File: __init__.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2028 lines) | stat: -rw-r--r-- 66,486 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
# mypy: allow-untyped-defs
from __future__ import annotations

import operator
import typing
import warnings
from contextlib import nullcontext
from enum import Enum
from functools import reduce
from typing import (
    Any,
    Callable,
    cast,
    List,
    NamedTuple,
    Optional,
    overload,
    Sequence,
    Tuple,
    Type,
    TYPE_CHECKING,
    TypeVar,
    Union,
)
from typing_extensions import deprecated, TypeAlias

import torch
from torch import sym_float, sym_int, sym_max


if TYPE_CHECKING:
    # Import the following modules during type checking to enable code intelligence features,
    # such as auto-completion in tools like pylance, even when these modules are not explicitly
    # imported in user code.

    import sympy

    class _WorksWithInt(typing.Protocol):
        def __add__(self, other: Any) -> typing.Self:
            ...

        def __radd__(self, other: Any) -> typing.Self:
            ...

        def __mul__(self, other: Any) -> typing.Self:
            ...

        def __rmul__(self, other: Any) -> typing.Self:
            ...

    _IntLikeT = TypeVar("_IntLikeT", bound=_WorksWithInt)


ShapeType: TypeAlias = Union[torch.Size, List[int], Tuple[int, ...]]
StrideType: TypeAlias = Union[List[int], Tuple[int, ...]]
DimsType: TypeAlias = Union[int, List[int], Tuple[int, ...]]
DimsSequenceType: TypeAlias = Union[List[int], Tuple[int, ...]]
# TODO: Type[torch.SymInt], Type[torch.SymFloat]
NumberTypeType: TypeAlias = Union[Type[bool], Type[int], Type[float], Type[complex]]
# TODO: This needs a lot more type annotations
# NumberType = Union[bool, int, float, complex, torch.SymInt, torch.SymFloat]
NumberType: TypeAlias = Union[bool, int, float, complex]
RealNumberType: TypeAlias = Union[bool, int, float]

Number = (bool, int, float, complex, torch.SymInt, torch.SymFloat, torch.SymBool)
# I don't call it Integral because numbers.Integral includes bool, but IntLike
# does not
Dim = int
IntLike = (int, torch.SymInt)
FloatLike = (float, torch.SymFloat)
BoolLike = (bool, torch.SymBool)
IntWithoutSymInt = int
FloatWithoutSymFloat = float
DeviceLikeType: TypeAlias = Union[str, torch.device, int]
Tensor = torch.Tensor


torch_function_passthrough = {
    torch.device,
    torch.sym_not,
    torch.sym_float,
    torch.sym_int,
    torch.sym_max,
    torch.sym_min,
    torch._sym_sqrt,  # type: ignore[attr-defined]
    torch.sym_ite,
    torch.Tensor.dim,
    torch.Tensor.ndim.__get__,  # type: ignore[attr-defined]
    torch.Tensor.numel,
    torch.Tensor.size,
    torch.Tensor.storage_offset,
    torch.Tensor.stride,
    torch.Tensor.dtype.__get__,  # type: ignore[attr-defined]
    torch.Tensor.is_sparse.__get__,  # type: ignore[attr-defined]
    torch.Tensor.shape.__get__,  # type: ignore[attr-defined]
    torch.Tensor.device.__get__,  # type: ignore[attr-defined]
    torch.Tensor.requires_grad.__get__,  # type: ignore[attr-defined]
    torch.Tensor.layout.__get__,  # type: ignore[attr-defined]
    torch.Tensor.is_contiguous,
    # For TorchRefsMode only
    torch.Tensor.__format__,
    torch.Tensor.__repr__,
    torch.Tensor.requires_grad.__get__,  # type: ignore[attr-defined]
    torch.Tensor.__getitem__,
}


TensorLikeType = torch.Tensor
TensorLike = torch.Tensor
TensorSequenceType: TypeAlias = Union[List[TensorLikeType], Tuple[TensorLikeType, ...]]
TensorOrNumberLikeType: TypeAlias = Union[TensorLikeType, NumberType]

CustomOutParamAnnotation = "__custom_out_param__"


def same_shape(a: ShapeType, b: ShapeType, *, allow_rhs_unbacked=False) -> bool:
    from torch.fx.experimental.symbolic_shapes import guard_size_oblivious

    if len(a) != len(b):
        return False

    for x, y in zip(a, b):
        if allow_rhs_unbacked:
            # TODO: We should check that the symbols are consistent
            # with each other
            if isinstance(y, torch.SymInt):
                continue
        # NB: Naively, you would not expect to have to do an oblivious guard
        # here because there is seemingly no broadcasting here, but in fact we
        # use this in some situations to determine if we need to do an expand
        # on the tensor because they don't line up, so you can definitely end
        # up trying to prove u0 != 1 in this situation.  See
        # python test/test_proxy_tensor.py -k test_cumsum_unbacked
        if guard_size_oblivious(x != y):
            return False

    return True


def _maybe_get_pytype(t):
    if t is torch.SymFloat:
        return float
    elif t is torch.SymInt:
        return int
    elif t is torch.SymBool:
        return bool
    else:
        return t


# TODO: look at using torch.testing.assert_close instead with an option
#   to just compare metadata
def compare_tensor_meta(
    a: TensorLikeType,
    b: TensorLikeType,
    check_sizes=True,
    check_strides=False,
    *,
    allow_rhs_unbacked=False,
    check_conj=True,
):
    """
    Checks that two tensor likes have the same shape,
    dtype and device.

    In the future this will validate additional metadata, like
    strides.
    """
    from torch._subclasses.fake_tensor import MetadataMismatchError

    assert isinstance(a, TensorLike)
    assert isinstance(b, TensorLike)

    if check_sizes and not same_shape(
        a.shape, b.shape, allow_rhs_unbacked=allow_rhs_unbacked
    ):
        msg = f"Shapes {a.shape} and {b.shape} are not equal!"
        raise MetadataMismatchError(msg)

    if a.dtype != b.dtype:
        msg = f"Dtypes {a.dtype} and {b.dtype} are not equal!"
        raise MetadataMismatchError(msg)

    if a.device != b.device:
        # Handles special cuda:0 vs cuda case
        # TODO: we should review why this happens and see about fixing it
        if (str(a.device) == "cuda:0" or str(a.device) == "cuda") and (
            str(b.device) == "cuda:0" or str(b.device) == "cuda"
        ):
            pass
        else:
            msg = f"Devices {a.device} and {b.device} are not equal!"
            raise MetadataMismatchError(msg)

    # Stride checking is currently disabled, see https://github.com/pytorch/pytorch/issues/78050
    if check_strides:
        same_strides, idx = check_significant_strides(a, b)
        if not same_strides:
            msg = f"Stride mismatch! Strides are {a.stride()} and {b.stride()} (mismatched at {idx})!"
            raise MetadataMismatchError(msg)

        if a.storage_offset() != b.storage_offset():
            msg = f"Storage offset mismatch! Storage offsets are {a.storage_offset()} and {b.storage_offset()}!"
            raise MetadataMismatchError(msg)

    if check_conj:
        if a.is_conj() != b.is_conj():
            raise MetadataMismatchError(
                f"Conj mismatch! is_conj is set to {a.is_conj()} and {b.is_conj()}"
            )

    if a.is_neg() != b.is_neg():
        raise MetadataMismatchError(
            f"Neg mismatch! is_neg is set to {a.is_neg()} and {b.is_neg()}"
        )


def _check_strides_helper(
    a: TensorLikeType, b: TensorLikeType, *, only_cuda=True, significant_only=True
) -> Tuple[bool, Optional[int]]:
    # NOTE: only on CUDA because CPU elementwise strides are incorrect in PyTorch
    # See https://github.com/pytorch/pytorch/issues/77553
    # Only compares strides that are "meaningful" -- strides for dimensions with length > 1
    # and for tensors with more than one element
    if (
        not only_cuda or a.device.type == "cuda" or b.device.type == "cuda"
    ) and a.numel() > 0:
        for idx in range(a.ndim):
            check = not significant_only or a.shape[idx] > 1
            if a.stride()[idx] != b.stride()[idx] and check:
                return False, idx

    return True, None


def check_significant_strides(
    a: TensorLikeType, b: TensorLikeType, *, only_cuda=True
) -> Tuple[bool, Optional[int]]:
    return _check_strides_helper(a, b, only_cuda=only_cuda, significant_only=True)


def check_all_strides(
    a: TensorLikeType, b: TensorLikeType, *, only_cuda=True
) -> Tuple[bool, Optional[int]]:
    return _check_strides_helper(a, b, only_cuda=only_cuda, significant_only=False)


# This function is equivalent to compute_contiguous() from TensorImpl.cpp
def is_contiguous(a: TensorLikeType) -> bool:
    """
    Tests whether a tensor is contiguous or not.

