1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
|
# mypy: allow-untyped-decorators
from __future__ import annotations
import atexit
import contextlib
import dataclasses
import functools
import logging
import math
import os
import traceback
import typing
import weakref
from collections import defaultdict
from dataclasses import dataclass
from typing import (
Any,
Callable,
cast,
Dict,
Generator,
Iterable,
List,
Literal,
Mapping,
Optional,
Sequence,
Set,
Tuple,
Type,
TYPE_CHECKING,
TypeVar,
Union,
)
from typing_extensions import Self, TypeGuard
from weakref import ReferenceType
import torch
import torch._library.utils as library_utils
from torch import SymBool, SymFloat, SymInt, Tensor
from torch._C._functorch import is_functorch_wrapped_tensor, is_legacy_batchedtensor
from torch._library.fake_class_registry import FakeScriptObject
from torch._logging import dtrace_structured
from torch._prims_common import suggest_memory_format
from torch._subclasses.meta_utils import (
assert_eq,
assert_metadata_eq,
is_sparse_any,
is_sparse_compressed,
MetaConverter,
)
from torch._utils import render_call
from torch.fx.immutable_collections import immutable_dict
from torch.fx.operator_schemas import normalize_function
from torch.multiprocessing.reductions import StorageWeakRef
from torch.overrides import TorchFunctionMode
from torch.types import IntLikeType, py_sym_types
from torch.utils._backport_slots import dataclass_slots
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import (
is_traceable_wrapper_subclass,
TorchDispatchMode,
)
from torch.utils._pytree import KeyPath, keystr, PyTree, tree_map, tree_map_, TreeSpec
from torch.utils._stats import count
from torch.utils._traceback import CapturedTraceback
from ._fake_tensor_utils import _CacheKeyState, _PySymInputStub, _SymIntOutputStub
if TYPE_CHECKING:
from types import TracebackType
from torch._guards import Source
from torch._ops import OpOverload
from torch.fx.experimental.symbolic_shapes import ShapeEnv, SymbolicContext
log = logging.getLogger(__name__)
# TODO: Hack to unblock https://github.com/pytorch/pytorch/pull/108186
# Proper fix tracked by https://github.com/pytorch/pytorch/issues/120105
try:
not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
except ValueError as e:
if "'not_implemented' not registered" in str(e):
import logging as not_implemented_log
else:
raise e
class _Unassigned:
pass
_UNASSIGNED = _Unassigned()
DimList = List
pytree = torch.utils._pytree
T = TypeVar("T")
aten = torch._ops.ops.aten
CONSTANT_NUMEL_LIMIT = 1
RECURSION_COUNT = 0
# Small helper that increments recursion count, and
# resets it when the object goes out of scope. Useful
# if you don't want to increase indentation which is
# what a context manager would do.
class IncrementRecursionCount:
def __init__(self) -> None:
global RECURSION_COUNT
RECURSION_COUNT += 1
def __del__(self) -> None:
global RECURSION_COUNT
RECURSION_COUNT -= 1
@dataclass
class UnsupportedFakeTensorException(RuntimeError):
reason: str
@dataclass
class DynamicOutputShapeException(RuntimeError):
func: OpOverload
@dataclass
class DataDependentOutputException(RuntimeError):
func: OpOverload
@dataclass
class UnsupportedOperatorException(RuntimeError):
func: OpOverload
@dataclass
class MetadataMismatchError(RuntimeError):
reason: str
def ordered_set(*items: T) -> Dict[T, Literal[True]]:
return dict.fromkeys(items, True)
@contextlib.contextmanager
def unset_fake_temporarily() -> Generator[Optional[TorchDispatchMode], None, None]:
old = torch._C._unset_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE)
try:
yield old
finally:
if old is not None:
torch._C._set_dispatch_mode(old)
def get_plain_tensors(
subclass: Tensor, *, out: List[Union[Tensor, int, SymInt]]
) -> List[Union[Tensor, int, SymInt]]:
# This function is used in Runtime, do not add redundant asserts
todo = [subclass]
while todo:
curr = todo.pop()
if not is_traceable_wrapper_subclass(curr):
out.append(curr)
continue
inner_keys, _ = curr.__tensor_flatten__()
todo.extend(getattr(curr, key) for key in reversed(inner_keys))
return out
def is_fake(x: object) -> TypeGuard[Tensor]:
if isinstance(x, FakeTensor):
return True
if is_traceable_wrapper_subclass(x):
attrs, _ = type(x).__tensor_flatten__(x)
flattened_tensors = [getattr(x, attr) for attr in attrs]
all_fake = all(is_fake(x) for x in flattened_tensors)
any_fake = any(is_fake(x) for x in flattened_tensors)
assert all_fake == any_fake, "got mixed fake and real tensors!"
