1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
# mypy: allow-untyped-defs
import math
from typing import Optional, Union
import torch
import torch._prims as prims
import torch._prims_common as utils
import torch._refs as refs
from torch import Tensor
from torch._decomp import register_decomposition
from torch._prims_common import (
ELEMENTWISE_TYPE_PROMOTION_KIND,
Number,
NumberType,
TensorLike,
TensorLikeType,
)
from torch._prims_common.wrappers import elementwise_type_promotion_wrapper, out_wrapper
from torch._refs import (
_make_alias,
_make_elementwise_binary_reference,
_make_elementwise_unary_reference,
)
__all__ = [
"bessel_j0",
"bessel_j1",
"entr",
"erfcx",
"expit",
"i0e",
"i1",
"i1e",
"log_ndtr",
"logit",
"log_softmax",
"multigammaln",
"ndtr",
"ndtri",
"softmax",
"spherical_bessel_j0",
"xlog1py",
"zeta",
]
aten = torch._ops.ops.aten
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def bessel_j0(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_j0(a)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def bessel_j1(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_j1(a)
@register_decomposition(aten.special_entr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def entr(a: TensorLikeType) -> TensorLikeType:
return torch.where(
torch.isnan(a),
a,
torch.where(a > 0, -a * torch.log(a), torch.where(a == 0, 0, -torch.inf)),
)
@register_decomposition(aten.special_erfcx)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def erfcx(a: TensorLikeType) -> TensorLikeType:
return prims.erfcx(a)
# alias for sigmoid
expit = _make_alias(torch.sigmoid, "expit")
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def i0e(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_i0e(a)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def i1(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_i1(a)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def i1e(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_i1e(a)
@register_decomposition(aten.special_log_ndtr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def log_ndtr(a: TensorLikeType) -> TensorLikeType:
# Note: M_SQRT1_2 is the value of 1 / sqrt(2)
M_SQRT1_2 = 0.707106781186547524400844362104849039
t = a * M_SQRT1_2
return torch.where(
a < 1.0,
torch.log(torch.special.erfcx(-t) / 2) - t * t,
torch.log1p(-torch.erfc(t) / 2),
)
@register_decomposition(aten.logit)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("self",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def logit(self: TensorLikeType, eps: Optional[float] = None) -> TensorLikeType:
if eps is None:
eps = -1.0
lo = eps
hi = 1 - eps
self = torch.clamp(self, lo, hi)
return torch.log(torch.true_divide(self, torch.sub(1, self)))
@register_decomposition(aten.special_xlog1py)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a", "b"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def xlog1py(a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]):
torch._check(
isinstance(a, TensorLike) or isinstance(b, TensorLike),
lambda: 'Expected either argument a or b to be a Tensor"',
)
# Operations like eq and log do not handle scalar values, so we convert them to scalar_tensors.
if isinstance(a, TensorLike) and isinstance(b, Number):
b = refs.scalar_tensor(b, dtype=a.dtype, device=a.device)
elif isinstance(b, TensorLike) and isinstance(a, Number):
a = refs.scalar_tensor(a, dtype=b.dtype, device=b.device)
# mypy: expected "Tensor"
assert isinstance(a, TensorLike)
assert isinstance(b, TensorLike)
rhs = torch.where(torch.eq(a, 0), 0, torch.mul(a, torch.log1p(b)))
return torch.where(torch.isnan(b), float("nan"), rhs)
@register_decomposition(aten.mvlgamma)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def multigammaln(a: TensorLikeType, p: int) -> TensorLikeType:
c = 0.25 * p * (p - 1) * math.log(math.pi)
b = 0.5 * torch.arange(start=(1 - p), end=1, step=1, dtype=a.dtype, device=a.device)
return torch.sum(torch.lgamma(a.unsqueeze(-1) + b), dim=-1) + c
@register_decomposition(aten.special_ndtr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def ndtr(a: TensorLikeType) -> TensorLikeType:
# Note: M_SQRT1_2 is the value of 1 / sqrt(2)
M_SQRT1_2 = 0.707106781186547524400844362104849039
a_sqrt_2 = a * M_SQRT1_2
return (1 + torch.erf(a_sqrt_2)) * 0.5
@register_decomposition(aten.special_ndtri)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def ndtri(a: TensorLikeType) -> TensorLikeType:
return prims.ndtri(a)
# Forwarding alias: the special variant doesn't support the out kwarg
# CompositeImplicitAutograd - don't register decomp
def log_softmax(
a: TensorLikeType,
dim: int,
dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
return torch.log_softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
# Forwarding alias: the special variant doesn't support the out kwarg
# CompositeImplicitAutograd - don't register decomp
def softmax(
a: TensorLikeType,
dim: int,
dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
return torch.softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def spherical_bessel_j0(a: TensorLikeType) -> TensorLikeType:
return prims.spherical_bessel_j0(a)
# TODO: add docstring
@_make_elementwise_binary_reference(
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def zeta(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType:
return prims.zeta(a, b)
|