    Tensors are contiguous when they have no elements,
    one element, or when they have "nested" strides.
    """
    from torch.fx.experimental.symbolic_shapes import guard_size_oblivious

    if guard_size_oblivious(a.numel() < 2):
        return True

    expected_stride = 1
    for x, y in reversed(tuple(zip(a.shape, a.stride()))):
        # Skips checking strides when a dimension has length 1
        if guard_size_oblivious(x == 1):
            continue

        if guard_size_oblivious(y != expected_stride):
            return False
        expected_stride = expected_stride * x

    return True


# This function is equivalent to compute_channels_last_contiguous_2d() in TensorImpl.cpp
def is_channels_last_contiguous_2d(a: Tensor) -> bool:
    # NHWC or not channels last 2D contiguous
    if a.ndim != 4:
        return False

    from torch.fx.experimental.symbolic_shapes import guard_size_oblivious

    expected_stride = 1
    for idx in (1, 3, 2, 0):
        length = a.shape[idx]
        if guard_size_oblivious(length == 1):
            continue

        stride = a.stride()[idx]
        if guard_size_oblivious(stride != expected_stride):
            return False

        expected_stride *= length

    return True


def is_channels_last_contiguous_3d(a: Tensor) -> bool:
    # NDHWC or not channels last 3D contiguous
    if a.ndim != 5:
        return False

    expected_stride = 1
    for idx in (1, 4, 3, 2, 0):
        length = a.shape[idx]
        if length == 1:
            continue

        stride = a.stride()[idx]
        if stride != expected_stride:
            return False

        expected_stride *= length

    return True


_memory_formats = {
    torch.contiguous_format,
    torch.preserve_format,
    torch.channels_last,
    torch.channels_last_3d,
}


def validate_memory_format(memory_format: torch.memory_format):
    torch._check(
        memory_format in _memory_formats,
        lambda: f"Received unknown memory format {memory_format}!",
    )


def is_contiguous_for_memory_format(  # type: ignore[return]
    a: Tensor, *, memory_format: torch.memory_format
) -> bool:
    validate_memory_format(memory_format)

    if memory_format == torch.contiguous_format:
        return is_contiguous(a)
    if memory_format == torch.channels_last:
        return is_channels_last_contiguous_2d(a)
    if memory_format == torch.channels_last_3d:
        return is_channels_last_contiguous_3d(a)

    torch._check(
        False,
        lambda: f"is_contiguous received unsupported memory format {memory_format}",
    )


# NOTE: that tensors with no elements and channels last is ???
def is_channels_last_contiguous(a: Tensor) -> bool:
    """
    True when a tensor is channels-last contiguous.

    This requires that:

      - the tensor is conceptually either 4 (NHWC) or 5 (NDHWC) dimensions
      - if we name the tensor's dimensions NCHW or NCDHW, then the strides are such that the
        stride of the 'C' dimension (Cs) is 1 and the strides corresponding to
        each dimension (Xs) can be ordered Cs <= Ws <= Hs <= (Ds) <= Ns and are
        "nested" -- so Ws = Cs * Cl, where Cl is the length of the 'C' dimension,
        for example.
    """
    return is_channels_last_contiguous_2d(a) or is_channels_last_contiguous_3d(a)


def is_non_overlapping_and_dense(a: Tensor) -> bool:
    """
    True when a tensor is non-overlapping and dense.

    A tensor is non-overlapping and dense when there exists a permutation of
    its dimensions that is contiguous.
    """

    from torch.fx.experimental.symbolic_shapes import guard_size_oblivious

    if a.is_sparse:
        return False

    # Short-circuits if the tensor is already contiguous or channels-last contiguous
    if is_contiguous(a) or is_channels_last_contiguous(a):
        return True

    # The following is equivalent to compute_non_overlapping_and_dense in TensorImpl.cpp

    # Short-circuits for tensors of rank one, which are
    # non-overlapping and "dense" if their stride is one
    if a.ndim == 1:
        return a.stride()[0] == 1

    # Checks that there exists a permutation of the strides s.t. the tensor would be contiguous
    # Sorts (length, stride) pairs by stride
    #
    # This sort is done in a size-oblivious way, which helps if we do a
    # comparison like 2048*u0 > u0; we just want this to return True
    # (and not worry about what if u0 is zero).
    class K(NamedTuple):
        size: int
        stride: int

        def __lt__(self, other):
            return guard_size_oblivious(self.stride < other.stride)

        def __gt__(self, other):
            return guard_size_oblivious(self.stride > other.stride)

        def __le__(self, other):
            return guard_size_oblivious(self.stride <= other.stride)

        def __ge__(self, other):
            return guard_size_oblivious(self.stride >= other.stride)

        def __eq__(self, other):
            return guard_size_oblivious(self.stride == other.stride)

    lengths_and_strides = sorted(map(K, a.shape, a.stride()))

    expected_stride = 1
    for length, stride in lengths_and_strides:
        if guard_size_oblivious(length == 1):
            continue

        if stride != expected_stride:
            return False

        expected_stride *= length

    return True


# NOTE: Based on the implementation in TensorIterator.cpp, but note that
# the note [Computing output strides] is incorrect, because it
# says that strides will be preserved even if they are not
# "non overlapping and dense", but this is incorrect. The
# output of elementwise operations are always given
# non overlapping and dense strides.
# This is also INCORRECT because it does not model TensorIterator's
# short-circuit, which can cause different strides.
def compute_elementwise_output_logical_to_physical_perm(
    *tensors, _skip_checks=False
) -> List[int]:
    from torch.fx.experimental.symbolic_shapes import guard_size_oblivious

    if not _skip_checks and len(tensors) == 0:
        msg = "Can't compute elementwise output strides for zero tensors!"
        raise ValueError(msg)

    if not _skip_checks:
        check_same_shape(*tensors, allow_cpu_scalar_tensors=True)

    # Filters the tensors to actual tensors
    if not _skip_checks:
        tensors = tuple(
            a
            for a in tensors
            if isinstance(a, TensorLike) and not is_cpu_scalar_tensor(a)
        )

    # Short-circuits for CPU scalar case
    if len(tensors) == 0:
        return []

    # Short-circuits for shapes with zero or one dimensions
    # TODO: are these necessary?
    ndim = tensors[0].ndim
    if ndim == 0:
        return []
    if ndim == 1:
        return [0]

    # Short-circuits if contiguous or channels last, following the fake fast path.
    # This reduces the number of guards we end up making
    is_contiguous = True
    is_channels_last = True
    for t in tensors:
        is_contiguous = is_contiguous and t.is_contiguous(
            memory_format=torch.contiguous_format
        )
        is_channels_last = is_channels_last and t.is_contiguous(
            memory_format=torch.channels_last
        )

    if is_contiguous and not is_channels_last:
        return list(range(ndim))

    if is_channels_last and not is_contiguous:
        return [0, *list(range(2, ndim)), 1]

    shape = tensors[0].shape

    def should_swap(idx_a, idx_b):
        for tensor in tensors:
            stride_a = tensor.stride()[idx_a]
            stride_b = tensor.stride()[idx_b]

            if guard_size_oblivious(stride_a == 0) or guard_size_oblivious(
                stride_b == 0
            ):
                continue

            if guard_size_oblivious(stride_a < stride_b):
                return -1

            if guard_size_oblivious(stride_a > stride_b):
                return 1

            # stride_a == stride_b
            if guard_size_oblivious(shape[idx_a] > shape[idx_b]):
                return 1

        # Note: this case is hit if all strides are zero,
        # or all strides are equal and all dimensions have the same length
        return 0