return all_fake
elif isinstance(x, Tensor) and torch._is_functional_tensor(x):
reapply_views = torch._C._functionalization_reapply_views_tls()
unwrapped = torch._C._functorch._unwrap_functional_tensor(x, reapply_views)
return is_fake(unwrapped)
elif isinstance(x, Tensor) and is_functorch_wrapped_tensor(x):
unwrapped = torch._C._functorch.get_unwrapped(x)
return is_fake(unwrapped)
return False
def maybe_get_fake_mode(t: object) -> Optional[FakeTensorMode]:
if isinstance(t, FakeTensor):
return t.fake_mode
if is_traceable_wrapper_subclass(t):
inner_tensor_names, _ = t.__tensor_flatten__()
modes = [
maybe_get_fake_mode(getattr(t, t_name)) for t_name in inner_tensor_names
]
m = modes[0]
assert all(m is x for x in modes)
return m
elif isinstance(t, Tensor) and torch._is_functional_tensor(t):
reapply_views = torch._C._functionalization_reapply_views_tls()
unwrapped = torch._C._functorch._unwrap_functional_tensor(t, reapply_views)
return maybe_get_fake_mode(unwrapped)
elif isinstance(t, Tensor) and is_functorch_wrapped_tensor(t):
unwrapped = torch._C._functorch.get_unwrapped(t)
return maybe_get_fake_mode(unwrapped)
return None
@functools.lru_cache(None)
def get_schema_info(func: OpOverload) -> torch._C._SchemaInfo:
return torch._C._SchemaInfo(func._schema)
# many of the decompositions registered to torch/_prims do not at the moment model
# aliasing or strides, so as an incremental step, just enable the decompositions in
# torch/_decomp/decompositions.py.
# decomps are used for aot autograd tracing so we would like to unify on their
# implementation and add additional testing to them
@functools.lru_cache(None)
def torch_decomp_decompositions(func: OpOverload) -> bool:
from torch._decomp import decomposition_table
decompositions = torch._decomp.decompositions
# Note that the function in the decomposition table might be
# different from the one in the module because of the difference
# in out handling in aten API and torch public API
return decomposition_table[func].__module__.startswith(
"torch._decomp"
) and decomposition_table[func].__name__ in dir(decompositions)
def tree_flatten_only(ty: Type[T], tree: PyTree) -> List[T]:
flat_vals = pytree.tree_leaves(tree)
return [elem for elem in flat_vals if isinstance(elem, ty)]
def _is_plain_tensor(t: object) -> bool:
return (
type(t) is Tensor
and t.layout == torch.strided
and not (
t.is_sparse
or t.is_nested
or is_functorch_wrapped_tensor(t)
or is_legacy_batchedtensor(t)
or torch._is_functional_tensor(t)
)
)
