File: __init__.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (309 lines) | stat: -rw-r--r-- 10,502 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# mypy: allow-untyped-defs
from functools import partial
from typing import Optional, Tuple, Union

import torch
import torch._prims as prims
import torch._prims_common as utils
import torch._refs as refs
import torch._refs.linalg as linalg
from torch import Tensor
from torch._prims_common import (
    check_fp_or_complex,
    check_is_matrix,
    Dim,
    DimsType,
    ELEMENTWISE_TYPE_PROMOTION_KIND,
    IntLike,
    TensorLikeType,
)
from torch._prims_common.wrappers import (
    _maybe_convert_to_dtype,
    elementwise_type_promotion_wrapper,
    out_wrapper,
)


__all__ = [
    "diagonal",
    "matrix_norm",
    "norm",
    "svd",
    "svdvals",
    "vector_norm",
    "vecdot",
    "cross",
]


def _check_norm_dtype(dtype: Optional[torch.dtype], x_dtype: torch.dtype, fn_name: str):
    """
    Checks related to the dtype kwarg in `linalg.*norm` functions
    """
    if dtype is not None:
        torch._check(
            utils.is_float_dtype(dtype) or utils.is_complex_dtype(dtype),
            lambda: f"{fn_name}: dtype should be floating point or complex. Got {dtype}",
        )
        torch._check(
            utils.is_complex_dtype(dtype) == utils.is_complex_dtype(x_dtype),
            lambda: "{fn_name}: dtype should be {d} for {d} inputs. Got {dtype}".format(
                fn_name=fn_name,
                d="complex" if utils.is_complex_dtype(x_dtype) else "real",
                dtype=dtype,
            ),
        )
        torch._check(
            utils.get_higher_dtype(dtype, x_dtype) == dtype,
            lambda: f"{fn_name}: the dtype of the input ({x_dtype}) should be convertible "
            "without narrowing to the specified dtype ({dtype})",
        )


import operator

# Utilities should come BEFORE this import
from torch._decomp import register_decomposition
from torch._decomp.decompositions import pw_cast_for_opmath


@register_decomposition(torch._ops.ops.aten.linalg_cross)
@out_wrapper()
@pw_cast_for_opmath
def cross(a: Tensor, b: Tensor, dim: int = -1):
    torch._check(
        a.ndim == b.ndim,
        lambda: "linalg.cross: inputs must have the same number of dimensions.",
    )
    torch._check(
        a.size(dim) == 3 and b.size(dim) == 3,
        lambda: f"linalg.cross: inputs dim {dim} must have length 3, got {a.size(dim)} and {b.size(dim)}",
    )
    a, b = torch.broadcast_tensors(a, b)
    dim = utils.canonicalize_dim(a.ndim, dim)
    idx = torch.arange(3, device=a.device)
    return a.index_select(dim, (idx + 1) % 3) * b.index_select(
        dim, (idx + 2) % 3
    ) - a.index_select(dim, (idx + 2) % 3) * b.index_select(dim, (idx + 1) % 3)


def diagonal(
    input: TensorLikeType,
    *,
    offset: int = 0,
    dim1: int = -2,
    dim2: int = -1,
) -> TensorLikeType:
    return torch.diagonal(input, offset=offset, dim1=dim1, dim2=dim2)


@register_decomposition(torch._ops.ops.aten.linalg_vector_norm)
@out_wrapper(exact_dtype=True)
def vector_norm(
    x: TensorLikeType,
    ord: Union[float, int] = 2,
    dim: Optional[DimsType] = None,
    keepdim: bool = False,
    *,
    dtype: Optional[torch.dtype] = None,
) -> Tensor:
    from torch.fx.experimental.symbolic_shapes import guard_size_oblivious

    # Checks
    check_fp_or_complex(x.dtype, "linalg.vector_norm")

    if isinstance(dim, Dim):
        dim = [dim]  # type: ignore[assignment]

    if guard_size_oblivious(x.numel() == 0) and (ord < 0.0 or ord == float("inf")):
        torch._check(
            dim is not None and len(dim) != 0,
            lambda: f"linalg.vector_norm cannot compute the {ord} norm on an empty tensor "
            "because the operation does not have an identity",
        )
        shape = x.shape
        assert dim is not None  # mypy does not seem to be able to see through check?
        for d in dim:
            torch._check(
                shape[d] != 0,
                lambda: f"linalg.vector_norm cannot compute the {ord} norm on the "
                f"dimension {d} because this dimension is empty and the "
                "operation does not have an identity",
            )
    _check_norm_dtype(dtype, x.dtype, "linalg.vector_norm")

    computation_dtype, result_dtype = utils.reduction_dtypes(
        x, utils.REDUCTION_OUTPUT_TYPE_KIND.COMPLEX_TO_FLOAT, dtype
    )

    to_result_dtype = partial(_maybe_convert_to_dtype, dtype=result_dtype)

    # Implementation
    if ord == 0.0:
        return torch.sum(torch.ne(x, 0.0), dim=dim, keepdim=keepdim, dtype=result_dtype)
    elif ord == float("inf"):
        return to_result_dtype(torch.amax(torch.abs(x), dim=dim, keepdim=keepdim))  # type: ignore[return-value,arg-type]
    elif ord == float("-inf"):
        return to_result_dtype(torch.amin(torch.abs(x), dim=dim, keepdim=keepdim))  # type: ignore[return-value,arg-type]
    else:
        # From here on the computation dtype is important as the reduction is non-trivial
        x = _maybe_convert_to_dtype(x, computation_dtype)  # type: ignore[assignment]
        reduce_sum = partial(torch.sum, dim=dim, keepdim=keepdim)

        is_ord_even = ord % 2 == 0 if isinstance(ord, IntLike) else ord % 2.0 == 0.0
        if not (is_ord_even and utils.is_float_dtype(x.dtype)):
            x = torch.abs(x)
        return to_result_dtype(torch.pow(reduce_sum(torch.pow(x, ord)), 1.0 / ord))  # type: ignore[return-value]


def _backshift_permutation(dim0, dim1, ndim):
    # Auxiliary function for matrix_norm
    # Computes the permutation that moves the two given dimensions to the back
    ret = [i for i in range(ndim) if i != dim0 and i != dim1]
    ret.extend((dim0, dim1))
    return ret


def _inverse_permutation(perm):
    # Given a permutation, returns its inverse. It's equivalent to argsort on an array
    return [i for i, j in sorted(enumerate(perm), key=operator.itemgetter(1))]