    # The "sort" order for the permutation is back-to-front, but
    # the natural order for permutations is front-to-back.  Do the
    # sorting back-to-front and then reverse it on output.
    #
    # also, note this returns the logical to physical shape permutation
    perm = list(reversed(range(ndim)))

    # insertion sort with support for ambiguous comparisons
    for i in range(1, ndim):
        dim1 = i
        for dim0 in reversed(range(i)):
            comparison = should_swap(perm[dim0], perm[dim1])
            if comparison > 0:
                perm[dim0], perm[dim1] = perm[dim1], perm[dim0]
                dim1 = dim0
            elif comparison < 0:
                break

    return list(reversed(perm))


def compute_elementwise_output_strides(*tensors) -> Tuple[int, ...]:
    """
    Computes the output strides for elementwise operations.
    """
    if len(tensors) == 0:
        msg = "Can't compute elementwise output strides for zero tensors!"
        raise ValueError(msg)

    check_same_shape(*tensors, allow_cpu_scalar_tensors=True)

    # Filters the tensors to actual tensors
    tensors = tuple(
        a for a in tensors if isinstance(a, TensorLike) and not is_cpu_scalar_tensor(a)
    )

    # Short-circuits for CPU scalar case
    if len(tensors) == 0:
        return ()

    ndim = tensors[0].ndim
    shape = tensors[0].shape

    if ndim == 0:
        return ()
    if ndim == 1:
        return (1,)

    logical_to_physical_perm = compute_elementwise_output_logical_to_physical_perm(
        *tensors, _skip_checks=True
    )
    permuted_shape = apply_perm(shape, logical_to_physical_perm)  # to physical

    new_strides = make_contiguous_strides_for(permuted_shape)
    permuted_strides = apply_perm(
        new_strides, invert_perm(logical_to_physical_perm)
    )  # to logical

    return tuple(permuted_strides)


# Identity permutation is [0, 1, 2]
def apply_perm(inp, perm):
    ndim = len(inp)
    permuted_inp = [-1] * ndim
    for idx, x in enumerate(perm):
        permuted_inp[idx] = inp[x]
    return permuted_inp


def invert_perm(perm):
    ndim = len(perm)
    new_perm = [-1] * ndim
    for idx, x in enumerate(perm):
        new_perm[x] = idx
    return new_perm


#
# Common helper functions
#


def validate_dim_length(length: int):
    """
    Validates that an object represents a valid
    dimension length.
    """

    if isinstance(length, (int, torch.SymInt)):
        torch._check_is_size(length)
    else:
        # sometimes called with sympy expression by inductor
        assert length >= 0


def validate_shape(shape: ShapeType):
    """
    Validates that a sequence represents a valid shape.
    """

    assert isinstance(shape, Sequence), type(shape)
    for l in shape:
        validate_dim_length(l)


def validate_strides(strides: StrideType):
    """
    Verifies the object specifies valid strides.
    """

    assert isinstance(strides, Sequence)
    for stride in strides:
        assert stride >= 0


def validate_idx(rank: int, idx: int):
    """
    Validates that idx is a valid index for the given shape.
    Assumes the index is already canonicalized.
    """

    assert isinstance(idx, Dim)
    assert isinstance(rank, Dim)

    assert idx >= 0 and idx < rank or idx == 0


def validate_dimension_indices(rank: int, indices: DimsSequenceType):
    for idx in indices:
        validate_idx(rank, idx)


def validate_exclusive_idx(rank: int, ex_idx: int):
    """
    Validates that ex_idx is a valid exclusive index
    for the given shape.
    """

    assert isinstance(ex_idx, Dim)
    assert isinstance(rank, Dim)
    assert ex_idx > 0 and ex_idx <= rank


# "Wraps" a dim (up to one time) for the given rank, allowing dims to be
# specified using negative indices. If `wrap_scalar` is true then scalar
# tensors of rank 0 will allow dimensions in the range [-1, 0]. Otherwise,
# idx should be in the range [-rank, rank-1].
def canonicalize_dim(rank: int, idx: int, wrap_scalar: bool = True) -> int:
    if rank < 0:
        msg = f"Rank cannot be negative but got {rank}"
        raise IndexError(msg)

    if rank == 0:
        if not wrap_scalar:
            msg = f"Dimension specified as {idx} but tensor has no dimensions"
            raise IndexError(msg)
        rank = 1

    if idx >= 0 and idx < rank:
        return idx

    if idx < 0:
        _idx = idx + rank
    else:
        _idx = idx

    if _idx < 0 or _idx >= rank:
        # Same error message as in aten/src/ATen/WrapDimUtils.h:49
        msg = f"Dimension out of range (expected to be in range of [{-rank}, {rank - 1}], but got {idx})"
        raise IndexError(msg)

    return _idx


# Takes a dimension or sequence of dimensions and "wraps" them,
# mapping negative offsets to positive ones
@overload
def canonicalize_dims(
    rank: int, indices: Sequence[int], wrap_scalar: bool = True
) -> Tuple[int, ...]:
    pass


@overload
def canonicalize_dims(rank: int, indices: int, wrap_scalar: bool = True) -> int:
    pass


def canonicalize_dims(rank, indices, wrap_scalar=True):
    if isinstance(indices, Dim):
        return canonicalize_dim(rank, indices, wrap_scalar)

    return tuple(canonicalize_dim(rank, x, wrap_scalar) for x in indices)


def is_valid_permutation(rank: int, perm: DimsSequenceType) -> bool:
    """
    Validates that perm is a permutation of length rank.
    """

    return isinstance(perm, Sequence) and sorted(perm) == list(range(rank))


def is_same_shape(a: Sequence, b: Sequence) -> bool:
    """
    Compares two shapes a and b, returning True if they are the same
    (their ranks and corresponding lengths match) and False otherwise.
    """

    return tuple(a) == tuple(b)


def is_cpu_scalar_tensor(a: Any) -> bool:
    return isinstance(a, TensorLike) and a.ndim == 0 and a.device.type == "cpu"


def check_same_device(*args, allow_cpu_scalar_tensors):
    """
    Checks that all Tensors in args have the same device.

    Raises a RuntimeError when:
      - args contains an object whose type is not Tensor or Number
      - two Tensor objects in args have different devices, unless one is a CPU scalar tensor and allow_cpu_scalar_tensors is True
    """
    # Short-circuits if all (one or fewer) arguments are trivially on the same device
    if len(args) <= 1:
        return

    # Note: cannot initialize device to the first arg's device (it may not have one)
    device = None
    for arg in args:
        if isinstance(arg, Number):
            continue
        elif isinstance(arg, TensorLike):
            if allow_cpu_scalar_tensors and is_cpu_scalar_tensor(arg):
                continue

            if device is None:
                device = arg.device

            if device != arg.device:
                msg = (
                    "Tensor on device "
                    + str(arg.device)
                    + " is not on the expected device "
                    + str(device)
                    + "!"
                )
                raise RuntimeError(msg)
        else:
            msg = (
                "Unexpected type when checking for same device, " + str(type(arg)) + "!"
            )
            raise RuntimeError(msg)


def canonicalize_device(device: DeviceLikeType) -> torch.device:
    if isinstance(device, torch.device):
        return device

    assert isinstance(device, str)
    return torch.device(device)


# Asserts if any of the following are true:
#   - a non-scalar or non-Tensor is given
#   - the shape of any tensors is distinct
def check_same_shape(*args, allow_cpu_scalar_tensors: bool):
    """
    Checks that all Tensors in args have the same shape.