# Similar to `MetaConverter`, this is a class for converting
# multiple tensors into fake tensors which share the same view/storage
# structure. Like `MetaConverter`, it uses `WeakIdRef` to
# hold a weak reference for all memoized tensors.
class FakeTensorConverter:
@property
def tensor_memo(
self,
) -> weakref.WeakValueDictionary:
# not valid until py3.10
# weakref.WeakValueDictionary["torch._subclasses.meta_utils.MetaTensorId", Optional["FakeTensor"]]
return self.meta_converter.tensor_memo
meta_converter: MetaConverter
constant_storage_mapping: Dict[StorageWeakRef, List[ReferenceType]]
export: bool
def __init__(self, *, copy_data: bool = False, export: bool = False) -> None:
self.meta_converter = MetaConverter(copy_data=copy_data)
self.export = export
# map from to storage to corresponding constant tensors
self.constant_storage_mapping = {}
def add_constant_storage_mapping(self, fake_tensor: FakeTensor) -> None:
# when you have a constant, aliased tensor:
# const_tensor.add_(torch.rand([1]))
# all aliases of it must become no longer const
assert isinstance(fake_tensor, FakeTensor) and fake_tensor.constant is not None
weak_st = StorageWeakRef(fake_tensor.constant._typed_storage())
# we need a map from a weak storage to all of its corresponding
# constant tensors. python doesn't have the weak value equivalent
# of defaultdict(list), so we are using a WeakValueDictionary as one
if weak_st not in self.constant_storage_mapping:
self.constant_storage_mapping[weak_st] = []
self.constant_storage_mapping[weak_st].append(weakref.ref(fake_tensor))
def invalidate_constant_aliases(self, tensor: Tensor) -> None:
assert not isinstance(tensor, FakeTensor)
weak_st = StorageWeakRef(tensor._typed_storage())
if weak_st not in self.constant_storage_mapping:
return
for weak_tensor_ref in self.constant_storage_mapping[weak_st]:
ten = weak_tensor_ref()
if ten is not None:
ten._fix_weakref()
ten.constant = None
del self.constant_storage_mapping[weak_st]
def _get_memo(self, t: Tensor) -> Optional[FakeTensor]:
tid = self.meta_converter.describer.lookup_tensor.get(t)
if tid is None:
return None
return self.tensor_memo.get(tid)
def set_tensor_memo(self, t: Tensor, v: FakeTensor) -> None:
tid = self.meta_converter.describer.get_tensor_id(t)
self.meta_converter.tensor_memo[tid] = v
# You can have a real tensor that you need to convert into a fake tensor.
# If you have a meta tensor already, call from_meta_and_device.
#
# You're allowed to pass a meta tensor to be turned into a fake
# tensor; although an odd thing to do, this can occur if you're doing
# cross ref testing and the inner test is already operating on meta tensors.
def from_real_tensor(
self,
fake_mode: FakeTensorMode,
t: Tensor,
make_constant: bool = False,
shape_env: Optional[ShapeEnv] = None,
*,
source: Optional[Source] = None,
symbolic_context: Optional[SymbolicContext] = None,
trace: bool = True,
) -> FakeTensor:
# see note [Tensor Fakification and Symbol Caching]
if not symbolic_context and not source and shape_env:
if tracing_context := torch._guards.TracingContext.try_get():
if t in tracing_context.tensor_to_context:
symbolic_context = tracing_context.tensor_to_context[t]
from torch.fx.experimental.symbolic_shapes import (
StatefulSymbolicContext,
)
assert isinstance(symbolic_context, StatefulSymbolicContext)
source = symbolic_context.tensor_source
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
# not yet supported in metatensors
if t.is_quantized:
raise UnsupportedFakeTensorException("quantized nyi in meta tensors")
if type(t) is torch.nn.Parameter:
assert not make_constant
constant = t if make_constant else None
# This callback is used by both subclass and inner tensors. Require the
# caller to explicitly specify the device in case outer and inner tensors
# have different devices.
def mk_fake_tensor(
make_meta_t: Callable[[], object], device: Union[torch.device, str]
) -> FakeTensor:
# NB: don't use in_kernel_invocation_manager. to
# ensure FakeTensor can internally do constant computation
# as necessary. Invocation manager is "more correct" as
# it works for more operators in make_meta_t, but
# invariant is that make_meta_t only calls factories
# for which it is not strictly necessary to use the
# invocation manager (I think!)
with no_dispatch():
return FakeTensor(
fake_mode,
make_meta_t(),
device,
# TODO: callback might be used in recursive contexts, in
# which case using t is wrong! BUG!
constant=constant,
)
out = self.meta_converter(
t,
shape_env=shape_env,
callback=mk_fake_tensor, # type: ignore[arg-type]
source=source,
symbolic_context=symbolic_context,
trace=trace,
)
if out is NotImplemented:
raise UnsupportedFakeTensorException("meta converter nyi")
from torch._dynamo.source import RandomValueSource
value = None
if (
not self.export
and _is_plain_tensor(t) # mostly, we want to know if item() works
and t.dim() == 0
and t.device.type == "cpu"
