File: __init__.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (236 lines) | stat: -rw-r--r-- 6,789 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# mypy: allow-untyped-defs
import math
from typing import Optional, Union

import torch
import torch._prims as prims
import torch._prims_common as utils
import torch._refs as refs
from torch import Tensor
from torch._decomp import register_decomposition
from torch._prims_common import (
    ELEMENTWISE_TYPE_PROMOTION_KIND,
    Number,
    NumberType,
    TensorLike,
    TensorLikeType,
)
from torch._prims_common.wrappers import elementwise_type_promotion_wrapper, out_wrapper
from torch._refs import (
    _make_alias,
    _make_elementwise_binary_reference,
    _make_elementwise_unary_reference,
)


__all__ = [
    "bessel_j0",
    "bessel_j1",
    "entr",
    "erfcx",
    "expit",
    "i0e",
    "i1",
    "i1e",
    "log_ndtr",
    "logit",
    "log_softmax",
    "multigammaln",
    "ndtr",
    "ndtri",
    "softmax",
    "spherical_bessel_j0",
    "xlog1py",
    "zeta",
]
aten = torch._ops.ops.aten


@_make_elementwise_unary_reference(
    ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def bessel_j0(a: TensorLikeType) -> TensorLikeType:
    return prims.bessel_j0(a)


@_make_elementwise_unary_reference(
    ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def bessel_j1(a: TensorLikeType) -> TensorLikeType:
    return prims.bessel_j1(a)


@register_decomposition(aten.special_entr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
    type_promoting_args=("a",),
    type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def entr(a: TensorLikeType) -> TensorLikeType:
    return torch.where(
        torch.isnan(a),
        a,
        torch.where(a > 0, -a * torch.log(a), torch.where(a == 0, 0, -torch.inf)),
    )


@register_decomposition(aten.special_erfcx)
@out_wrapper()
@elementwise_type_promotion_wrapper(
    type_promoting_args=("a",),
    type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def erfcx(a: TensorLikeType) -> TensorLikeType:
    return prims.erfcx(a)


# alias for sigmoid
expit = _make_alias(torch.sigmoid, "expit")


@_make_elementwise_unary_reference(
    ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def i0e(a: TensorLikeType) -> TensorLikeType:
    return prims.bessel_i0e(a)


@_make_elementwise_unary_reference(
    ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def i1(a: TensorLikeType) -> TensorLikeType:
    return prims.bessel_i1(a)


@_make_elementwise_unary_reference(
    ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def i1e(a: TensorLikeType) -> TensorLikeType:
    return prims.bessel_i1e(a)


@register_decomposition(aten.special_log_ndtr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
    type_promoting_args=("a",),
    type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def log_ndtr(a: TensorLikeType) -> TensorLikeType:
    # Note: M_SQRT1_2 is the value of 1 / sqrt(2)
    M_SQRT1_2 = 0.707106781186547524400844362104849039
    t = a * M_SQRT1_2
    return torch.where(
        a < 1.0,
        torch.log(torch.special.erfcx(-t) / 2) - t * t,
        torch.log1p(-torch.erfc(t) / 2),
    )


@register_decomposition(aten.logit)
@out_wrapper()
@elementwise_type_promotion_wrapper(
    type_promoting_args=("self",),
    type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def logit(self: TensorLikeType, eps: Optional[float] = None) -> TensorLikeType:
    if eps is None:
        eps = -1.0
    lo = eps
    hi = 1 - eps
    self = torch.clamp(self, lo, hi)
    return torch.log(torch.true_divide(self, torch.sub(1, self)))


@register_decomposition(aten.special_xlog1py)
@out_wrapper()
@elementwise_type_promotion_wrapper(
    type_promoting_args=("a", "b"),
    type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def xlog1py(a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]):
    torch._check(
        isinstance(a, TensorLike) or isinstance(b, TensorLike),
        lambda: 'Expected either argument a or b to be a Tensor"',
    )

    # Operations like eq and log do not handle scalar values, so we convert them to scalar_tensors.
    if isinstance(a, TensorLike) and isinstance(b, Number):
        b = refs.scalar_tensor(b, dtype=a.dtype, device=a.device)
    elif isinstance(b, TensorLike) and isinstance(a, Number):
        a = refs.scalar_tensor(a, dtype=b.dtype, device=b.device)

    # mypy: expected "Tensor"
    assert isinstance(a, TensorLike)
    assert isinstance(b, TensorLike)
    rhs = torch.where(torch.eq(a, 0), 0, torch.mul(a, torch.log1p(b)))
    return torch.where(torch.isnan(b), float("nan"), rhs)


@register_decomposition(aten.mvlgamma)
@out_wrapper()
@elementwise_type_promotion_wrapper(
    type_promoting_args=("a",),
    type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def multigammaln(a: TensorLikeType, p: int) -> TensorLikeType:
    c = 0.25 * p * (p - 1) * math.log(math.pi)
    b = 0.5 * torch.arange(start=(1 - p), end=1, step=1, dtype=a.dtype, device=a.device)
    return torch.sum(torch.lgamma(a.unsqueeze(-1) + b), dim=-1) + c


@register_decomposition(aten.special_ndtr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
    type_promoting_args=("a",),
    type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def ndtr(a: TensorLikeType) -> TensorLikeType:
    # Note: M_SQRT1_2 is the value of 1 / sqrt(2)
    M_SQRT1_2 = 0.707106781186547524400844362104849039
    a_sqrt_2 = a * M_SQRT1_2
    return (1 + torch.erf(a_sqrt_2)) * 0.5


@register_decomposition(aten.special_ndtri)
@out_wrapper()
@elementwise_type_promotion_wrapper(
    type_promoting_args=("a",),
    type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def ndtri(a: TensorLikeType) -> TensorLikeType:
    return prims.ndtri(a)


# Forwarding alias: the special variant doesn't support the out kwarg
# CompositeImplicitAutograd - don't register decomp
def log_softmax(
    a: TensorLikeType,
    dim: int,
    dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
    return torch.log_softmax(a=a, dim=dim, dtype=dtype)  # type: ignore[call-overload]


# Forwarding alias: the special variant doesn't support the out kwarg
# CompositeImplicitAutograd - don't register decomp
def softmax(
    a: TensorLikeType,
    dim: int,
    dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
    return torch.softmax(a=a, dim=dim, dtype=dtype)  # type: ignore[call-overload]


@_make_elementwise_unary_reference(
    ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def spherical_bessel_j0(a: TensorLikeType) -> TensorLikeType:
    return prims.spherical_bessel_j0(a)


# TODO: add docstring
@_make_elementwise_binary_reference(
    type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def zeta(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType:
    return prims.zeta(a, b)