    Raises a RuntimeError when:
      - args contains an object whose type is not Tensor or Number
      - two Tensor objects in args have different devices
    """
    shape = None

    for arg in args:
        if isinstance(arg, Number):
            continue
        elif isinstance(arg, TensorLike):
            if allow_cpu_scalar_tensors and is_cpu_scalar_tensor(arg):
                continue

            if shape is None:
                shape = arg.shape

            if not is_same_shape(shape, arg.shape):
                msg = f"Shape {arg.shape} is not the expected shape {shape}!"
                raise RuntimeError(msg)
        else:
            msg = (
                "Unexpected type when checking for same shape, " + str(type(arg)) + "!"
            )
            raise RuntimeError(msg)


# Acquires a common shape, if it exists, from one or more tensor arguments,
# filtering number arguments
def extract_shape(*args, allow_cpu_scalar_tensors: bool) -> Optional[ShapeType]:
    shape = None
    scalar_shape = None

    for arg in args:
        if isinstance(arg, Number):
            continue
        elif isinstance(arg, TensorLike):
            if allow_cpu_scalar_tensors and is_cpu_scalar_tensor(arg):
                scalar_shape = arg.shape
                continue

            if shape is None:
                shape = arg.shape

            if not is_same_shape(shape, arg.shape):
                return None
        else:
            return None

    return shape if shape is not None else scalar_shape


# Extracts dimensions that might be passed either as a list/tuple or as varargs.
# A typical case is Tensor.permute .
def extract_dims_from_varargs(
    dims: Union[DimsSequenceType, Tuple[DimsSequenceType, ...]]
) -> DimsSequenceType:
    if dims and isinstance(dims[0], Sequence):
        assert len(dims) == 1
        dims = cast(Tuple[DimsSequenceType], dims)
        return dims[0]
    else:
        return cast(DimsSequenceType, dims)


def extract_shape_from_varargs(
    shape: Union[ShapeType, Tuple[ShapeType]],
    validate=True,
) -> Tuple[int, ...]:
    """
    Returns a shape from varargs.

    In PyTorch, operations that accept shapes often accept them as varargs, like
    foo(*shape). However a user can pass the shape as a sequence of integers,
    like this:

      foo(1, 2, 3)

    or as a sequence of integers

      foo((1, 2, 3))

    In the first case shape will be a tuple of integers, and in the second case it's a tuple
    containing a tuple of integers. This validates those inputs and canonicalizes them
    to a tuple of integers.
    """

    # Handles tuple unwrapping
    if len(shape) == 1 and isinstance(shape[0], Sequence):
        shape = shape[0]

    if validate:
        validate_shape(shape)  # type: ignore[arg-type]
    return shape  # type: ignore[return-value]


def infer_size_shapes(a: ShapeType, b: ShapeType) -> Tuple[int, ...]:
    ndim = max(len(a), len(b))
    expandedSizes = [0] * ndim

    for i in range(ndim - 1, -1, -1):
        offset = ndim - 1 - i
        dimA = len(a) - 1 - offset
        dimB = len(b) - 1 - offset
        sizeA = a[dimA] if dimA >= 0 else 1
        sizeB = b[dimB] if dimB >= 0 else 1

        torch._check(
            (sizeA == sizeB) or (sizeA == 1) or (sizeB == 1),
            lambda: (
                f"The size of tensor a ({sizeA}) must match the size of "
                f"tensor b ({sizeB}) at non-jagged dimension {i}"
            ),
        )

        # 1s map to the other size (even 0)
        expandedSizes[i] = sizeB if sizeA == 1 else sizeA

    return tuple(expandedSizes)


def infer_size(shape: ShapeType, numel: int) -> Tuple[int, ...]:
    """
    Infers the size of a dim with size -1, if it exists.
    Also checks that new shape is compatible with the number of elements.
    """
    dim = None
    newsize = 1
    for i, d in enumerate(shape):
        if d == -1:
            torch._check(dim is None, lambda: "only one dimension can be inferred")
            dim = i
        elif d >= 0:
            newsize *= d
        else:
            torch._check(False, lambda: f"invalid shape dimension {d}")
    if dim is None:
        torch._check(
            numel == newsize,
            lambda: f"shape '{list(shape)}' is invalid for input of size {numel}",
        )
    else:
        from torch.fx.experimental.symbolic_shapes import definitely_true

        torch._check(
            newsize != 0,
            lambda: (
                f"cannot reshape tensor of 0 elements into shape {list(shape)} because the "
                f"unspecified dimension size -1 can be any value and is ambiguous"
                if definitely_true(numel == 0)
                else f"shape '{list(shape)}' is invalid for input of size {numel}"
            ),
        )
        torch._check(
            numel % newsize == 0,
            lambda: f"shape '{list(shape)}' is invalid for input of size {numel}",
        )
        # Convert to list to produce a compatible error message with core
        # PyTorch, which prints sequences in square brackets.
        shape = list(shape)
        shape[dim] = numel // newsize
        # NB: This is pretty important when you have unbacked SymInts.
        # Suppose you have (i0, 12) resizing into (2, -1, 12).  The old
        # range for i0 is typically [2, inf], which means if you divide
        # by two the new range should be [1, inf].  But this is bad news
        # if you have an unbacked SymInt: we need to reapply the unsound
        # assumption that the size is >= 2.
        torch._check_is_size(shape[dim])
    return tuple(shape)


_integer_dtypes = (
    torch.uint8,
    torch.uint16,
    torch.uint32,
    torch.uint64,
    torch.int8,
    torch.int16,
    torch.int32,
    torch.int64,
)
_low_precision_dtypes = (torch.float16, torch.bfloat16, torch.complex32)
_complex_dtypes = (torch.complex32, torch.complex64, torch.complex128)


def is_boolean_dtype(dtype: torch.dtype) -> bool:
    assert isinstance(dtype, torch.dtype)
    return dtype is torch.bool


def is_integer_dtype(dtype: torch.dtype) -> bool:
    assert isinstance(dtype, torch.dtype)
    return dtype in _integer_dtypes


def is_low_precision_dtype(dtype: torch.dtype) -> bool:
    assert isinstance(dtype, torch.dtype)
    return dtype in _low_precision_dtypes


def is_float_dtype(dtype: torch.dtype) -> bool:
    assert isinstance(dtype, torch.dtype)
    return dtype.is_floating_point


def is_complex_dtype(dtype: torch.dtype) -> bool:
    assert isinstance(dtype, torch.dtype)
    return dtype in _complex_dtypes


def is_grad_dtype(dtype: torch.dtype) -> bool:
    """
    Checks if the dtype can require a gradient.
    """
    return dtype.is_floating_point or is_complex_dtype(dtype)


_complex_to_real_dtype_map = {
    torch.complex128: torch.float64,
    torch.complex64: torch.float32,
    torch.complex32: torch.float16,
}

_real_to_complex_dtype_map = {
    torch.float16: torch.complex32,
    torch.bfloat16: torch.complex64,
    torch.float32: torch.complex64,
    torch.float64: torch.complex128,
}


def corresponding_real_dtype(dtype: torch.dtype) -> torch.dtype:
    return _complex_to_real_dtype_map[dtype]


def corresponding_complex_dtype(dtype: torch.dtype) -> torch.dtype:
    return _real_to_complex_dtype_map[dtype]


def dtype_to_type(dtype: torch.dtype) -> type:
    """
    Computes the corresponding Python type (AKA "type kind") for the
    given dtype.
    """
    assert isinstance(dtype, torch.dtype)

    if dtype is torch.bool:
        return bool
    if dtype in _integer_dtypes:
        return int
    if dtype.is_floating_point:
        return float
    if dtype in _complex_dtypes:
        return complex

    raise ValueError("Invalid dtype!")


def dtype_to_type_ctor(dtype: torch.dtype) -> Callable[[NumberType], NumberType]:
    """
    Computes the corresponding Python type constructor for the
    given dtype.
    """
    assert isinstance(dtype, torch.dtype)

    if dtype is torch.bool:
        return lambda x: bool(x)
    if dtype in _integer_dtypes:
        return sym_int
    if dtype.is_floating_point:
        return sym_float
    if dtype in _complex_dtypes:
        # TODO: type error here is real, replace with sym_complex
        return lambda x: complex(x)  # type: ignore[arg-type]

    raise ValueError("Invalid dtype!")


