1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
|
# mypy: allow-untyped-defs
from __future__ import annotations
import operator
import typing
import warnings
from contextlib import nullcontext
from enum import Enum
from functools import reduce
from typing import (
Any,
Callable,
cast,
List,
NamedTuple,
Optional,
overload,
Sequence,
Tuple,
Type,
TYPE_CHECKING,
TypeVar,
Union,
)
from typing_extensions import deprecated, TypeAlias
import torch
from torch import sym_float, sym_int, sym_max
if TYPE_CHECKING:
# Import the following modules during type checking to enable code intelligence features,
# such as auto-completion in tools like pylance, even when these modules are not explicitly
# imported in user code.
import sympy
class _WorksWithInt(typing.Protocol):
def __add__(self, other: Any) -> typing.Self:
...
def __radd__(self, other: Any) -> typing.Self:
...
def __mul__(self, other: Any) -> typing.Self:
...
def __rmul__(self, other: Any) -> typing.Self:
...
_IntLikeT = TypeVar("_IntLikeT", bound=_WorksWithInt)
ShapeType: TypeAlias = Union[torch.Size, List[int], Tuple[int, ...]]
StrideType: TypeAlias = Union[List[int], Tuple[int, ...]]
DimsType: TypeAlias = Union[int, List[int], Tuple[int, ...]]
DimsSequenceType: TypeAlias = Union[List[int], Tuple[int, ...]]
# TODO: Type[torch.SymInt], Type[torch.SymFloat]
NumberTypeType: TypeAlias = Union[Type[bool], Type[int], Type[float], Type[complex]]
# TODO: This needs a lot more type annotations
# NumberType = Union[bool, int, float, complex, torch.SymInt, torch.SymFloat]
NumberType: TypeAlias = Union[bool, int, float, complex]
RealNumberType: TypeAlias = Union[bool, int, float]
Number = (bool, int, float, complex, torch.SymInt, torch.SymFloat, torch.SymBool)
# I don't call it Integral because numbers.Integral includes bool, but IntLike
# does not
Dim = int
IntLike = (int, torch.SymInt)
FloatLike = (float, torch.SymFloat)
BoolLike = (bool, torch.SymBool)
IntWithoutSymInt = int
FloatWithoutSymFloat = float
DeviceLikeType: TypeAlias = Union[str, torch.device, int]
Tensor = torch.Tensor
torch_function_passthrough = {
torch.device,
torch.sym_not,
torch.sym_float,
torch.sym_int,
torch.sym_max,
torch.sym_min,
torch._sym_sqrt, # type: ignore[attr-defined]
torch.sym_ite,
torch.Tensor.dim,
torch.Tensor.ndim.__get__, # type: ignore[attr-defined]
torch.Tensor.numel,
torch.Tensor.size,
torch.Tensor.storage_offset,
torch.Tensor.stride,
torch.Tensor.dtype.__get__, # type: ignore[attr-defined]
torch.Tensor.is_sparse.__get__, # type: ignore[attr-defined]
torch.Tensor.shape.__get__, # type: ignore[attr-defined]
torch.Tensor.device.__get__, # type: ignore[attr-defined]
torch.Tensor.requires_grad.__get__, # type: ignore[attr-defined]
torch.Tensor.layout.__get__, # type: ignore[attr-defined]
torch.Tensor.is_contiguous,
# For TorchRefsMode only
torch.Tensor.__format__,
torch.Tensor.__repr__,
torch.Tensor.requires_grad.__get__, # type: ignore[attr-defined]
torch.Tensor.__getitem__,
}
TensorLikeType = torch.Tensor
TensorLike = torch.Tensor
TensorSequenceType: TypeAlias = Union[List[TensorLikeType], Tuple[TensorLikeType, ...]]
TensorOrNumberLikeType: TypeAlias = Union[TensorLikeType, NumberType]
CustomOutParamAnnotation = "__custom_out_param__"
def same_shape(a: ShapeType, b: ShapeType, *, allow_rhs_unbacked=False) -> bool:
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
if len(a) != len(b):
return False
for x, y in zip(a, b):
if allow_rhs_unbacked:
# TODO: We should check that the symbols are consistent
# with each other
if isinstance(y, torch.SymInt):
continue
# NB: Naively, you would not expect to have to do an oblivious guard
# here because there is seemingly no broadcasting here, but in fact we
# use this in some situations to determine if we need to do an expand
# on the tensor because they don't line up, so you can definitely end
# up trying to prove u0 != 1 in this situation. See
# python test/test_proxy_tensor.py -k test_cumsum_unbacked
if guard_size_oblivious(x != y):
return False
return True
def _maybe_get_pytype(t):
if t is torch.SymFloat:
return float
elif t is torch.SymInt:
return int
elif t is torch.SymBool:
return bool
else:
return t
# TODO: look at using torch.testing.assert_close instead with an option
# to just compare metadata
def compare_tensor_meta(
a: TensorLikeType,
b: TensorLikeType,
check_sizes=True,
check_strides=False,
*,
allow_rhs_unbacked=False,
check_conj=True,
):
"""
Checks that two tensor likes have the same shape,
dtype and device.
In the future this will validate additional metadata, like
strides.
"""
from torch._subclasses.fake_tensor import MetadataMismatchError
assert isinstance(a, TensorLike)
assert isinstance(b, TensorLike)
if check_sizes and not same_shape(
a.shape, b.shape, allow_rhs_unbacked=allow_rhs_unbacked
):
msg = f"Shapes {a.shape} and {b.shape} are not equal!"
raise MetadataMismatchError(msg)
if a.dtype != b.dtype:
msg = f"Dtypes {a.dtype} and {b.dtype} are not equal!"
raise MetadataMismatchError(msg)
if a.device != b.device:
# Handles special cuda:0 vs cuda case
# TODO: we should review why this happens and see about fixing it
if (str(a.device) == "cuda:0" or str(a.device) == "cuda") and (
str(b.device) == "cuda:0" or str(b.device) == "cuda"
):
pass
else:
msg = f"Devices {a.device} and {b.device} are not equal!"
raise MetadataMismatchError(msg)
# Stride checking is currently disabled, see https://github.com/pytorch/pytorch/issues/78050
if check_strides:
same_strides, idx = check_significant_strides(a, b)
if not same_strides:
msg = f"Stride mismatch! Strides are {a.stride()} and {b.stride()} (mismatched at {idx})!"
raise MetadataMismatchError(msg)
if a.storage_offset() != b.storage_offset():
msg = f"Storage offset mismatch! Storage offsets are {a.storage_offset()} and {b.storage_offset()}!"
raise MetadataMismatchError(msg)
if check_conj:
if a.is_conj() != b.is_conj():
raise MetadataMismatchError(
f"Conj mismatch! is_conj is set to {a.is_conj()} and {b.is_conj()}"
)
if a.is_neg() != b.is_neg():
raise MetadataMismatchError(
f"Neg mismatch! is_neg is set to {a.is_neg()} and {b.is_neg()}"
)
def _check_strides_helper(
a: TensorLikeType, b: TensorLikeType, *, only_cuda=True, significant_only=True
) -> Tuple[bool, Optional[int]]:
# NOTE: only on CUDA because CPU elementwise strides are incorrect in PyTorch
# See https://github.com/pytorch/pytorch/issues/77553
# Only compares strides that are "meaningful" -- strides for dimensions with length > 1
# and for tensors with more than one element
if (
not only_cuda or a.device.type == "cuda" or b.device.type == "cuda"
) and a.numel() > 0:
for idx in range(a.ndim):
check = not significant_only or a.shape[idx] > 1
if a.stride()[idx] != b.stride()[idx] and check:
return False, idx
return True, None
def check_significant_strides(
a: TensorLikeType, b: TensorLikeType, *, only_cuda=True
) -> Tuple[bool, Optional[int]]:
return _check_strides_helper(a, b, only_cuda=only_cuda, significant_only=True)
def check_all_strides(
a: TensorLikeType, b: TensorLikeType, *, only_cuda=True
) -> Tuple[bool, Optional[int]]:
return _check_strides_helper(a, b, only_cuda=only_cuda, significant_only=False)
# This function is equivalent to compute_contiguous() from TensorImpl.cpp
def is_contiguous(a: TensorLikeType) -> bool:
"""
Tests whether a tensor is contiguous or not.