# All integer types are fair game, because signed overflow is UB
# (and even int64 can overflow, since integers in Python are
# arbitrary precision). But only float64 is OK for float, because
# switching between float32 and float64 changes semantics in an
# observable way without hitting UB.
and t.dtype
in [torch.int64, torch.int32, torch.int16, torch.int8, torch.float64]
and source is not None
# Impede setting up item() on things coming from random. These
# are not "real" item() calls, instead UnspecializedPythonVariable
# is unsafely pretending an int is a tensor, which can sometimes
# implicitly cause an item call. The problem is this is pretty
# unsound: there's no reason substituting an int with a Tensor is
# going to give the same results. Today, you mostly get around
# this by typically not having capture_scalar_outputs on and graph
# breaking when someone tries to use the unspec variable in an
# int-y context. But allowing it through here would break that.
# So don't.
#
# Once random values are setup to be represented as
# SymNodeVariable, this condition can be removed. To check if
# you've done it right, this is a good test:
#
# PYTORCH_TEST_WITH_DYNAMO=1 python test/test_reductions.py -k
# TestReductionsCPU.test_dim_reduction_fns_fn_name_amax_cpu_bfloat16
and not isinstance(source, RandomValueSource)
# In Dynamo, shape_env is never none (even with static shapes).
# However, FakeTensorMode can be used by hand and in some cases
# ShapeEnv is not allocated.
and shape_env is not None
):
from torch._dynamo.source import CallMethodItemSource, FloatTensorSource
from torch.fx.experimental.symbolic_shapes import DimDynamic
with no_dispatch():
value = t.item()
if not math.isnan(value) and not math.isinf(value):
# Peephole strip out unnecessary torch.as_tensor(x).item()
if isinstance(source, FloatTensorSource):
item_source = source.base
else:
item_source = CallMethodItemSource(source)
symbol = shape_env.create_unspecified_symbol(
value,
source=item_source,
dynamic_dim=DimDynamic.DYNAMIC,
symbolic_context=symbolic_context,
)
# NB: reusing item_memo here ensures that we invalidate on
# mutation
if t.dtype == torch.int64:
out.item_memo = shape_env.create_symintnode(
symbol,
hint=value,
source=item_source,
)
elif t.dtype == torch.float64:
out.item_memo = shape_env.create_symfloatnode(
symbol,
hint=value,
source=item_source,
)
if make_constant:
self.add_constant_storage_mapping(out)
# NB: meta_converter set the memo
return out
# If you specify the device, it MUST be a meta tensor.
def from_meta_and_device(
self, fake_mode: FakeTensorMode, t: Tensor, device: torch.device
) -> FakeTensor:
assert (
t.device.type == "meta"
), f"tensor's device must be `meta`, got {t.device.type} instead"
# This is a bit abusive (this is not the "real" tensor) but whatever,
# the meta tensor should be fresh so there's no way to get it wrong
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
out = FakeTensor(fake_mode, t, device)
self.set_tensor_memo(t, out)
return out
@functools.lru_cache(None)
def init_gpu_context(device: torch.device) -> None:
# Backward will error with cuda Fake Tensors if no cuda tensors have been initialized first
if torch.cuda.is_available() or torch.xpu.is_available():
(
torch.empty(1, device=device)
if torch.version.hip is None
else torch.zeros(1, device=device)
)
@contextlib.contextmanager
def in_kernel_invocation_manager(
fake_mode: FakeTensorMode,
) -> Generator[None, None, None]:
# See: note [Fake Tensor Dispatch Keys]
prev_in_kernel = fake_mode.in_kernel_invocation
meta_in_tls = torch._C._meta_in_tls_dispatch_include()
assert meta_in_tls == prev_in_kernel, f"{meta_in_tls}, {prev_in_kernel}"
with torch._C._DisableTorchDispatch():
fake_mode.in_kernel_invocation = True
# Unfortunately _set_meta_in_tls_dispatch_include(False) can leave
# `Dense` turned on (because it's implied by `Meta`)
with torch._C._PreserveDispatchKeyGuard():
torch._C._set_meta_in_tls_dispatch_include(True)
try:
yield
finally:
fake_mode.in_kernel_invocation = prev_in_kernel
# torch._C._set_meta_in_tls_dispatch_include(prev_in_kernel)
# Return if the function allows Python numbers to bind to Tensors
def should_allow_numbers_as_tensors(func: OpOverload) -> bool:
return torch._C._should_allow_numbers_as_tensors(
func.name().split("::")[-1].split(".")[0]
)
class FakeTensorConfig:
debug = os.environ.get("TORCH_FAKE_TENSOR_DEBUG", "0") == "1"