# CompositeImplicitAutograd
@out_wrapper(exact_dtype=True)
def matrix_norm(
    A: TensorLikeType,
    ord: Union[float, str] = "fro",
    dim: DimsType = (-2, -1),
    keepdim: bool = False,
    *,
    dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
    # shape
    check_is_matrix(A, "linalg.matrix_norm")
    # dim
    dim = utils.canonicalize_dims(A.ndim, dim)
    if isinstance(dim, Dim):
        dim = (dim,)  # type: ignore[assignment]
    torch._check(
        len(dim) == 2, lambda: "linalg.matrix_norm: dim must be a 2-tuple. Got {dim}"
    )
    torch._check(
        dim[0] != dim[1],
        lambda: "linalg.matrix_norm: dims must be different. Got ({dim[0]}, {dim[1]})",
    )
    # dtype arg
    _check_norm_dtype(dtype, A.dtype, "linalg.matrix_norm")

    if isinstance(ord, str):
        # ord
        torch._check(
            ord in ("fro", "nuc"),
            lambda: "linalg.matrix_norm: Order {ord} not supported.",
        )
        # dtype
        check_fp_or_complex(
            A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != "nuc"
        )

        if ord == "fro":
            return vector_norm(A, 2, dim, keepdim, dtype=dtype)
        else:  # ord == "nuc"
            if dtype is not None:
                A = _maybe_convert_to_dtype(A, dtype)  # type: ignore[assignment]
            perm = _backshift_permutation(dim[0], dim[1], A.ndim)
            result = torch.sum(svdvals(prims.transpose(A, perm)), -1, keepdim)
            if keepdim:
                inv_perm = _inverse_permutation(perm)
                result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
            return result
    else:
        # ord
        abs_ord = abs(ord)
        torch._check(
            abs_ord in (2, 1, float("inf")),
            lambda: "linalg.matrix_norm: Order {ord} not supported.",
        )
        # dtype
        check_fp_or_complex(
            A.dtype, "linalg.matrix_norm", allow_low_precision_dtypes=ord != 2
        )

        max_min = partial(torch.amax if ord > 0.0 else torch.amin, keepdim=keepdim)

        if abs_ord == 2.0:
            if dtype is not None:
                A = _maybe_convert_to_dtype(A, dtype)  # type: ignore[assignment]
            perm = _backshift_permutation(dim[0], dim[1], A.ndim)
            result = max_min(svdvals(prims.transpose(A, perm)), dim=-1)
            if keepdim:
                inv_perm = _inverse_permutation(perm)
                result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
            return result
        else:  # 1, -1, inf, -inf
            dim0, dim1 = dim
            if abs_ord == float("inf"):
                dim0, dim1 = dim1, dim0
            if not keepdim and (dim0 < dim1):
                dim1 -= 1
            return max_min(
                vector_norm(A, 1.0, dim=dim0, keepdim=keepdim, dtype=dtype), dim1
            )


# CompositeImplicitAutograd
@out_wrapper(exact_dtype=True)
def norm(
    A: TensorLikeType,
    ord: Optional[Union[float, str]] = None,
    dim: Optional[DimsType] = None,
    keepdim: bool = False,
    *,
    dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
    if dim is not None:
        if isinstance(dim, Dim):
            dim = (dim,)  # type: ignore[assignment]
        torch._check(
            len(dim) in (1, 2),
            lambda: "linalg.norm: If dim is specified, it must be of length 1 or 2. Got {dim}",
        )
    elif ord is not None:
        torch._check(
            A.ndim in (1, 2),
            lambda: "linalg.norm: If dim is not specified but ord is, the input must be 1D or 2D. Got {A.ndim}D",
        )

    if ord is not None and (
        (dim is not None and len(dim) == 2) or (dim is None and A.ndim == 2)
    ):
        if dim is None:
            dim = (0, 1)
        return matrix_norm(A, ord, dim, keepdim, dtype=dtype)
    else:
        if ord is None:
            ord = 2.0
        return vector_norm(A, ord, dim, keepdim, dtype=dtype)  # type: ignore[arg-type]


# CompositeImplicitAutograd
@out_wrapper("U", "S", "Vh", exact_dtype=True)
def svd(A: TensorLikeType, full_matrices: bool = True) -> Tuple[Tensor, Tensor, Tensor]:
    return prims.svd(A, full_matrices=full_matrices)


# CompositeImplicitAutograd
@out_wrapper(exact_dtype=True)
def svdvals(A: TensorLikeType) -> Tensor:
    return svd(A, full_matrices=False)[1]


# CompositeImplicitAutograd
@out_wrapper()
@elementwise_type_promotion_wrapper(
    type_promoting_args=("x", "y"),
    type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
)
def vecdot(x: Tensor, y: Tensor, dim: int = -1) -> Tensor:
    check_fp_or_complex(x.dtype, "linalg.vecdot")
    return (x.conj() * y).sum(dim=dim)