Tensors are contiguous when they have no elements,
one element, or when they have "nested" strides.
"""
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
if guard_size_oblivious(a.numel() < 2):
return True
expected_stride = 1
for x, y in reversed(tuple(zip(a.shape, a.stride()))):
# Skips checking strides when a dimension has length 1
if guard_size_oblivious(x == 1):
continue
if guard_size_oblivious(y != expected_stride):
return False
expected_stride = expected_stride * x
return True
# This function is equivalent to compute_channels_last_contiguous_2d() in TensorImpl.cpp
def is_channels_last_contiguous_2d(a: Tensor) -> bool:
# NHWC or not channels last 2D contiguous
if a.ndim != 4:
return False
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
expected_stride = 1
for idx in (1, 3, 2, 0):
length = a.shape[idx]
if guard_size_oblivious(length == 1):
continue
stride = a.stride()[idx]
if guard_size_oblivious(stride != expected_stride):
return False
expected_stride *= length
return True
def is_channels_last_contiguous_3d(a: Tensor) -> bool:
# NDHWC or not channels last 3D contiguous
if a.ndim != 5:
return False
expected_stride = 1
for idx in (1, 4, 3, 2, 0):
length = a.shape[idx]
if length == 1:
continue
stride = a.stride()[idx]
if stride != expected_stride:
return False
expected_stride *= length
return True
_memory_formats = {
torch.contiguous_format,
torch.preserve_format,
torch.channels_last,
torch.channels_last_3d,
}
def validate_memory_format(memory_format: torch.memory_format):
torch._check(
memory_format in _memory_formats,
lambda: f"Received unknown memory format {memory_format}!",
)
def is_contiguous_for_memory_format( # type: ignore[return]
a: Tensor, *, memory_format: torch.memory_format
) -> bool:
validate_memory_format(memory_format)
if memory_format == torch.contiguous_format:
return is_contiguous(a)
if memory_format == torch.channels_last:
return is_channels_last_contiguous_2d(a)
if memory_format == torch.channels_last_3d:
return is_channels_last_contiguous_3d(a)
torch._check(
False,
lambda: f"is_contiguous received unsupported memory format {memory_format}",
)
# NOTE: that tensors with no elements and channels last is ???
def is_channels_last_contiguous(a: Tensor) -> bool:
"""
True when a tensor is channels-last contiguous.
This requires that:
- the tensor is conceptually either 4 (NHWC) or 5 (NDHWC) dimensions
- if we name the tensor's dimensions NCHW or NCDHW, then the strides are such that the
stride of the 'C' dimension (Cs) is 1 and the strides corresponding to
each dimension (Xs) can be ordered Cs <= Ws <= Hs <= (Ds) <= Ns and are
"nested" -- so Ws = Cs * Cl, where Cl is the length of the 'C' dimension,
for example.
"""
return is_channels_last_contiguous_2d(a) or is_channels_last_contiguous_3d(a)
def is_non_overlapping_and_dense(a: Tensor) -> bool:
"""
True when a tensor is non-overlapping and dense.
A tensor is non-overlapping and dense when there exists a permutation of
its dimensions that is contiguous.
"""
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
if a.is_sparse:
return False
# Short-circuits if the tensor is already contiguous or channels-last contiguous
if is_contiguous(a) or is_channels_last_contiguous(a):
return True
# The following is equivalent to compute_non_overlapping_and_dense in TensorImpl.cpp
# Short-circuits for tensors of rank one, which are
# non-overlapping and "dense" if their stride is one
if a.ndim == 1:
return a.stride()[0] == 1
# Checks that there exists a permutation of the strides s.t. the tensor would be contiguous
# Sorts (length, stride) pairs by stride
#
# This sort is done in a size-oblivious way, which helps if we do a
# comparison like 2048*u0 > u0; we just want this to return True
# (and not worry about what if u0 is zero).
class K(NamedTuple):
size: int
stride: int
def __lt__(self, other):
return guard_size_oblivious(self.stride < other.stride)
def __gt__(self, other):
return guard_size_oblivious(self.stride > other.stride)
def __le__(self, other):
return guard_size_oblivious(self.stride <= other.stride)
def __ge__(self, other):
return guard_size_oblivious(self.stride >= other.stride)
def __eq__(self, other):
return guard_size_oblivious(self.stride == other.stride)
lengths_and_strides = sorted(map(K, a.shape, a.stride()))
expected_stride = 1
for length, stride in lengths_and_strides:
if guard_size_oblivious(length == 1):
continue
if stride != expected_stride:
return False
expected_stride *= length
return True
# NOTE: Based on the implementation in TensorIterator.cpp, but note that
# the note [Computing output strides] is incorrect, because it
# says that strides will be preserved even if they are not
# "non overlapping and dense", but this is incorrect. The
# output of elementwise operations are always given
# non overlapping and dense strides.
# This is also INCORRECT because it does not model TensorIterator's
# short-circuit, which can cause different strides.
def compute_elementwise_output_logical_to_physical_perm(
*tensors, _skip_checks=False
) -> List[int]:
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
if not _skip_checks and len(tensors) == 0:
msg = "Can't compute elementwise output strides for zero tensors!"
raise ValueError(msg)
if not _skip_checks:
check_same_shape(*tensors, allow_cpu_scalar_tensors=True)
# Filters the tensors to actual tensors
if not _skip_checks:
tensors = tuple(
a
for a in tensors
if isinstance(a, TensorLike) and not is_cpu_scalar_tensor(a)
)
# Short-circuits for CPU scalar case
if len(tensors) == 0:
return []
# Short-circuits for shapes with zero or one dimensions
# TODO: are these necessary?
ndim = tensors[0].ndim
if ndim == 0:
return []
if ndim == 1:
return [0]
# Short-circuits if contiguous or channels last, following the fake fast path.
# This reduces the number of guards we end up making
is_contiguous = True
is_channels_last = True
for t in tensors:
is_contiguous = is_contiguous and t.is_contiguous(
memory_format=torch.contiguous_format
)
is_channels_last = is_channels_last and t.is_contiguous(
memory_format=torch.channels_last
)
if is_contiguous and not is_channels_last:
return list(range(ndim))
if is_channels_last and not is_contiguous:
return [0, *list(range(2, ndim)), 1]
shape = tensors[0].shape
def should_swap(idx_a, idx_b):
for tensor in tensors:
stride_a = tensor.stride()[idx_a]
stride_b = tensor.stride()[idx_b]
if guard_size_oblivious(stride_a == 0) or guard_size_oblivious(
stride_b == 0
):
continue
if guard_size_oblivious(stride_a < stride_b):
return -1
if guard_size_oblivious(stride_a > stride_b):
return 1
# stride_a == stride_b
if guard_size_oblivious(shape[idx_a] > shape[idx_b]):
return 1
# Note: this case is hit if all strides are zero,
# or all strides are equal and all dimensions have the same length
return 0
# The "sort" order for the permutation is back-to-front, but
# the natural order for permutations is front-to-back. Do the
# sorting back-to-front and then reverse it on output.
#
# also, note this returns the logical to physical shape permutation
perm = list(reversed(range(ndim)))
# insertion sort with support for ambiguous comparisons
for i in range(1, ndim):
dim1 = i
for dim0 in reversed(range(i)):
comparison = should_swap(perm[dim0], perm[dim1])
if comparison > 0:
perm[dim0], perm[dim1] = perm[dim1], perm[dim0]
dim1 = dim0
elif comparison < 0:
break
return list(reversed(perm))
def compute_elementwise_output_strides(*tensors) -> Tuple[int, ...]:
"""
Computes the output strides for elementwise operations.