# This memorizes unbacked SymInt or SymFloats representing quantities like the
# number of nonzero elements in this tensor or learning rate. There is one
# instance of the descriptor per particular quantity to memoize.
#
# Memoization is helpful if you do something like x[mask] and y[mask];
# mask.nonzero() gets repeatedly called and should give a consistent unbacked
# SymInt. It needs to be invalidated in the same way constant is.
#
# Making this a descriptor may seem overly fancy, but actually it's the most
# convenient way to ensure access to FakeTensor during access, which is
# required for testing version counter and epoch validity.​
class SymNumberMemoDescriptor:
_name: str
# By default, SymInts in this memo are invalidated across versions/epochs.
# nested_ints however are preserved across epochs and across versions.
# Preserving across versions is okay for nested int since the association
# of a nested int is agnostic to the underlying data and nested ints are not
# shared across multiple distinct tensors.
_is_nested_int: bool
def __init__(self, *, is_nested_int: bool = False) -> None:
self._is_nested_int = is_nested_int
def __set_name__(self, owner: str, name: str) -> None:
self._name = name
def _memo(self, obj: FakeTensor) -> str:
return f"_{self._name}"
def _memo_vc(self, obj: FakeTensor) -> str:
return f"_{self._name}_vc"
# When we retrace, we need to invalidate all the memos so that we can
# accurately identify the first time unbacked SymInts are allocated.
# This is only relevant for inputs; for intermediates, they will get fresh
# fake tensors so you won't have a memo anyway
def _memo_epoch(self, obj: FakeTensor) -> str:
return f"_{self._name}_epoch"
def __get__(
self, obj: FakeTensor, objtype: Optional[Type[FakeTensor]] = None
) -> Optional[Union[torch.SymInt, torch.SymFloat]]:
if (r := getattr(obj, self._memo(obj))) is None:
return None
# If backed, it's ok to preserve memo since we know it won't renumber.
if isinstance(r, torch.SymFloat) and r.node.hint is not None:
return r
# Version counter based tracking isn't 100% sound but it's close
# enough
if (
not self._is_nested_int and getattr(obj, self._memo_vc(obj)) != obj._version
) or (
not self._is_nested_int
and getattr(obj, self._memo_epoch(obj)) != obj.fake_mode.epoch
):
setattr(obj, self._memo(obj), None)
return None
return r
def __set__(
self, obj: FakeTensor, value: Optional[Union[torch.SymInt, torch.SymFloat]]
) -> None:
if value is None:
setattr(obj, self._memo(obj), None)
setattr(obj, self._memo_vc(obj), None)
setattr(obj, self._memo_epoch(obj), None)
elif not obj.is_inference() or self._is_nested_int:
setattr(obj, self._memo(obj), value)
if not self._is_nested_int:
setattr(obj, self._memo_vc(obj), obj._version)
setattr(obj, self._memo_epoch(obj), obj.fake_mode.epoch)
class FakeTensor(Tensor):
"""
Meta tensors give you the ability to run PyTorch code without having to
actually do computation through tensors allocated on a `meta` device.
Because the device is `meta`, meta tensors do not model device propagation.
FakeTensor extends MetaTensors to also carry an additional `fake_device`
which tracks devices that would have been used.
"""
fake_device: torch.device
fake_mode: FakeTensorMode
constant: Optional[Tensor]
real_tensor: Optional[Tensor]
# TODO: Generalize this as needed, e.g., into a trie of memos, if
# you do something like x[0].item() (x[0] is fresh each time, so
# memo mechanism here won't work)
nonzero_memo = SymNumberMemoDescriptor()
item_memo = SymNumberMemoDescriptor()
unique_memo = SymNumberMemoDescriptor()
# We expect nested_int_memo to be None when an offsets is a graph
# intermediate, or an input that has never been associated with a
# nested int.
nested_int_memo = SymNumberMemoDescriptor(is_nested_int=True)