def type_to_dtype(typ: type) -> torch.dtype:
    """
    Computes the corresponding dtype for a Number type.
    """

    assert isinstance(typ, type)

    if typ in (bool, torch.SymBool):
        return torch.bool
    if typ in (int, torch.SymInt):
        return torch.long
    if typ in (float, torch.SymFloat):
        return torch.get_default_dtype()
    # TODO: sym_complex_float?
    if typ is complex:
        return corresponding_complex_dtype(torch.get_default_dtype())

    raise ValueError(f"Invalid type {typ}!")


def get_dtype(x: Union[torch.Tensor, NumberType]):
    if isinstance(x, torch.Tensor):
        return x.dtype
    else:
        return type_to_dtype(type(x))


_ordered_types = (bool, int, float, complex)


def check_fp_or_complex(
    dtype: torch.dtype, fn_name: str, allow_low_precision_dtypes: bool = True
):
    """
    Checks whether the input is floating point or complex.
    If allow_low_precision_dtypes is True, it allows having float16, bfloat16, and complex32
    """
    torch._check(
        is_float_dtype(dtype) or is_complex_dtype(dtype),
        lambda: f"{fn_name}: Expected a floating point or complex tensor as input. Got {dtype}",
    )
    torch._check(
        allow_low_precision_dtypes or not is_low_precision_dtype(dtype),
        lambda: f"{fn_name}: Half precision dtypes not supported. Got {dtype}",
    )


def check_is_matrix(A: TensorLikeType, f_name: str, arg_name: str = "A"):
    torch._check(
        len(A.shape) >= 2,
        lambda: f"{f_name}: The input tensor {arg_name} must have at least 2 dimensions.",
    )


def get_higher_type(a: type, b: type) -> type:
    """
    Returns the higher of the two given Number types.

    The types are ordered bool -> int -> float -> complex.
    """
    a, b = _maybe_get_pytype(a), _maybe_get_pytype(b)
    # Type checking
    if a not in _ordered_types or b not in _ordered_types:
        raise RuntimeError(f"Expected builtin numeric types, found {a}, {b}")

    if a is b:
        return a

    for typ in _ordered_types:
        if a is typ:
            return b
        if b is typ:
            return a

    raise ValueError("Unknown Python scalar type!")


# Returns the higher of two torch datatypes a and b or, if the two
#   are not ordered relative to each other, the next
#   higher datatype
def get_higher_dtype(
    a: Optional[Union[torch.dtype, TensorLikeType, NumberType]],
    b: Optional[Union[torch.dtype, TensorLikeType, NumberType]],
) -> Optional[torch.dtype]:
    """
    Computes the "lowest" datatype that is weakly
    "higher" than both a and b.
    """

    # Type checking
    assert a is None or isinstance(a, (torch.dtype, TensorLike, Number))
    assert b is None or isinstance(b, (torch.dtype, TensorLike, Number))

    def _extract_dtype(
        x: Optional[Union[torch.dtype, TensorLikeType, NumberType]]
    ) -> Optional[torch.dtype]:
        if x is None:
            return None
        if isinstance(x, torch.dtype):
            return x
        if isinstance(x, TensorLike):
            return x.dtype
        if isinstance(x, Number):
            return type_to_dtype(type(x))

        raise RuntimeError("Unexpected type given to _extract_dtype!")

    a, b = _extract_dtype(a), _extract_dtype(b)

    if a is b:
        return a

    if a is None:
        return b

    if b is None:
        return a

    ordered_datatypes = (
        (torch.bool,),
        (torch.uint8, torch.int8),
        (torch.int16,),
        (torch.int32,),
        (torch.int64,),
        (torch.float16, torch.bfloat16),
        (torch.float32,),
        (torch.float64,),
        (torch.complex32,),
        (torch.complex64,),
        (torch.complex128,),
    )

    for idx, dtypes in enumerate(ordered_datatypes):
        if a in dtypes and b in dtypes:
            return ordered_datatypes[idx + 1][0]
        if a in dtypes:
            return b
        if b in dtypes:
            return a

    raise RuntimeError("Unexpected termination!")


def check_pin_memory(pin_memory: bool):
    torch._check_not_implemented(
        not pin_memory, lambda: "PrimTorch does not support pinned memory"
    )


def check_layout(layout: torch.layout):
    torch._check_not_implemented(
        layout == torch.strided, lambda: f"PrimTorch doesn't support layout={layout}"
    )


# TODO: maybe unify with can_cast_to?
def is_weakly_lesser_type(a: type, b: type) -> bool:
    """
    Compares two types, a and b, returning True if a is weakly "less" than b.

    The comparison is determined by the following type ordering: bool, int, float, complex.
    """

    a, b = _maybe_get_pytype(a), _maybe_get_pytype(b)

    if a not in _ordered_types or b not in _ordered_types:
        raise RuntimeError(f"Expected builtin numeric types, found {a}, {b}")

    for typ in _ordered_types:
        if a == typ:
            return True
        if b == typ:
            return False

    raise RuntimeError("Unexpected termination!")


def can_safe_cast_to(*, cast_to: torch.dtype, cast_from: torch.dtype) -> bool:
    for fn in (is_complex_dtype, is_float_dtype, is_integer_dtype, is_boolean_dtype):
        if fn(cast_to):
            return True
        if fn(cast_from):
            return False

    raise ValueError(f"Received unknown dtypes {cast_to}, {cast_from}!")


def check_same_dtype(*args):
    """
    Checks that all Tensors in args have the same device and that all Numbers have the
    same corresponding Python type.

    Raises a RuntimeError when:
      - args contains an object whose type is not Tensor or Number
      - two Tensors objects in args have different dtypes
      - two Number objects in args have different types
      - there are Tensors and Numbers in args, and one of those Tensors corresponding
          Python types is different from the type of one of those Numbers
    """
    full_dtype = None
    scalar_type = None

    for arg in args:
        if isinstance(arg, Number):
            # Scalar type checking is disabled (and may be removed in the future)
            continue
            # if scalar_type is None:
            #     scalar_type = type(arg)

            # if scalar_type is not type(arg):
            #     msg = (
            #         "Scalar of type "
            #         + str(type(arg))
            #         + " is not the expected type of "
            #         + str(scalar_type)
            #         + "!"
            #     )
            #     raise RuntimeError(msg)
        elif isinstance(arg, TensorLike):
            if full_dtype is None:
                full_dtype = arg.dtype
            if scalar_type is None:
                scalar_type = dtype_to_type(arg.dtype)

            if full_dtype is not arg.dtype:
                msg = (
                    "Tensor with dtype "
                    + str(arg.dtype)
                    + " is not the expected dtype of "
                    + str(full_dtype)
                    + "!"
                )
                raise RuntimeError(msg)

            arg_type = dtype_to_type(arg.dtype)
            if arg_type is not scalar_type:
                msg = (
                    "Tensor with corresponding Python type "
                    + str(arg_type)
                    + " is not the expected type of "
                    + str(scalar_type)
                    + "!"
                )
                raise RuntimeError(msg)
        else:
            msg = (
                "Unexpected type when checking for same dtype, " + str(type(arg)) + "!"
            )
            raise RuntimeError(msg)


# Maps datatypes to their computation types for elementwise operations
_computation_dtype_map = {
    torch.bfloat16: torch.float32,
    torch.float16: torch.float32,
    torch.complex32: torch.complex64,
}


def get_computation_dtype(dtype: torch.dtype) -> torch.dtype:
    return _computation_dtype_map.get(dtype, dtype)


_cpu_acc_type_map = {
    torch.bfloat16: torch.float64,
    torch.float16: torch.float64,
    torch.float32: torch.float64,
    torch.complex32: torch.complex128,
    torch.complex64: torch.complex128,
}


def get_acc_type(dtype: torch.dtype, device: torch.device) -> torch.dtype:
    # Equivalent to at::toAccumulateType, prefer computation_dtype where possible
    if device.type == "cpu":
        return _cpu_acc_type_map.get(dtype, dtype)
    else:
        return get_computation_dtype(dtype)


class ELEMENTWISE_TYPE_PROMOTION_KIND(Enum):
    DEFAULT = (0,)
    NO_OPMATH = (1,)
    INT_TO_FLOAT = (2,)
    ALWAYS_BOOL = (3,)
    COMPLEX_TO_FLOAT = (4,)
    BOOL_TO_LONG = (5,)


class REDUCTION_OUTPUT_TYPE_KIND(Enum):
    SAME = (0,)
    COMPLEX_TO_FLOAT = (1,)  # for complex types outputs corresponding real type
    KEEP_PROMOTED_TYPE = (2,)  # keep output in opmath type, needed for mean
    ALWAYS_BOOL = (3,)