"""
if len(tensors) == 0:
msg = "Can't compute elementwise output strides for zero tensors!"
raise ValueError(msg)
check_same_shape(*tensors, allow_cpu_scalar_tensors=True)
# Filters the tensors to actual tensors
tensors = tuple(
a for a in tensors if isinstance(a, TensorLike) and not is_cpu_scalar_tensor(a)
)
# Short-circuits for CPU scalar case
if len(tensors) == 0:
return ()
ndim = tensors[0].ndim
shape = tensors[0].shape
if ndim == 0:
return ()
if ndim == 1:
return (1,)
logical_to_physical_perm = compute_elementwise_output_logical_to_physical_perm(
*tensors, _skip_checks=True
)
permuted_shape = apply_perm(shape, logical_to_physical_perm) # to physical
new_strides = make_contiguous_strides_for(permuted_shape)
permuted_strides = apply_perm(
new_strides, invert_perm(logical_to_physical_perm)
) # to logical
return tuple(permuted_strides)
# Identity permutation is [0, 1, 2]
def apply_perm(inp, perm):
ndim = len(inp)
permuted_inp = [-1] * ndim
for idx, x in enumerate(perm):
permuted_inp[idx] = inp[x]
return permuted_inp
def invert_perm(perm):
ndim = len(perm)
new_perm = [-1] * ndim
for idx, x in enumerate(perm):
new_perm[x] = idx
return new_perm
#
# Common helper functions
#
def validate_dim_length(length: int):
"""
Validates that an object represents a valid
dimension length.
"""
if isinstance(length, (int, torch.SymInt)):
torch._check_is_size(length)
else:
# sometimes called with sympy expression by inductor
assert length >= 0
def validate_shape(shape: ShapeType):
"""
Validates that a sequence represents a valid shape.
"""
assert isinstance(shape, Sequence), type(shape)
for l in shape:
validate_dim_length(l)
def validate_strides(strides: StrideType):
"""
Verifies the object specifies valid strides.
"""
assert isinstance(strides, Sequence)
for stride in strides:
assert stride >= 0
def validate_idx(rank: int, idx: int):
"""
Validates that idx is a valid index for the given shape.
Assumes the index is already canonicalized.
"""
assert isinstance(idx, Dim)
assert isinstance(rank, Dim)
assert idx >= 0 and idx < rank or idx == 0
def validate_dimension_indices(rank: int, indices: DimsSequenceType):
for idx in indices:
validate_idx(rank, idx)
def validate_exclusive_idx(rank: int, ex_idx: int):
"""
Validates that ex_idx is a valid exclusive index
for the given shape.
"""
assert isinstance(ex_idx, Dim)
assert isinstance(rank, Dim)
assert ex_idx > 0 and ex_idx <= rank
# "Wraps" a dim (up to one time) for the given rank, allowing dims to be
# specified using negative indices. If `wrap_scalar` is true then scalar
# tensors of rank 0 will allow dimensions in the range [-1, 0]. Otherwise,
# idx should be in the range [-rank, rank-1].
def canonicalize_dim(rank: int, idx: int, wrap_scalar: bool = True) -> int:
if rank < 0:
msg = f"Rank cannot be negative but got {rank}"
raise IndexError(msg)
if rank == 0:
if not wrap_scalar:
msg = f"Dimension specified as {idx} but tensor has no dimensions"
raise IndexError(msg)
rank = 1
if idx >= 0 and idx < rank:
return idx
if idx < 0:
_idx = idx + rank
else:
_idx = idx
if _idx < 0 or _idx >= rank:
# Same error message as in aten/src/ATen/WrapDimUtils.h:49
msg = f"Dimension out of range (expected to be in range of [{-rank}, {rank - 1}], but got {idx})"
raise IndexError(msg)
return _idx
# Takes a dimension or sequence of dimensions and "wraps" them,
# mapping negative offsets to positive ones
@overload
def canonicalize_dims(
rank: int, indices: Sequence[int], wrap_scalar: bool = True
) -> Tuple[int, ...]:
pass
@overload
def canonicalize_dims(rank: int, indices: int, wrap_scalar: bool = True) -> int:
pass
def canonicalize_dims(rank, indices, wrap_scalar=True):
if isinstance(indices, Dim):
return canonicalize_dim(rank, indices, wrap_scalar)
return tuple(canonicalize_dim(rank, x, wrap_scalar) for x in indices)
def is_valid_permutation(rank: int, perm: DimsSequenceType) -> bool:
"""
Validates that perm is a permutation of length rank.
"""
return isinstance(perm, Sequence) and sorted(perm) == list(range(rank))
def is_same_shape(a: Sequence, b: Sequence) -> bool:
"""
Compares two shapes a and b, returning True if they are the same
(their ranks and corresponding lengths match) and False otherwise.
"""
return tuple(a) == tuple(b)
def is_cpu_scalar_tensor(a: Any) -> bool:
return isinstance(a, TensorLike) and a.ndim == 0 and a.device.type == "cpu"
def check_same_device(*args, allow_cpu_scalar_tensors):
"""
Checks that all Tensors in args have the same device.
Raises a RuntimeError when:
- args contains an object whose type is not Tensor or Number
- two Tensor objects in args have different devices, unless one is a CPU scalar tensor and allow_cpu_scalar_tensors is True
"""
# Short-circuits if all (one or fewer) arguments are trivially on the same device
if len(args) <= 1:
return
# Note: cannot initialize device to the first arg's device (it may not have one)
device = None
for arg in args:
if isinstance(arg, Number):
continue
elif isinstance(arg, TensorLike):
if allow_cpu_scalar_tensors and is_cpu_scalar_tensor(arg):
continue
if device is None:
device = arg.device
if device != arg.device:
msg = (
"Tensor on device "
+ str(arg.device)
+ " is not on the expected device "
+ str(device)
+ "!"
)
raise RuntimeError(msg)
else:
msg = (
"Unexpected type when checking for same device, " + str(type(arg)) + "!"
)
raise RuntimeError(msg)
def canonicalize_device(device: DeviceLikeType) -> torch.device:
if isinstance(device, torch.device):
return device
assert isinstance(device, str)
return torch.device(device)
# Asserts if any of the following are true:
# - a non-scalar or non-Tensor is given
# - the shape of any tensors is distinct
def check_same_shape(*args, allow_cpu_scalar_tensors: bool):
"""
Checks that all Tensors in args have the same shape.
Raises a RuntimeError when:
- args contains an object whose type is not Tensor or Number
- two Tensor objects in args have different devices
"""
shape = None
for arg in args:
if isinstance(arg, Number):
continue
elif isinstance(arg, TensorLike):
if allow_cpu_scalar_tensors and is_cpu_scalar_tensor(arg):
continue
if shape is None:
shape = arg.shape
if not is_same_shape(shape, arg.shape):
msg = f"Shape {arg.shape} is not the expected shape {shape}!"
raise RuntimeError(msg)
else:
msg = (
"Unexpected type when checking for same shape, " + str(type(arg)) + "!"
