tensor(numel_scalar, dtype=torch.int64)

    block_size = 256
    unroll = 4
    curand4_engine_calls = 4
    device_property = torch.cuda.get_device_properties(torch.cuda.current_device())
    blocks_per_sm = device_property.max_threads_per_multi_processor // block_size
    grid_size = (numel + block_size - 1) // block_size
    grid_size = min(grid_size, device_property.multi_processor_count * blocks_per_sm)
    offset = (
        (numel - 1) // (block_size * grid_size * unroll) + 1
    ) * curand4_engine_calls
    return offset


def register_philox_rand():
    name = "philox_rand"
    schema = "(SymInt[] size, Tensor seed, Tensor offset, int[]? stride, Device? device=None, ScalarType? dtype=None) -> (Tensor, Tensor)"  # noqa: B950

    def _philox_rand_meta(
        shape: torch.Size,
        seed: torch.Tensor,
        offset: torch.Tensor,
        stride: Optional[Tuple[int, ...]],
        device: _device,
        dtype: _dtype,
    ):
        # stride arg will be useful for distributed usecase. Currently, its unused.
        assert stride is None
        stride = make_contiguous_strides_for(shape)
        random_values = _prims.TensorMeta(
            shape=shape, strides=stride, dtype=dtype, device=device
        )
        offset = philox_rand_offset_meta(shape)
        return (random_values, offset)

    def _philox_rand(
        shape: torch.Size,
        seed: torch.Tensor,
        offset: torch.Tensor,
        stride: Optional[Tuple[int, ...]],
        device: _device,
        dtype: _dtype,
    ):
        # stride arg will be useful for distributed usecase. Currently, its unused.
        assert stride is None
        if device.type == "cpu":
            devices = []
        else:
            devices = [device]

        if device.type != "cuda":
            raise throw_on_non_cuda(device)

        with torch.random.fork_rng(devices):
            CUDARngStateHelper.set_torch_state_tensor(seed, offset)
            random_values = torch.rand(shape, device=device, dtype=dtype)

        return random_values, philox_rand_offset(shape)

    register_rng_prim(
        name=name,
        schema=schema,
        impl_aten=_philox_rand,
        impl_meta=_philox_rand_meta,
        doc="Philox based stateless rand operator",
        tags=(torch.Tag.nondeterministic_seeded,),
    )


def get_device(args, kwargs):
    if kwargs.get("device"):
        device = kwargs.get("device")
        if isinstance(device, str):
            device = torch.device(device)
        return device.type

    devices = {arg.device.type for arg in args if isinstance(arg, torch.Tensor)}
    if any(dev == "cuda" for dev in devices):
        return "cuda"
    elif any(dev == "xpu" for dev in devices):
        return "xpu"
    elif any(dev == "hpu" for dev in devices):
        return "hpu"
    elif any(dev == "cpu" for dev in devices):
        return "cpu"
    return None


def register_run_and_save_rng_state_op():
    class RunAndSaveRngState(HigherOrderOperator):
        def __init__(self):
            super().__init__("run_and_save_rng_state")

        def __call__(self, op, *args, **kwargs):
            return super().__call__(op, *args, **kwargs)

    run_and_save_rng_state = RunAndSaveRngState()

    run_and_save_rng_state.py_impl(DispatchKey.Autograd)(
        autograd_not_implemented(run_and_save_rng_state, deferred_error=True)
    )

    @run_and_save_rng_state.py_impl(DispatchKey.CUDA)
    def impl_cuda(op, *args, **kwargs):
        return torch.cuda.get_rng_state(), op(*args, **kwargs)

    @run_and_save_rng_state.py_impl(DispatchKey.CPU)
    def impl_cpu(op, *args, **kwargs):
        return torch.get_rng_state(), op(*args, **kwargs)

    @run_and_save_rng_state.py_impl(DispatchKey.HPU)
    def impl_hpu(op, *args, **kwargs):
        if hasattr(torch, "hpu"):
            return torch.hpu.get_rng_state(), op(*args, **kwargs)
        raise RuntimeError("functionalize a hpu RNG operator is not supported.")

    @run_and_save_rng_state.py_impl(DispatchKey.XPU)
    def impl_xpu(op, *args, **kwargs):
        return torch.xpu.get_rng_state(), op(*args, **kwargs)

    @run_and_save_rng_state.py_impl(DispatchKey.BackendSelect)
    def impl_backend_select(op, *args, **kwargs):
        impl_map = {
            "cuda": impl_cuda,
            "cpu": impl_cpu,
            "hpu": impl_hpu,
            "xpu": impl_xpu,
        }
        device = get_device(args, kwargs)
        assert device in impl_map, f"Backend not supported for {device}"
        impl = impl_map[device]
        return impl(op, *args, **kwargs)

    @run_and_save_rng_state.py_impl(FakeTensorMode)
    def impl_fake_tensor_mode(mode, op, *args, **kwargs):
        # Check device to call the right impl
        with mode:
            return impl_backend_select(op, *args, **kwargs)