# Describes the return type of the primitive:
#
#   - NEW, a new tensor is created
#   - VIEW, a view of an input tensor is returned
#   - INPLACE, one or more input tensors is modified
#
# these descriptors are mututally exclusive and exhaustive.
class RETURN_TYPE(Enum):
    NEW = (0,)
    VIEW = (1,)
    INPLACE = (2,)
    NONE = (3,)


# TODO: when NumberType contains the sym types, can simplify this
def number_type(
    x: Union[NumberType, torch.SymInt, torch.SymFloat, torch.SymBool]
) -> Type:
    if isinstance(x, torch.SymInt):
        return int
    elif isinstance(x, torch.SymFloat):
        return float
    elif isinstance(x, torch.SymBool):
        return bool
    else:
        return type(x)


def expr_type(x: sympy.Basic) -> Type:
    import sympy

    if x.kind is sympy.core.kind.BooleanKind:
        return bool
    elif x.is_integer:  # type: ignore[attr-defined]
        return int
    else:
        # NB: Not strictly correct, but we don't support SymPy complex or bool.
        return float


# TODO: document type promotion kinds
def elementwise_dtypes(
    *_args,
    type_promotion_kind: ELEMENTWISE_TYPE_PROMOTION_KIND,
) -> Tuple[torch.dtype, torch.dtype]:
    """
    Computes the computation and result dtypes for elementwise type promotion
    on the given arguments and with the given elementwise type promotion kind.

    Note that not all inputs to an elementwise operation necessarily participate in type promotion.
    For example, the "alpha" parameter of torch.add does not participate in type promotion,
    although it may be cast to the Python type corresponding to the computation dtype that
    the type promotion algorithm determines.

    Default elementwise type promotion, which all other type promotion kinds tweak (see below),
    first decides which of four ordered types to use:

    bool -> integer -> floating point -> complex

    The selected type is the "lowest" type in the above list such that all number arguments
    have a weakly "lower" type and all tensor arguments have a weakly lower corresponding
    type for their dtype.

    Once the type is determined, the particular result dtype is found. The dtypes are
    partially ordered as follows:

    bool -> uint8, int8 -> int16 -> int32 -> int64 ->
      float16, bfloat16 -> float32 -> float64 -> complex32 -> complex64 -> complex128

    The result dtype is selected by:
      - if no tensor's dtype has the same corresponding type as the one selected,
          then the result dtype is the (default) dtype corresponding to the selected type
          (for example, 1.5 + an integer tensor has a result dtype of the default floating point dtype)
      - if the result type is complex then the dtype is:
        -  the default complex dtype if there are no floating point or complex tensors
        -  if there are floating point or complex tensors with one or more dimensions, then
            the complex dtype corresponding to the highest corresponding complex dtype among those tensors
            (for example, double + cfloat -> cdouble)
        -  if there are only floating point or complex tensors with zero dimensions, then
            the complex dtype corresponding to the highest corresponding complex dtype among those tensors
      - if the first two cases do not apply, the result dtype is the highest dtype among
          all tensors with one or more dimensions of the output type, and if there are no such
          tensors then it's the highest dtype among all tensors with zero dimensions of the output type
          (for example, long + half -> half, even if the half tensor has zero dimensions)

    The "corresponding complex dtypes" are:
      float16    -> complex32
      bfloat16   -> complex64
      float32    -> complex64
      float64    -> complex128
      complex32  -> complex32
      complex64  -> complex64
      complex128 -> complex128

    The DEFAULT type promotion kind computes per above, and then uses the result dtype to pick a computation
    dtype by mapping low precision floating point and complex dtypes as follows:

      float16   -> float32
      bfloat16  -> float32
      complex32 -> complex64

    This is referred to as "op math", and the NO_OPMATH type promotion kind disables this mapping, making the
    computation dtype the same as the result dtype when it's selected. NO_OPMATH is appropriate for kernels
    which perform no mathematical operations on their tensors (see below for examples).

    The INT_TO_FLOAT type promotion kind maps boolean and integer result dtypes to the default floating point dtype,
    and computation dtypes to the appropriate op math dtype.

    The COMPLEX_TO_FLOAT type promotion kind maps complex result dtypes to the corresponding float dtype, following this
    mapping:

        complex32  -> float16
        complex64  -> float32
        complex128 -> float64

    Note that COMPLEX_TO_FLOAT derives the computation dtype as the DEFAULT setting does.

    The BOOL_TO_LONG type promotion kind maps boolean computation and result dtypes to long.

    The ALWAYS_BOOL type promotion kind always sets the result dtype to bool.

    Example operators for each type promotion option:
      DEFAULT                 : add
      NO_OPMATH               : where, nextafter, cat
      INT_TO_FLOAT            : sin
      COMPLEX_TO_FLOAT        : abs
      BOOL_TO_LONG            : pow
      ALWAYS_BOOL             : eq

    """

    args = tuple(x for x in _args if x is not None)

    highest_type: type = bool

    # Import sympy locally, as importing it eagerly at a module level is too slow
    # See https://dev-discuss.pytorch.org/t/delving-into-what-happens-when-you-import-torch/1589
    import sympy

    for x in args:
        if not isinstance(x, (Number, TensorLike, sympy.Basic)):
            msg = f"Unexpected type {str(type(x))} when computing elementwise type promotion!"
            raise ValueError(msg)

        if isinstance(x, Number):
            highest_type = get_higher_type(highest_type, number_type(x))
        elif isinstance(x, sympy.Basic):
            highest_type = get_higher_type(highest_type, expr_type(x))
        else:
            # x is a TensorLike
            highest_type = get_higher_type(highest_type, dtype_to_type(x.dtype))

    result_dtype = None

    def _find_highest_dtype_filtered(
        args, filter, *, float_as_complex=False
    ) -> Optional[torch.dtype]:
        zero_dim_tensor_dtype = None
        one_plus_dim_tensor_dtype = None
        for x in args:
            if isinstance(x, TensorLike) and filter(x.dtype):
                _dtype = x.dtype
                if float_as_complex and is_float_dtype(_dtype):
                    _dtype = corresponding_complex_dtype(_dtype)
                if x.ndim == 0:
                    zero_dim_tensor_dtype = get_higher_dtype(
                        zero_dim_tensor_dtype, _dtype
                    )
                else:
                    # x.ndim > 0
                    one_plus_dim_tensor_dtype = get_higher_dtype(
                        one_plus_dim_tensor_dtype, _dtype
                    )