)
raise RuntimeError(msg)
# Acquires a common shape, if it exists, from one or more tensor arguments,
# filtering number arguments
def extract_shape(*args, allow_cpu_scalar_tensors: bool) -> Optional[ShapeType]:
shape = None
scalar_shape = None
for arg in args:
if isinstance(arg, Number):
continue
elif isinstance(arg, TensorLike):
if allow_cpu_scalar_tensors and is_cpu_scalar_tensor(arg):
scalar_shape = arg.shape
continue
if shape is None:
shape = arg.shape
if not is_same_shape(shape, arg.shape):
return None
else:
return None
return shape if shape is not None else scalar_shape
# Extracts dimensions that might be passed either as a list/tuple or as varargs.
# A typical case is Tensor.permute .
def extract_dims_from_varargs(
dims: Union[DimsSequenceType, Tuple[DimsSequenceType, ...]]
) -> DimsSequenceType:
if dims and isinstance(dims[0], Sequence):
assert len(dims) == 1
dims = cast(Tuple[DimsSequenceType], dims)
return dims[0]
else:
return cast(DimsSequenceType, dims)
def extract_shape_from_varargs(
shape: Union[ShapeType, Tuple[ShapeType]],
validate=True,
) -> Tuple[int, ...]:
"""
Returns a shape from varargs.
In PyTorch, operations that accept shapes often accept them as varargs, like
foo(*shape). However a user can pass the shape as a sequence of integers,
like this:
foo(1, 2, 3)
or as a sequence of integers
foo((1, 2, 3))
In the first case shape will be a tuple of integers, and in the second case it's a tuple
containing a tuple of integers. This validates those inputs and canonicalizes them
to a tuple of integers.
"""
# Handles tuple unwrapping
if len(shape) == 1 and isinstance(shape[0], Sequence):
shape = shape[0]
if validate:
validate_shape(shape) # type: ignore[arg-type]
return shape # type: ignore[return-value]
def infer_size_shapes(a: ShapeType, b: ShapeType) -> Tuple[int, ...]:
ndim = max(len(a), len(b))
expandedSizes = [0] * ndim
for i in range(ndim - 1, -1, -1):
offset = ndim - 1 - i
dimA = len(a) - 1 - offset
dimB = len(b) - 1 - offset
sizeA = a[dimA] if dimA >= 0 else 1
sizeB = b[dimB] if dimB >= 0 else 1
torch._check(
(sizeA == sizeB) or (sizeA == 1) or (sizeB == 1),
lambda: (
f"The size of tensor a ({sizeA}) must match the size of "
f"tensor b ({sizeB}) at non-jagged dimension {i}"
),
)
# 1s map to the other size (even 0)
expandedSizes[i] = sizeB if sizeA == 1 else sizeA
return tuple(expandedSizes)
def infer_size(shape: ShapeType, numel: int) -> Tuple[int, ...]:
"""
Infers the size of a dim with size -1, if it exists.
Also checks that new shape is compatible with the number of elements.
"""
dim = None
newsize = 1
for i, d in enumerate(shape):
if d == -1:
torch._check(dim is None, lambda: "only one dimension can be inferred")
dim = i
elif d >= 0:
newsize *= d
else:
torch._check(False, lambda: f"invalid shape dimension {d}")
if dim is None:
torch._check(
numel == newsize,
lambda: f"shape '{list(shape)}' is invalid for input of size {numel}",
)
else:
from torch.fx.experimental.symbolic_shapes import definitely_true
torch._check(
newsize != 0,
lambda: (
f"cannot reshape tensor of 0 elements into shape {list(shape)} because the "
f"unspecified dimension size -1 can be any value and is ambiguous"
if definitely_true(numel == 0)
else f"shape '{list(shape)}' is invalid for input of size {numel}"
),
)
torch._check(
numel % newsize == 0,
lambda: f"shape '{list(shape)}' is invalid for input of size {numel}",
)
# Convert to list to produce a compatible error message with core
# PyTorch, which prints sequences in square brackets.
shape = list(shape)
shape[dim] = numel // newsize
# NB: This is pretty important when you have unbacked SymInts.
# Suppose you have (i0, 12) resizing into (2, -1, 12). The old
# range for i0 is typically [2, inf], which means if you divide
# by two the new range should be [1, inf]. But this is bad news
# if you have an unbacked SymInt: we need to reapply the unsound
# assumption that the size is >= 2.
torch._check_is_size(shape[dim])
return tuple(shape)
_integer_dtypes = (
torch.uint8,
torch.uint16,
torch.uint32,
torch.uint64,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
)
_low_precision_dtypes = (torch.float16, torch.bfloat16, torch.complex32)
_complex_dtypes = (torch.complex32, torch.complex64, torch.complex128)
def is_boolean_dtype(dtype: torch.dtype) -> bool:
assert isinstance(dtype, torch.dtype)
return dtype is torch.bool
def is_integer_dtype(dtype: torch.dtype) -> bool:
assert isinstance(dtype, torch.dtype)
return dtype in _integer_dtypes
def is_low_precision_dtype(dtype: torch.dtype) -> bool:
assert isinstance(dtype, torch.dtype)
return dtype in _low_precision_dtypes
def is_float_dtype(dtype: torch.dtype) -> bool:
assert isinstance(dtype, torch.dtype)
return dtype.is_floating_point
def is_complex_dtype(dtype: torch.dtype) -> bool:
assert isinstance(dtype, torch.dtype)
return dtype in _complex_dtypes
def is_grad_dtype(dtype: torch.dtype) -> bool:
"""
Checks if the dtype can require a gradient.
"""
return dtype.is_floating_point or is_complex_dtype(dtype)
_complex_to_real_dtype_map = {
torch.complex128: torch.float64,
torch.complex64: torch.float32,
torch.complex32: torch.float16,
}
_real_to_complex_dtype_map = {
torch.float16: torch.complex32,
torch.bfloat16: torch.complex64,
torch.float32: torch.complex64,
torch.float64: torch.complex128,
}
def corresponding_real_dtype(dtype: torch.dtype) -> torch.dtype:
return _complex_to_real_dtype_map[dtype]
def corresponding_complex_dtype(dtype: torch.dtype) -> torch.dtype:
return _real_to_complex_dtype_map[dtype]
def dtype_to_type(dtype: torch.dtype) -> type:
"""
Computes the corresponding Python type (AKA "type kind") for the
given dtype.
"""
assert isinstance(dtype, torch.dtype)
if dtype is torch.bool:
return bool
if dtype in _integer_dtypes:
return int
if dtype.is_floating_point:
return float
if dtype in _complex_dtypes:
return complex
raise ValueError("Invalid dtype!")
def dtype_to_type_ctor(dtype: torch.dtype) -> Callable[[NumberType], NumberType]:
"""
Computes the corresponding Python type constructor for the
given dtype.
"""
assert isinstance(dtype, torch.dtype)
if dtype is torch.bool:
return lambda x: bool(x)
if dtype in _integer_dtypes:
return sym_int
if dtype.is_floating_point:
return sym_float
if dtype in _complex_dtypes:
# TODO: type error here is real, replace with sym_complex
return lambda x: complex(x) # type: ignore[arg-type]
raise ValueError("Invalid dtype!")
def type_to_dtype(typ: type) -> torch.dtype:
"""
Computes the corresponding dtype for a Number type.