    @run_and_save_rng_state.py_impl(ProxyTorchDispatchMode)
    def impl_proxy_dispatch_mode(mode, op, *args, **kwargs):
        out = impl_backend_select(op, *args, **kwargs)
        proxy_args = pytree.tree_map(mode.tracer.unwrap_proxy, (op, *args))
        proxy_kwargs = pytree.tree_map(mode.tracer.unwrap_proxy, kwargs)
        out_proxy = mode.tracer.create_proxy(
            "call_function", run_and_save_rng_state, proxy_args, proxy_kwargs
        )
        return track_tensor_tree(out, out_proxy, constant=None, tracer=mode.tracer)

    return run_and_save_rng_state


def register_run_with_rng_state_op():
    class RunWithRngState(HigherOrderOperator):
        def __init__(self):
            super().__init__("run_with_rng_state")

        def __call__(self, rng_state, op, *args, **kwargs):
            return super().__call__(rng_state, op, *args, **kwargs)

    run_with_rng_state = RunWithRngState()

    run_with_rng_state.py_impl(DispatchKey.Autograd)(
        autograd_not_implemented(run_with_rng_state, deferred_error=True)
    )

    @run_with_rng_state.py_impl(DispatchKey.CUDA)
    def impl_cuda(rng_state, op, *args, **kwargs):
        current_state = torch.cuda.get_rng_state()
        torch.cuda.set_rng_state(rng_state.cpu())
        out = op(*args, **kwargs)
        torch.cuda.set_rng_state(current_state)
        return out

    @run_with_rng_state.py_impl(DispatchKey.CPU)
    def impl_cpu(rng_state, op, *args, **kwargs):
        current_state = torch.get_rng_state()
        torch.set_rng_state(rng_state)
        out = op(*args, **kwargs)
        torch.set_rng_state(current_state)
        return out

    @run_with_rng_state.py_impl(DispatchKey.HPU)
    def impl_hpu(rng_state, op, *args, **kwargs):
        if hasattr(torch, "hpu"):
            current_state = torch.hpu.get_rng_state()
            torch.hpu.set_rng_state(rng_state)
            out = op(*args, **kwargs)
            torch.hpu.set_rng_state(current_state)
            return out
        raise RuntimeError("functionalize a hpu RNG operator is not supported.")

    @run_with_rng_state.py_impl(DispatchKey.XPU)
    def impl_xpu(rng_state, op, *args, **kwargs):
        current_state = torch.xpu.get_rng_state()
        torch.xpu.set_rng_state(rng_state)
        out = op(*args, **kwargs)
        torch.xpu.set_rng_state(current_state)
        return out

    @run_with_rng_state.py_impl(ProxyTorchDispatchMode)
    def impl_proxy_dispatch_mode(mode, rng_state, op, *args, **kwargs):
        # TODO: you don't need to do this, the dispatch here already disabled
        # it
        with disable_proxy_modes_tracing():
            out = run_with_rng_state(rng_state, op, *args, **kwargs)
        proxy_args = pytree.tree_map(mode.tracer.unwrap_proxy, (rng_state, op, *args))
        proxy_kwargs = pytree.tree_map(mode.tracer.unwrap_proxy, kwargs)
        out_proxy = mode.tracer.create_proxy(
            "call_function", run_with_rng_state, proxy_args, proxy_kwargs
        )
        return track_tensor_tree(out, out_proxy, constant=None, tracer=mode.tracer)

    @run_with_rng_state.py_impl(DispatchKey.BackendSelect)
    def impl_backend_select(rng_state, op, *args, **kwargs):
        impl_map = {
            "cuda": impl_cuda,
            "cpu": impl_cpu,
            "hpu": impl_hpu,
            "xpu": impl_xpu,
        }
        device = get_device(args, kwargs)
        assert device in impl_map, f"Backend not supported for {device}"
        impl = impl_map[device]
        return impl(rng_state, op, *args, **kwargs)

    @run_with_rng_state.py_impl(FakeTensorMode)
    def impl_fake_tensor_mode(mode, rng_state, op, *args, **kwargs):
        # Skip setting the set_rng_state as it does not work well with fake tensors.
        # And it does not matter for the fake tensor mode.
        with mode:
            return op(*args, **kwargs)

    @run_with_rng_state.py_functionalize_impl
    def impl_functional(ctx, rng_state, op, *args, **kwargs):
        unwrapped_rng_state = ctx.unwrap_tensors(rng_state)
        unwrapped_args = ctx.unwrap_tensors(args)
        unwrapped_kwargs = ctx.unwrap_tensors(kwargs)

        with ctx.redispatch_to_next():
            out = run_with_rng_state(
                unwrapped_rng_state, op, *unwrapped_args, **unwrapped_kwargs
            )
            return ctx.wrap_tensors(out)

    return run_with_rng_state


run_and_save_rng_state = register_run_and_save_rng_state_op()
run_with_rng_state = register_run_with_rng_state_op()


def register_rng_prims():
    register_philox_rand()