        # Prefers dtype of tensors with one or more dimensions
        if one_plus_dim_tensor_dtype is not None:
            return one_plus_dim_tensor_dtype

        return zero_dim_tensor_dtype

    if highest_type is float:
        result_dtype = _find_highest_dtype_filtered(args, is_float_dtype)
        result_dtype = (
            torch.get_default_dtype() if result_dtype is None else result_dtype
        )
    elif highest_type is complex:
        result_dtype = _find_highest_dtype_filtered(
            args,
            lambda x: is_float_dtype(x) or is_complex_dtype(x),
            float_as_complex=True,
        )
        if result_dtype is None:
            result_dtype = corresponding_complex_dtype(torch.get_default_dtype())
    elif highest_type is int:
        result_dtype = _find_highest_dtype_filtered(args, is_integer_dtype)
        result_dtype = torch.long if result_dtype is None else result_dtype
    else:
        # highest_type is bool
        result_dtype = torch.bool

    if type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT:
        return get_computation_dtype(result_dtype), result_dtype
    elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.NO_OPMATH:
        return result_dtype, result_dtype
    elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT:
        if is_integer_dtype(result_dtype) or is_boolean_dtype(result_dtype):
            result_dtype = torch.get_default_dtype()
        return get_computation_dtype(result_dtype), result_dtype
    elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.COMPLEX_TO_FLOAT:
        # NOTE: computation can still occur in a complex dtype
        computation_dtype = get_computation_dtype(result_dtype)
        if is_complex_dtype(result_dtype):
            result_dtype = corresponding_real_dtype(result_dtype)
        return computation_dtype, result_dtype
    elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.BOOL_TO_LONG:
        if is_boolean_dtype(result_dtype):
            return torch.long, torch.long
        return get_computation_dtype(result_dtype), result_dtype
    elif type_promotion_kind is ELEMENTWISE_TYPE_PROMOTION_KIND.ALWAYS_BOOL:
        return get_computation_dtype(result_dtype), torch.bool
    else:
        raise ValueError(f"Unknown type promotion kind {str(type_promotion_kind)}")


def reduction_dtypes(
    arg,
    output_dtype_kind: REDUCTION_OUTPUT_TYPE_KIND,
    dtype: Optional[torch.dtype] = None,
) -> Tuple[torch.dtype, Optional[torch.dtype]]:
    # even though some reductions, like amin or amax, don't strictly require type promotion,
    # all the math ops (including comparisons) are still defined only for a computation type,
    # so promotion will still happen. We are doing it explicitly here
    inp_dtype = dtype if dtype is not None else arg.dtype
    computation_dtype = get_computation_dtype(inp_dtype)
    if (
        output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.SAME
        or output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT
    ):
        result_dtype = dtype if dtype else arg.dtype
        if (
            output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT
            and is_complex_dtype(result_dtype)
        ):
            result_dtype = corresponding_real_dtype(result_dtype)
    elif output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.KEEP_PROMOTED_TYPE:
        result_dtype = None
    else:  # ALWAYS_BOOL
        result_dtype = torch.bool
    return computation_dtype, result_dtype


# This function's logic is borrowed from the following functions defined in C++:
# batched_matrix_contiguous_strides and contiguous_strides
def make_contiguous_strides_for(
    shape: ShapeType, row_major: bool = True
) -> Tuple[Union[_IntLikeT, int], ...]:
    """
    Returns the strides of a contiguous tensor if row_major
    If row_major=True, it returns the strides of a contiguous batch of Fortran-contiguous matrices
    This is often used when calling external libraries like BLAS/LAPACK/cuSolver...
    """
    # contiguous_strides from c10/util/strides.h
    validate_shape(shape)
    if not shape:
        return ()

    from torch.fx.experimental.symbolic_shapes import is_nested_int

    multiplier: Union[_IntLikeT, int] = 1
    strides = []
    for l in reversed(shape):
        strides.append(multiplier)
        multiplier *= (
            l if is_nested_int(l) else sym_max(l, 1)
        )  # type:ignore[assignment]

    result = tuple(reversed(strides))

    # batched_matrix_contiguous_strides from aten/src/ATen/native/LinearAlgebraUtils.h
    if row_major:
        return result
    else:
        if len(shape) < 2:
            return result
        return result[:-2] + (1, max(shape[-2], 1))


def make_channels_last_1d_strides_for(
    shape: Sequence[_IntLikeT],
) -> Tuple[Union[_IntLikeT, int], ...]:
    torch._check(
        len(shape) == 3,
        lambda: "Only tensors of rank 3 can use the channels_last_1d memory format",
    )

    multiplier: Union[_IntLikeT, int] = 1
    strides: List[Union[_IntLikeT, int]] = [0] * 3
    for idx in (1, -1, 0):
        # NOTE: intentionally divergence from make_contiguous_strides_for
        # This is consistent with eager
        strides[idx] = multiplier
        multiplier *= shape[idx]

    return tuple(strides)


def make_channels_last_2d_strides_for(
    shape: Sequence[_IntLikeT],
) -> Tuple[Union[_IntLikeT, int], ...]:
    # TODO: maybe inform the user of channels_last_3d if rank of the tensor is 5?
    torch._check(
        len(shape) == 4,
        lambda: "Only tensors of rank 4 can use the channels_last memory format",
    )

    multiplier: Union[_IntLikeT, int] = 1
    strides: List[Union[_IntLikeT, int]] = [0] * 4
    for idx in (1, -1, -2, 0):
        # NOTE: intentionally divergence from make_contiguous_strides_for
        # This is consistent with eager
        strides[idx] = multiplier
        multiplier *= shape[idx]

    return tuple(strides)


def make_channels_last_3d_strides_for(
    shape: Sequence[_IntLikeT],
) -> Tuple[Union[_IntLikeT, int], ...]:
    torch._check(
        len(shape) == 5,
        lambda: "Only tensors of rank 5 can use the channels_last_3d memory format",
    )

    multiplier: Union[_IntLikeT, int] = 1
    strides: List[Union[_IntLikeT, int]] = [0] * 5
    for idx in (1, -1, -2, -3, 0):
        # NOTE: intentionally divergence from make_contiguous_strides_for
        # This is consistent with eager
        strides[idx] = multiplier
        multiplier *= shape[idx]

    return tuple(strides)


def make_channels_last_strides_for(
    shape: Sequence[_IntLikeT],
) -> Tuple[Union[_IntLikeT, int], ...]:
    ndim = len(shape) if isinstance(shape, Sequence) else 1
    if ndim == 3:
        return make_channels_last_1d_strides_for(shape)
    elif ndim == 4:
        return make_channels_last_2d_strides_for(shape)
    elif ndim == 5:
        return make_channels_last_3d_strides_for(shape)
    else:
        raise RuntimeError(
            f"no channels last format strides exist in {ndim} dimensions"
        )


def compute_reduction_output_shape(
    shape: ShapeType, dimensions: Sequence
) -> Tuple[int, ...]:
    for idx in dimensions:
        validate_idx(len(shape), idx)

    new_shape = []
    for idx in range(len(shape)):
        if idx in dimensions:
            continue

        new_shape.append(shape[idx])

    return tuple(new_shape)


def validate_no_repeating_dims(dims: Sequence):
    if len(dims) != len(set(dims)):
        raise RuntimeError("duplicate value in the list of dims")


def reduction_dims(shape: ShapeType, dims: Optional[Sequence]) -> Tuple[int, ...]:
    if dims is None:
        return tuple(range(len(shape)))
    dims = tuple(canonicalize_dim(len(shape), idx) for idx in dims)
    validate_no_repeating_dims(dims)
    return dims


def set_correction(
    unbiased: Optional[bool] = None,
    correction: Optional[NumberType] = None,
) -> float:
    if correction is not None and unbiased is not None:
        raise RuntimeError("cannot specify both correction and unbiased arguments")
    elif correction is None and unbiased is None:
        correction = 1.0
    elif correction is None and unbiased is not None:
        correction = 0.0 if unbiased is False else 1.0
    # NB: we don't actually support symint here, but it's harmless to accept
    if not isinstance(correction, (IntLike, FloatLike)):
        raise ValueError("correction argument should be integer or float")
    if correction < 0:
        raise ValueError("correction argument should be non-negative")
    return sym_float(correction)


def compute_required_storage_length(
    shape: ShapeType, strides: StrideType, storage_offset: int
) -> int:
    """Computes the minimum storage size to hold the given tensor geometry.