"""
assert isinstance(typ, type)
if typ in (bool, torch.SymBool):
return torch.bool
if typ in (int, torch.SymInt):
return torch.long
if typ in (float, torch.SymFloat):
return torch.get_default_dtype()
# TODO: sym_complex_float?
if typ is complex:
return corresponding_complex_dtype(torch.get_default_dtype())
raise ValueError(f"Invalid type {typ}!")
def get_dtype(x: Union[torch.Tensor, NumberType]):
if isinstance(x, torch.Tensor):
return x.dtype
else:
return type_to_dtype(type(x))
_ordered_types = (bool, int, float, complex)
def check_fp_or_complex(
dtype: torch.dtype, fn_name: str, allow_low_precision_dtypes: bool = True
):
"""
Checks whether the input is floating point or complex.
If allow_low_precision_dtypes is True, it allows having float16, bfloat16, and complex32
"""
torch._check(
is_float_dtype(dtype) or is_complex_dtype(dtype),
lambda: f"{fn_name}: Expected a floating point or complex tensor as input. Got {dtype}",
)
torch._check(
allow_low_precision_dtypes or not is_low_precision_dtype(dtype),
lambda: f"{fn_name}: Half precision dtypes not supported. Got {dtype}",
)
def check_is_matrix(A: TensorLikeType, f_name: str, arg_name: str = "A"):
torch._check(
len(A.shape) >= 2,
lambda: f"{f_name}: The input tensor {arg_name} must have at least 2 dimensions.",
)
def get_higher_type(a: type, b: type) -> type:
"""
Returns the higher of the two given Number types.
The types are ordered bool -> int -> float -> complex.
"""
a, b = _maybe_get_pytype(a), _maybe_get_pytype(b)
# Type checking
if a not in _ordered_types or b not in _ordered_types:
raise RuntimeError(f"Expected builtin numeric types, found {a}, {b}")
if a is b:
return a
for typ in _ordered_types:
if a is typ:
return b
if b is typ:
return a
raise ValueError("Unknown Python scalar type!")
# Returns the higher of two torch datatypes a and b or, if the two
# are not ordered relative to each other, the next
# higher datatype
def get_higher_dtype(
a: Optional[Union[torch.dtype, TensorLikeType, NumberType]],
b: Optional[Union[torch.dtype, TensorLikeType, NumberType]],
) -> Optional[torch.dtype]:
"""
Computes the "lowest" datatype that is weakly
"higher" than both a and b.
"""
# Type checking
assert a is None or isinstance(a, (torch.dtype, TensorLike, Number))
assert b is None or isinstance(b, (torch.dtype, TensorLike, Number))
def _extract_dtype(
x: Optional[Union[torch.dtype, TensorLikeType, NumberType]]
) -> Optional[torch.dtype]:
if x is None:
return None
if isinstance(x, torch.dtype):
return x
if isinstance(x, TensorLike):
return x.dtype
if isinstance(x, Number):
return type_to_dtype(type(x))
raise RuntimeError("Unexpected type given to _extract_dtype!")
a, b = _extract_dtype(a), _extract_dtype(b)
if a is b:
return a
if a is None:
return b
if b is None:
return a
ordered_datatypes = (
(torch.bool,),
(torch.uint8, torch.int8),
(torch.int16,),
(torch.int32,),
(torch.int64,),
(torch.float16, torch.bfloat16),
(torch.float32,),
(torch.float64,),
(torch.complex32,),
(torch.complex64,),
(torch.complex128,),
)
for idx, dtypes in enumerate(ordered_datatypes):
if a in dtypes and b in dtypes:
return ordered_datatypes[idx + 1][0]
if a in dtypes:
return b
if b in dtypes:
return a
raise RuntimeError("Unexpected termination!")
def check_pin_memory(pin_memory: bool):
torch._check_not_implemented(
not pin_memory, lambda: "PrimTorch does not support pinned memory"
)
def check_layout(layout: torch.layout):
torch._check_not_implemented(
layout == torch.strided, lambda: f"PrimTorch doesn't support layout={layout}"
)
# TODO: maybe unify with can_cast_to?
def is_weakly_lesser_type(a: type, b: type) -> bool:
"""
Compares two types, a and b, returning True if a is weakly "less" than b.
The comparison is determined by the following type ordering: bool, int, float, complex.
"""
a, b = _maybe_get_pytype(a), _maybe_get_pytype(b)
if a not in _ordered_types or b not in _ordered_types:
raise RuntimeError(f"Expected builtin numeric types, found {a}, {b}")
for typ in _ordered_types:
if a == typ:
return True
if b == typ:
return False
raise RuntimeError("Unexpected termination!")
def can_safe_cast_to(*, cast_to: torch.dtype, cast_from: torch.dtype) -> bool:
for fn in (is_complex_dtype, is_float_dtype, is_integer_dtype, is_boolean_dtype):
if fn(cast_to):
return True
if fn(cast_from):
return False
raise ValueError(f"Received unknown dtypes {cast_to}, {cast_from}!")
def check_same_dtype(*args):
"""
Checks that all Tensors in args have the same device and that all Numbers have the
same corresponding Python type.
Raises a RuntimeError when:
- args contains an object whose type is not Tensor or Number
- two Tensors objects in args have different dtypes
- two Number objects in args have different types
- there are Tensors and Numbers in args, and one of those Tensors corresponding
Python types is different from the type of one of those Numbers
"""
full_dtype = None
scalar_type = None
for arg in args:
if isinstance(arg, Number):
# Scalar type checking is disabled (and may be removed in the future)
continue
# if scalar_type is None:
# scalar_type = type(arg)
# if scalar_type is not type(arg):
# msg = (
# "Scalar of type "
# + str(type(arg))
# + " is not the expected type of "
# + str(scalar_type)
# + "!"
# )
# raise RuntimeError(msg)
elif isinstance(arg, TensorLike):
if full_dtype is None:
full_dtype = arg.dtype
if scalar_type is None:
scalar_type = dtype_to_type(arg.dtype)
if full_dtype is not arg.dtype:
msg = (
"Tensor with dtype "
+ str(arg.dtype)
+ " is not the expected dtype of "
+ str(full_dtype)
+ "!"
)
raise RuntimeError(msg)
arg_type = dtype_to_type(arg.dtype)
if arg_type is not scalar_type:
msg = (
"Tensor with corresponding Python type "
+ str(arg_type)
+ " is not the expected type of "
+ str(scalar_type)
+ "!"
)
raise RuntimeError(msg)
else:
msg = (
"Unexpected type when checking for same dtype, " + str(type(arg)) + "!"
)
raise RuntimeError(msg)
# Maps datatypes to their computation types for elementwise operations
_computation_dtype_map = {
torch.bfloat16: torch.float32,
torch.float16: torch.float32,
torch.complex32: torch.complex64,
}
def get_computation_dtype(dtype: torch.dtype) -> torch.dtype:
return _computation_dtype_map.get(dtype, dtype)
_cpu_acc_type_map = {
torch.bfloat16: torch.float64,
torch.float16: torch.float64,
torch.float32: torch.float64,
torch.complex32: torch.complex128,
torch.complex64: torch.complex128,
}
def get_acc_type(dtype: torch.dtype, device: torch.device) -> torch.dtype:
# Equivalent to at::toAccumulateType, prefer computation_dtype where possible
if device.type == "cpu":
return _cpu_acc_type_map.get(dtype, dtype)
else:
return get_computation_dtype(dtype)
class ELEMENTWISE_TYPE_PROMOTION_KIND(Enum):
DEFAULT = (0,)
NO_OPMATH = (1,)
INT_TO_FLOAT = (2,)
ALWAYS_BOOL = (3,)
COMPLEX_TO_FLOAT = (4,)
BOOL_TO_LONG = (5,)
class REDUCTION_OUTPUT_TYPE_KIND(Enum):
SAME = (0,)
COMPLEX_TO_FLOAT = (1,) # for complex types outputs corresponding real type
KEEP_PROMOTED_TYPE = (2,) # keep output in opmath type, needed for mean
ALWAYS_BOOL = (3,)
# Describes the return type of the primitive:
#
# - NEW, a new tensor is created
# - VIEW, a view of an input tensor is returned
# - INPLACE, one or more input tensors is modified
#
# these descriptors are mututally exclusive and exhaustive.
class RETURN_TYPE(Enum):
NEW = (0,)
VIEW = (1,)
INPLACE = (2,)
NONE = (3,)
# TODO: when NumberType contains the sym types, can simplify this
def number_type(
x: Union[NumberType, torch.SymInt, torch.SymFloat, torch.SymBool]
) -> Type:
if isinstance(x, torch.SymInt):
return int
elif isinstance(x, torch.SymFloat):
return float
elif isinstance(x, torch.SymBool):
return bool
else:
return type(x)
def expr_type(x: sympy.Basic) -> Type:
import sympy
if x.kind is sympy.core.kind.BooleanKind:
return bool
elif x.is_integer: # type: ignore[attr-defined]
return int
else:
# NB: Not strictly correct, but we don't support SymPy complex or bool.
return float
# TODO: document type promotion kinds
def elementwise_dtypes(
*_args,
type_promotion_kind: ELEMENTWISE_TYPE_PROMOTION_KIND,
) -> Tuple[torch.dtype, torch.dtype]:
"""
Computes the computation and result dtypes for elementwise type promotion
on the given arguments and with the given elementwise type promotion kind.
Note that not all inputs to an elementwise operation necessarily participate in type promotion.
For example, the "alpha" parameter of torch.add does not participate in type promotion,
although it may be cast to the Python type corresponding to the computation dtype that
the type promotion algorithm determines.
Default elementwise type promotion, which all other type promotion kinds tweak (see below),
first decides which of four ordered types to use:
bool -> integer -> floating point -> complex
The selected type is the "lowest" type in the above list such that all number arguments
have a weakly "lower" type and all tensor arguments have a weakly lower corresponding
type for their dtype.
Once the type is determined, the particular result dtype is found. The dtypes are
partially ordered as follows:
bool -> uint8, int8 -> int16 -> int32 -> int64 ->
float16, bfloat16 -> float32 -> float64 -> complex32 -> complex64 -> complex128
The result dtype is selected by:
- if no tensor's dtype has the same corresponding type as the one selected,
then the result dtype is the (default) dtype corresponding to the selected type
(for example, 1.5 + an integer tensor has a result dtype of the default floating point dtype)
- if the result type is complex then the dtype is:
- the default complex dtype if there are no floating point or complex tensors
- if there are floating point or complex tensors with one or more dimensions, then
the complex dtype corresponding to the highest corresponding complex dtype among those tensors
(for example, double + cfloat -> cdouble)
- if there are only floating point or complex tensors with zero dimensions, then
the complex dtype corresponding to the highest corresponding complex dtype among those tensors
- if the first two cases do not apply, the result dtype is the highest dtype among
all tensors with one or more dimensions of the output type, and if there are no such
tensors then it's the highest dtype among all tensors with zero dimensions of the output type
(for example, long + half -> half, even if the half tensor has zero dimensions)
The "corresponding complex dtypes" are:
float16 -> complex32
bfloat16 -> complex64
float32 -> complex64
float64 -> complex128
complex32 -> complex32
complex64 -> complex64
complex128 -> complex128
The DEFAULT type promotion kind computes per above, and then uses the result dtype to pick a computation
dtype by mapping low precision floating point and complex dtypes as follows:
float16 -> float32
bfloat16 -> float32
complex32 -> complex64
This is referred to as "op math", and the NO_OPMATH type promotion kind disables this mapping, making the
computation dtype the same as the result dtype when it's selected. NO_OPMATH is appropriate for kernels
which perform no mathematical operations on their tensors (see below for examples).
The INT_TO_FLOAT type promotion kind maps boolean and integer result dtypes to the default floating point dtype,
and computation dtypes to the appropriate op math dtype.
The COMPLEX_TO_FLOAT type promotion kind maps complex result dtypes to the corresponding float dtype, following this
mapping:
complex32 -> float16
complex64 -> float32
complex128 -> float64
Note that COMPLEX_TO_FLOAT derives the computation dtype as the DEFAULT setting does.
The BOOL_TO_LONG type promotion kind maps boolean computation and result dtypes to long.
The ALWAYS_BOOL type promotion kind always sets the result dtype to bool.
Example operators for each type promotion option:
DEFAULT : add
NO_OPMATH : where, nextafter, cat
INT_TO_FLOAT : sin
COMPLEX_TO_FLOAT : abs
BOOL_TO_LONG : pow
ALWAYS_BOOL : eq
"""
args = tuple(x for x in _args if x is not None)
highest_type: type = bool
# Import sympy locally, as importing it eagerly at a module level is too slow
# See https://dev-discuss.pytorch.org/t/delving-into-what-happens-when-you-import-torch/1589
import sympy
for x in args:
if not isinstance(x, (Number, TensorLike, sympy.Basic)):
msg = f"Unexpected type {str(type(x))} when computing elementwise type promotion!"