    Example
    =======

    This is the size of a newly allocated tensor's storage, in units of elements

    >>> t = torch.empty((10, 20))
    >>> compute_required_storage_length(t.shape, t.stride(), t.storage_offset())
    200

    >>> # xdoctest: +SKIP(failing)
    >>> t2 = torch.empty_strided((1, 2, 3), (5, 7, 11))
    >>> size = compute_required_storage_length(t2.shape, t2.stride(), t2.storage_offset())
    >>> size == t.storage().size()
    True

    A valid tensor may have a larger storage size, but never smaller

    >>> slice = torch.empty(100)[20:40]
    >>> slice.storage().size()
    100

    >>> compute_required_storage_length(slice.shape, slice.stride(), slice.storage_offset())
    40

    """
    from torch.fx.experimental.symbolic_shapes import guard_size_oblivious

    # Short-circuits if the shape has no elements
    if guard_size_oblivious(reduce(operator.mul, shape, 1) == 0):
        return 0

    max_offset = sum((x - 1) * y for x, y in zip(shape, strides))
    # +1 to account for the first element which offsets are taken from
    return 1 + storage_offset + max_offset


def check_in_bounds_for_storage(
    a: torch.TypedStorage, shape: ShapeType, strides: StrideType, storage_offset: int
):
    """
    Determines if the given shape, strides, and offset are valid for the given storage.
    """

    required_length = compute_required_storage_length(shape, strides, storage_offset)
    if a.size() < required_length:
        msg = (
            f"Can't view a storage of size {a.size()} with an offset of {storage_offset}, "
            f"shape of {str(shape)}, and strides of {str(strides)}, "
            f"which requires a storage of size {required_length}"
        )
        raise ValueError(msg)


# NOTE: This function should ideally be removed, but some Meta internal models
# packaged with `torch.package` are using it, so it will have to be removed
# at some point in the future when those models no longer use this function.
@deprecated(
    "`torch._prims_common.check` is deprecated and will be removed in the future. "
    "Please use `torch._check*` functions instead.",
    category=FutureWarning,
)
def check(
    b: bool, s: Callable[[], str], exc_type: Type[Exception] = RuntimeError
) -> None:
    """
    Helper function for raising an error_type (default: RuntimeError) if a boolean condition fails.
    Error message is a callable producing a string (to avoid wasting time
    string formatting in non-error case, and also to make it easier for torchdynamo
    to trace.)

    .. note:: This function is planned for removal in the future. Please use
        `torch._check*` functions instead.
    """
    torch._check_with(exc_type, b, s)


# This combines is_channels_last_strides_2d and is_channels_last_strides_3d in
# c10/core/MemoryFormat.h into one function
def are_strides_like_channels_last(
    shape: Sequence[int], strides: Sequence[int]
) -> bool:
    from torch.fx.experimental.symbolic_shapes import guard_size_oblivious

    ndim = len(shape)

    if ndim == 4:
        # Check for channels_last_2d
        dim_order = [1, 3, 2, 0]
    elif ndim == 5:
        # Check for channels_last_3d
        dim_order = [1, 4, 3, 2, 0]
    else:
        return False

    if guard_size_oblivious(strides[1] == 0):
        return False

    min = 0
    for d in dim_order:
        if guard_size_oblivious(shape[d] == 0):
            return False
        if guard_size_oblivious(strides[d] < min):
            return False
        if d == 0 and min == strides[1]:
            return False
        min = strides[d]
        if guard_size_oblivious(strides[d] > 1):
            min *= shape[d]
    return True


def suggest_memory_format(x: TensorLikeType) -> torch.memory_format:
    if x.layout != torch.strided:
        return torch.contiguous_format

    if are_strides_like_channels_last(x.shape, x.stride()):
        return torch.channels_last if x.ndim == 4 else torch.channels_last_3d

    return torch.contiguous_format


def prod(xs: Sequence[NumberType]) -> NumberType:
    """Product of elements in input sequence. Returns 1 for empty sequence"""
    return reduce(operator.mul, xs, 1)


def is_expandable_to(shape: ShapeType, desired: ShapeType) -> bool:
    """Checks if a shape can be expanded to another shape.
    This is equivalent to checking if the two shapes are broadcastable.
    """
    # This is a Python implementation of
    # aten/src/ATen/ExpandUtils.h:is_expandable_to
    if len(shape) > len(desired):
        return False
    for i in range(len(shape)):
        if shape[-i - 1] != desired[-i - 1] and shape[-i - 1] != 1:
            return False
    return True


def mask_tensor(mask: TensorLikeType, t: TensorLikeType):
    """
    Similar to torch.where(mask, t, 0) but if t is boolean,
    result is also boolean and not promoted to int.
    """
    # torch.where(mask, t, False) is equivalent
    # but feels hacky and might break in the future
    if t.dtype is torch.bool:
        return mask.logical_and(t)
    else:
        return torch.where(mask, t, 0)


def get_aten_op(fn: Callable, name: str):
    """
    Given the __module__ of reference and its name, it returns
    (our best guess of) the ATen name of the associated operation

    Note: In ATen, the __name__ of a function within a module often
    starts by the module name. E.g. linalg_eigh, or special_zeta
    """
    module = fn.__module__
    prefix = "torch._refs"
    assert module.startswith(prefix)
    module = module[len(prefix) :]
    # We want to go from .special / .nn.functional
    # to special and special_ / nn_functional_
    if module:
        module = module[1:]
        module = module.replace(".", "_")
        module = module + "_"
    return getattr(torch._ops.ops.aten, f"{module}{name}")


def dtype_or_default(dtype: Optional[torch.dtype]) -> torch.dtype:
    return dtype if dtype is not None else torch.get_default_dtype()


def device_or_default(device: Optional[DeviceLikeType]) -> DeviceLikeType:
    return device if device is not None else torch.device("cpu")


def layout_or_default(layout: Optional[torch.layout]) -> torch.layout:
    return layout if layout is not None else torch.strided


def clone_preserve_strides(x):
    needed_size = compute_required_storage_length(
        x.size(), x.stride(), x.storage_offset()
    )
    # Our eager implementations for *_scatter ops are all primitives w.r.t autograd,
    # so these as_strided() calls are not seen by autograd.
    # We need to mimic this behavior in our ref/prim implementations.
    # TODO: a better way to handle this would be with a new op, "_unsafe_as_strided"
    # We should revisit this when we add a compositional as_strided op,
    # and also as part of https://github.com/pytorch/pytorch/issues/90507
    try:
        old = torch._C._dispatch_tls_is_dispatch_key_excluded(
            torch._C.DispatchKey.ADInplaceOrView
        )
        torch._C._dispatch_tls_set_dispatch_key_excluded(
            torch._C.DispatchKey.ADInplaceOrView, True
        )
        buffer = torch.as_strided(x, (needed_size,), (1,), 0).clone()
        return torch.as_strided(buffer, x.size(), x.stride(), x.storage_offset())
    finally:
        torch._C._dispatch_tls_set_dispatch_key_excluded(
            torch._C.DispatchKey.ADInplaceOrView, old
        )


def alert_not_deterministic(caller: str):
    if torch.are_deterministic_algorithms_enabled():
        if torch.is_deterministic_algorithms_warn_only_enabled():
            warnings.warn(
                f"{caller} does not have a deterministic implementation, but you set "
                f"'torch.use_deterministic_algorithms(True, warn_only=True)'. "
                f"You can file an issue at https://github.com/pytorch/pytorch/issues "
                f"to help us prioritize adding deterministic support for this operation."
            )
        else:
            torch._check(
                False,
                lambda: (
                    f"{caller} does not have a deterministic implementation, but you set "
                    f"'torch.use_deterministic_algorithms(True)'. You can turn off "
                    f"determinism just for this operation, or you can use the "
                    f"'warn_only=True' option, if that's acceptable for your application. "
                    f"You can also file an issue at https://github.com/pytorch/pytorch/issues "
                    f"to help us prioritize adding deterministic support for this operation."
                ),
            )


class CUDARngStateHelper:
    @staticmethod
    def get_torch_state_as_tuple(fake_mode=nullcontext()):
        if not torch.cuda.is_available():
            raise RuntimeError("CUDA not available")

        with fake_mode:
            seed = torch.tensor(torch.cuda.initial_seed())
            offset = torch.tensor(torch.cuda._get_rng_state_offset())
            return seed, offset

    @staticmethod
    def set_torch_state_tensor(seed, offset):
        # Rng state is [64-bit seed, 64-bit offset]
        seed_portion = seed.reshape([1]).view(torch.uint8)
        offset_portion = offset.reshape([1]).view(torch.uint8)
        new_state = torch.cat([seed_portion, offset_portion])
        torch.cuda.set_rng_state(new_state)

    @staticmethod
    def set_new_offset(relative_offset):
        torch.cuda._set_rng_state_offset(relative_offset.item())