raise ValueError(msg)
if isinstance(x, Number):
highest_type = get_higher_type(highest_type, number_type(x))
elif isinstance(x, sympy.Basic):
highest_type = get_higher_type(highest_type, expr_type(x))
else:
# x is a TensorLike
highest_type = get_higher_type(highest_type, dtype_to_type(x.dtype))
result_dtype = None
def _find_highest_dtype_filtered(
args, filter, *, float_as_complex=False
) -> Optional[torch.dtype]:
zero_dim_tensor_dtype = None
one_plus_dim_tensor_dtype = None
for x in args:
if isinstance(x, TensorLike) and filter(x.dtype):
_dtype = x.dtype
if float_as_complex and is_float_dtype(_dtype):
_dtype = corresponding_complex_dtype(_dtype)
if x.ndim == 0:
zero_dim_tensor_dtype = get_higher_dtype(
zero_dim_tensor_dtype, _dtype
)
else:
# x.ndim > 0
one_plus_dim_tensor_dtype = get_higher_dtype(
one_plus_dim_tensor_dtype, _dtype
)
# Prefers dtype of tensors with one or more dimensions
if one_plus_dim_tensor_dtype is not None:
return one_plus_dim_tensor_dtype
return zero_dim_tensor_dtype
if highest_type is float:
result_dtype = _find_highest_dtype_filtered(args, is_float_dtype)
result_dtype = (
torch.get_default_dtype() if result_dtype is None else result_dtype
)
elif highest_type is complex:
result_dtype = _find_highest_dtype_filtered(
args,
lambda x: is_float_dtype(x) or is_complex_dtype(x),
float_as_complex=True,
)
if result_dtype is None:
result_dtype = corresponding_complex_dtype(torch.get_default_dtype())
elif highest_type is int:
result_dtype = _find_highest_dtype_filtered(args, is_integer_dtype)
result_dtype = torch.long if result_dtype is None else result_dtype
else:
# highest_type is bool
result_dtype = torch.bool
if type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT:
return get_computation_dtype(result_dtype), result_dtype
elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH:
return result_dtype, result_dtype
elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT:
if is_integer_dtype(result_dtype) or is_boolean_dtype(result_dtype):
result_dtype = torch.get_default_dtype()
return get_computation_dtype(result_dtype), result_dtype
elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT:
# NOTE: computation can still occur in a complex dtype
computation_dtype = get_computation_dtype(result_dtype)
if is_complex_dtype(result_dtype):
result_dtype = corresponding_real_dtype(result_dtype)
return computation_dtype, result_dtype
elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.BOOL_TO_LONG:
if is_boolean_dtype(result_dtype):
return torch.long, torch.long
return get_computation_dtype(result_dtype), result_dtype
elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL:
return get_computation_dtype(result_dtype), torch.bool
else:
raise ValueError(f"Unknown type promotion kind {str(type_promotion_kind)}")
def reduction_dtypes(
arg,
output_dtype_kind: REDUCTION_OUTPUT_TYPE_KIND,
dtype: Optional[torch.dtype] = None,
) -> Tuple[torch.dtype, Optional[torch.dtype]]:
# even though some reductions, like amin or amax, don't strictly require type promotion,
# all the math ops (including comparisons) are still defined only for a computation type,
# so promotion will still happen. We are doing it explicitly here
inp_dtype = dtype if dtype is not None else arg.dtype
computation_dtype = get_computation_dtype(inp_dtype)
if (
output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.SAME
or output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT
):
result_dtype = dtype if dtype else arg.dtype
if (
output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT
and is_complex_dtype(result_dtype)
):
result_dtype = corresponding_real_dtype(result_dtype)
elif output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.KEEP_PROMOTED_TYPE:
result_dtype = None
else: # ALWAYS_BOOL
result_dtype = torch.bool
return computation_dtype, result_dtype
# This function's logic is borrowed from the following functions defined in C++:
# batched_matrix_contiguous_strides and contiguous_strides
def make_contiguous_strides_for(
shape: ShapeType, row_major: bool = True
) -> Tuple[Union[_IntLikeT, int], ...]:
"""
Returns the strides of a contiguous tensor if row_major
If row_major=True, it returns the strides of a contiguous batch of Fortran-contiguous matrices
This is often used when calling external libraries like BLAS/LAPACK/cuSolver...
"""
# contiguous_strides from c10/util/strides.h
validate_shape(shape)
if not shape:
return ()
from torch.fx.experimental.symbolic_shapes import is_nested_int
multiplier: Union[_IntLikeT, int] = 1
strides = []
for l in reversed(shape):
strides.append(multiplier)
multiplier *= (
l if is_nested_int(l) else sym_max(l, 1)
) # type:ignore[assignment]
result = tuple(reversed(strides))
# batched_matrix_contiguous_strides from aten/src/ATen/native/LinearAlgebraUtils.h
if row_major:
return result
else:
if len(shape) < 2:
return result
return result[:-2] + (1, max(shape[-2], 1))
def make_channels_last_1d_strides_for(
shape: Sequence[_IntLikeT],
) -> Tuple[Union[_IntLikeT, int], ...]:
torch._check(
len(shape) == 3,
lambda: "Only tensors of rank 3 can use the channels_last_1d memory format",
)
multiplier: Union[_IntLikeT, int] = 1
strides: List[Union[_IntLikeT, int]] = [0] * 3
for idx in (1, -1, 0):
# NOTE: intentionally divergence from make_contiguous_strides_for
# This is consistent with eager
strides[idx] = multiplier
multiplier *= shape[idx]
return tuple(strides)
def make_channels_last_2d_strides_for(
shape: Sequence[_IntLikeT],
) -> Tuple[Union[_IntLikeT, int], ...]:
# TODO: maybe inform the user of channels_last_3d if rank of the tensor is 5?
torch._check(
len(shape) == 4,
lambda: "Only tensors of rank 4 can use the channels_last memory format",
)
multiplier: Union[_IntLikeT, int] = 1
strides: List[Union[_IntLikeT, int]] = [0] * 4
for idx in (1, -1, -2, 0):
# NOTE: intentionally divergence from make_contiguous_strides_for
# This is consistent with eager
strides[idx] = multiplier
multiplier *= shape[idx]
return tuple(strides)
def make_channels_last_3d_strides_for(
shape: Sequence[_IntLikeT],
) -> Tuple[Union[_IntLikeT, int], ...]:
torch._check(
len(shape) == 5,
lambda: "Only tensors of rank 5 can use the channels_last_3d memory format",
)
multiplier: Union[_IntLikeT, int] = 1
strides: List[Union[_IntLikeT, int]] = [0] * 5
for idx in (1, -1, -2, -3, 0):
# NOTE: intentionally divergence from make_contiguous_strides_for
# This is consistent with eager
strides[idx] = multiplier
multiplier *= shape[idx]
return tuple(strides)
def make_channels_last_strides_for(
shape: Sequence[_IntLikeT],
) -> Tuple[Union[_IntLikeT, int], ...]:
ndim = len(shape) if isinstance(shape, Sequence) else 1
if ndim == 3:
return make_channels_last_1d_strides_for(shape)
elif ndim == 4:
return make_channels_last_2d_strides_for(shape)
elif ndim == 5:
return make_channels_last_3d_strides_for(shape)
else:
raise RuntimeError(
f"no channels last format strides exist in {ndim} dimensions"
)
def compute_reduction_output_shape(
shape: ShapeType, dimensions: Sequence
) -> Tuple[int, ...]:
for idx in dimensions:
validate_idx(len(shape), idx)
new_shape = []
for idx in range(len(shape)):
if idx in dimensions:
continue
new_shape.append(shape[idx])
return tuple(new_shape)
def validate_no_repeating_dims(dims: Sequence):
if len(dims) != len(set(dims)):
raise RuntimeError("duplicate value in the list of dims")
def reduction_dims(shape: ShapeType, dims: Optional[Sequence]) -> Tuple[int, ...]:
if dims is None:
return tuple(range(len(shape)))
dims = tuple(canonicalize_dim(len(shape), idx) for idx in dims)
validate_no_repeating_dims(dims)
return dims
def set_correction(
unbiased: Optional[bool] = None,
correction: Optional[NumberType] = None,
) -> float:
if correction is not None and unbiased is not None:
raise RuntimeError("cannot specify both correction and unbiased arguments")
elif correction is None and unbiased is None:
correction = 1.0
elif correction is None and unbiased is not None:
correction = 0.0 if unbiased is False else 1.0
# NB: we don't actually support symint here, but it's harmless to accept
if not isinstance(correction, (IntLike, FloatLike)):
raise ValueError("correction argument should be integer or float")
if correction < 0:
raise ValueError("correction argument should be non-negative")
return sym_float(correction)
def compute_required_storage_length(
shape: ShapeType, strides: StrideType, storage_offset: int
) -> int:
"""Computes the minimum storage size to hold the given tensor geometry.
Example
=======
This is the size of a newly allocated tensor's storage, in units of elements
>>> t = torch.empty((10, 20))
>>> compute_required_storage_length(t.shape, t.stride(), t.storage_offset())
200
>>> # xdoctest: +SKIP(failing)
>>> t2 = torch.empty_strided((1, 2, 3), (5, 7, 11))
>>> size = compute_required_storage_length(t2.shape, t2.stride(), t2.storage_offset())
>>> size == t.storage().size()
True
A valid tensor may have a larger storage size, but never smaller
>>> slice = torch.empty(100)[20:40]
>>> slice.storage().size()
100
>>> compute_required_storage_length(slice.shape, slice.stride(), slice.storage_offset())
40
"""
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
# Short-circuits if the shape has no elements
if guard_size_oblivious(reduce(operator.mul, shape, 1) == 0):
return 0
max_offset = sum((x - 1) * y for x, y in zip(shape, strides))
# +1 to account for the first element which offsets are taken from
return 1 + storage_offset + max_offset
def check_in_bounds_for_storage(
a: torch.TypedStorage, shape: ShapeType, strides: StrideType, storage_offset: int
):
"""
Determines if the given shape, strides, and offset are valid for the given storage.
"""
required_length = compute_required_storage_length(shape, strides, storage_offset)
if a.size() < required_length:
msg = (
f"Can't view a storage of size {a.size()} with an offset of {storage_offset}, "
f"shape of {str(shape)}, and strides of {str(strides)}, "
f"which requires a storage of size {required_length}"
)
raise ValueError(msg)
# NOTE: This function should ideally be removed, but some Meta internal models
# packaged with `torch.package` are using it, so it will have to be removed
# at some point in the future when those models no longer use this function.
@deprecated(
"`torch._prims_common.check` is deprecated and will be removed in the future. "
"Please use `torch._check*` functions instead.",
category=FutureWarning,
)
def check(
b: bool, s: Callable[[], str], exc_type: Type[Exception] = RuntimeError
) -> None:
"""
Helper function for raising an error_type (default: RuntimeError) if a boolean condition fails.
Error message is a callable producing a string (to avoid wasting time
string formatting in non-error case, and also to make it easier for torchdynamo
to trace.)
.. note:: This function is planned for removal in the future. Please use
`torch._check*` functions instead.
"""
torch._check_with(exc_type, b, s)
# This combines is_channels_last_strides_2d and is_channels_last_strides_3d in
# c10/core/MemoryFormat.h into one function
def are_strides_like_channels_last(
shape: Sequence[int], strides: Sequence[int]
) -> bool:
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
ndim = len(shape)
if ndim == 4:
# Check for channels_last_2d
dim_order = [1, 3, 2, 0]
elif ndim == 5:
# Check for channels_last_3d
dim_order = [1, 4, 3, 2, 0]
else:
return False
if guard_size_oblivious(strides[1] == 0):
return False
min = 0
for d in dim_order:
if guard_size_oblivious(shape[d] == 0):
return False
if guard_size_oblivious(strides[d] < min):
return False
if d == 0 and min == strides[1]:
return False
min = strides[d]
if guard_size_oblivious(strides[d] > 1):
min *= shape[d]
return True
def suggest_memory_format(x: TensorLikeType) -> torch.memory_format:
if x.layout != torch.strided:
return torch.contiguous_format
if are_strides_like_channels_last(x.shape, x.stride()):
return torch.channels_last if x.ndim == 4 else torch.channels_last_3d
return torch.contiguous_format
def prod(xs: Sequence[NumberType]) -> NumberType:
"""Product of elements in input sequence. Returns 1 for empty sequence"""
return reduce(operator.mul, xs, 1)
def is_expandable_to(shape: ShapeType, desired: ShapeType) -> bool:
"""Checks if a shape can be expanded to another shape.
This is equivalent to checking if the two shapes are broadcastable.
"""
# This is a Python implementation of
# aten/src/ATen/ExpandUtils.h:is_expandable_to
if len(shape) > len(desired):
return False
for i in range(len(shape)):
if shape[-i - 1] != desired[-i - 1] and shape[-i - 1] != 1:
return False
return True
def mask_tensor(mask: TensorLikeType, t: TensorLikeType):
"""
Similar to torch.where(mask, t, 0) but if t is boolean,
result is also boolean and not promoted to int.
"""
# torch.where(mask, t, False) is equivalent
# but feels hacky and might break in the future
if t.dtype is torch.bool:
return mask.logical_and(t)
else:
return torch.where(mask, t, 0)
def get_aten_op(fn: Callable, name: str):
"""
Given the __module__ of reference and its name, it returns
(our best guess of) the ATen name of the associated operation
Note: In ATen, the __name__ of a function within a module often
starts by the module name. E.g. linalg_eigh, or special_zeta
"""
module = fn.__module__
prefix = "torch._refs"
assert module.startswith(prefix)
module = module[len(prefix) :]
# We want to go from .special / .nn.functional
# to special and special_ / nn_functional_
if module:
module = module[1:]
module = module.replace(".", "_")
module = module + "_"
return getattr(torch._ops.ops.aten, f"{module}{name}")
def dtype_or_default(dtype: Optional[torch.dtype]) -> torch.dtype:
return dtype if dtype is not None else torch.get_default_dtype()
def device_or_default(device: Optional[DeviceLikeType]) -> DeviceLikeType:
return device if device is not None else torch.device("cpu")
def layout_or_default(layout: Optional[torch.layout]) -> torch.layout:
return layout if layout is not None else torch.strided
def clone_preserve_strides(x):
needed_size = compute_required_storage_length(
x.size(), x.stride(), x.storage_offset()
)
# Our eager implementations for *_scatter ops are all primitives w.r.t autograd,
# so these as_strided() calls are not seen by autograd.
# We need to mimic this behavior in our ref/prim implementations.
# TODO: a better way to handle this would be with a new op, "_unsafe_as_strided"
# We should revisit this when we add a compositional as_strided op,
# and also as part of https://github.com/pytorch/pytorch/issues/90507
try:
old = torch._C._dispatch_tls_is_dispatch_key_excluded(
torch._C.DispatchKey.ADInplaceOrView
)
torch._C._dispatch_tls_set_dispatch_key_excluded(
torch._C.DispatchKey.ADInplaceOrView, True
)
buffer = torch.as_strided(x, (needed_size,), (1,), 0).clone()
return torch.as_strided(buffer, x.size(), x.stride(), x.storage_offset())
finally:
torch._C._dispatch_tls_set_dispatch_key_excluded(
torch._C.DispatchKey.ADInplaceOrView, old
)
def alert_not_deterministic(caller: str):
if torch.are_deterministic_algorithms_enabled():
if torch.is_deterministic_algorithms_warn_only_enabled():
warnings.warn(
f"{caller} does not have a deterministic implementation, but you set "
f"'torch.use_deterministic_algorithms(True, warn_only=True)'. "
f"You can file an issue at https://github.com/pytorch/pytorch/issues "
f"to help us prioritize adding deterministic support for this operation."
)
else:
torch._check(
False,
lambda: (
f"{caller} does not have a deterministic implementation, but you set "
f"'torch.use_deterministic_algorithms(True)'. You can turn off "
f"determinism just for this operation, or you can use the "
f"'warn_only=True' option, if that's acceptable for your application. "
f"You can also file an issue at https://github.com/pytorch/pytorch/issues "
f"to help us prioritize adding deterministic support for this operation."
),
)
class CUDARngStateHelper:
@staticmethod
def get_torch_state_as_tuple(fake_mode=nullcontext()):
if not torch.cuda.is_available():
raise RuntimeError("CUDA not available")
with fake_mode:
seed = torch.tensor(torch.cuda.initial_seed())
offset = torch.tensor(torch.cuda._get_rng_state_offset())
return seed, offset
@staticmethod
def set_torch_state_tensor(seed, offset):
# Rng state is [64-bit seed, 64-bit offset]
seed_portion = seed.reshape([1]).view(torch.uint8)
offset_portion = offset.reshape([1]).view(torch.uint8)
new_state = torch.cat([seed_portion, offset_portion])
torch.cuda.set_rng_state(new_state)
@staticmethod
def set_new_offset(relative_offset):
torch.cuda._set_rng_state_offset(relative_offset.item())
|