# Indicates to our torch_dispatch dispatching infra that
# this is an "infra" mode with lower dispatching precedence.
_mode_key = torch._C._TorchDispatchModeKey.FAKE
@property
def device(self) -> torch.device:
if self.fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return self.fake_device
@device.setter
def device(self, _: torch.device) -> None:
raise NotImplementedError
# Note: [Fake Tensor Dispatch Keys]
# In order to model the behavior of device-specific autocast
# and autograd logic, we update the dispatch keys of FakeTensors
# to reflect their fake device. This includes the BackendComponent
# (DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
# related Autocast and Autograd keys. __torch_dispatch__ sits below
# Autocast and Autograd, and is only invoked when we are at the
# kernel for the BackendComponent. Then, we add Meta to the
# thread-local dispatch include set to hit the meta kernel
# instead of the kernel of the BackendComponent for the fake device.
# The `device_for_backend_keys` does that below
# NOTE: this probably will not do the right thing for backends
# that have dispatch keys which are higher than the "meta" key:
# https://github.com/pytorch/pytorch/blob/main/c10/core/DispatchKey.h#L189
# We don't support named tensors; graph break
@property
def names(self) -> List[str]:
raise UnsupportedFakeTensorException(
"torch.compile doesn't support named tensors"
)
@names.setter
def names(self, _: List[str]) -> None:
raise NotImplementedError
@staticmethod
def __new__(
cls,
fake_mode: FakeTensorMode,
elem: Tensor,
device: torch.device,
constant: Optional[Tensor] = None,
real_tensor: Optional[Tensor] = None,
) -> Self:
self = Tensor._make_subclass(
cls,
elem,
elem.requires_grad,
dispatch_device=True,
device_for_backend_keys=device,
)
if not fake_mode._allow_unsafe_data_ptr_access:
torch._C._set_throw_on_mutable_data_ptr(self)
else:
torch._C._set_warn_deprecated_on_mutable_data_ptr(self)
assert elem.device.type == "meta", elem.device.type
device = device if isinstance(device, torch.device) else torch.device(device)
# NB: it is fine, if a little confusing, for device to be meta
# (we are faking a meta tensor in that case). However, it often
# indicates some sort of confusion (e.g., you accidentally passed
# in a meta tensor when you should have passed in the real tensor).
# So by default we disallow meta, and if you are working in a situation
# where it is helpful (e.g., crossref testing) you can turn it back
# on
if not fake_mode.allow_meta:
assert device.type != "meta"
# normalize device.
if device.type in ["cuda", "xpu"]:
init_gpu_context(device)
if (
device.type
in ["cuda", "hpu", "xpu", torch._C._get_privateuse1_backend_name()]
and device.index is None
):
if getattr(torch, device.type).is_initialized():
device = torch.device(
f"{device.type}:{getattr(torch, device.type).current_device()}"
)
else:
device = torch.device(f"{device.type}:0")
self.fake_device = device
self.fake_mode = fake_mode
self.constant = constant
assert not isinstance(real_tensor, FakeTensor)
self.real_tensor = real_tensor
self.nonzero_memo = None
self.item_memo = None
self.unique_memo = None
self.nested_int_memo = None
if FakeTensorConfig.debug:
self._debug_trace = CapturedTraceback.extract() # type: ignore[attr-defined]
return self
# In some circumstances, a conventional Tensor constructor
# will get rewritten to call into FakeTensor. We must provide an
# __init__ method that can accept the Python interpreters initialization
# in such a situation; we must also be able to handle direct fake
# tensor construction via FakeTensor().
#
# In particular, the __init__ call will look funny in the following case:
#
# with FakeTensorMode():
# x = Tensor([1, 2, 3])
#
# this desugars into:
#
# with FakeTensorMode():
# x = Tensor.__new__([1, 2, 3])
# # NB: x is a fake tensor, because of the mode!
# x.__init__([1, 2, 3]) # not the normal fake tensor args!
#
def __init__(self, *args: object, **kwargs: object) -> None:
super().__init__()
@staticmethod
def from_tensor(t: Tensor, fake_mode: FakeTensorMode) -> FakeTensor:
return fake_mode.from_tensor(t)
@classmethod
@count
def __torch_dispatch__(
cls,
func: OpOverload,
types: Sequence[Type],
args: Sequence[object] = (),
kwargs: Mapping[str, object] = immutable_dict(),
) -> object:
# need to handle here to avoid infinite recursion
# see [in_kernel_invocation]
if func == torch.ops.prim.device.default:
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
# this handler must be done inside FakeTensor subclass, not mode, because
# we can end up dispatching here when we have a fake tensor with
# symbolic sizes running under in_kernel_invocation_manager.
# The subclass is asked to handle this query because size (not
# sym_size) was called, but we are unable to serve it directly because
# there are symbolic sizes in the class. The use of
# in_kernel_invocation_manager means it's incorrect to activate a
# mode to actually handle this (this caused
# https://github.com/pytorch/pytorch/issues/122772).
if handler := _DISPATCH_META_HANDLERS.get(func):
return handler(args)
# Because fake mode can return NotImplemented (if it sees a subclass
# it doesn't know how to deal with), this test here is important
# because the next dispatch after a fake mode will attempt to use
# subclasses of tensors to dispatch, and any FakeTensor arguments
# will be considered eligible.
unrecognized_types = [
t for t in types if not issubclass(t, FakeTensor) and t is not Tensor
]
if unrecognized_types:
not_implemented_log.debug(
"FakeTensor unrecognized subclass(es): %s", unrecognized_types
)
return NotImplemented
fake_mode = None
for arg in pytree.arg_tree_leaves(*args, **kwargs):
if isinstance(arg, FakeTensor):
fake_mode = arg.fake_mode
break
assert fake_mode is not None
# If the fake mode is already active, don't try to reapply it!
# NotImplemented is the right thing to return here, because the
# typical situation this can occur is if ProxyTensorMode returned a
# NotImplemented because of a not implemented subclass; we may have
# unluckily attempted to hit FakeTensor's dispatch first,
# NotImplemented lets us keep chaining until we find the actual
# subclass
maybe_cur_fake_mode = torch._C._get_dispatch_mode(
torch._C._TorchDispatchModeKey.FAKE
)
if maybe_cur_fake_mode:
not_implemented_log.debug(
"FakeTensor mode already active: %s in %s",
fake_mode,
maybe_cur_fake_mode,
)
return NotImplemented
assert not fake_mode.in_kernel_invocation
with fake_mode:
return func(*args, **kwargs)
@staticmethod
def _find_common_device(
func: OpOverload, flat_args: Sequence[object]
) -> Tuple[torch.device, bool]:
# Returns: (common_device, has_scalar_only_inputs)
# cpu - zero-dim tensors can be called in cuda kernels,
# so overwrite the common_device if it the only existing
# device comes from a cpu zero-dim tensor
common_device = None
has_scalar_only_inputs = False
is_cpu_zero_dim = None
def cpu_zero_dim(t: Tensor) -> bool:
return t.device.type == "cpu" and t.dim() == 0
def merge_devices(t: object) -> None:
nonlocal common_device
nonlocal is_cpu_zero_dim
if not isinstance(t, FakeTensor):
return
if common_device is None:
common_device = t.device
is_cpu_zero_dim = cpu_zero_dim(t)
return
t_is_cpu_zero_dim = cpu_zero_dim(t)
if t.device == common_device:
if is_cpu_zero_dim:
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices !
# if current tensor is cpu 0 dim, defer to existing device
if t_is_cpu_zero_dim:
return
# current device is from cpu 0 dim tensor, overwrite
if is_cpu_zero_dim:
common_device = t.device
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices of non-zero dim tensors, throw
# This might be valid behavior and need to be explicitly modeled, e.g. reshape_as
raise RuntimeError(
f"Unhandled FakeTensor Device Propagation for {func}, found two different devices {common_device}, {t.device}"
)
for arg in flat_args:
merge_devices(arg)
# some functions that allow Python numbers to bind to Tensors
# if we have failed to find a device, and we're running one of these operators,
# we must have scalar only inputs
if should_allow_numbers_as_tensors(func) and common_device is None:
# ops with scalar only inputs always have result on cpu
has_scalar_only_inputs = True
common_device = torch.device("cpu")
assert common_device is not None, f"Could not find common device for {func}"
return common_device, has_scalar_only_inputs
def get_nested_int(
self,
*,
coeff: Union[int, torch.SymInt] = 1,
) -> torch.SymInt:
if self.nested_int_memo is None:
self.nested_int_memo = self.fake_mode.create_symbolic_nested_int(
nt_tensor_id=None
)
assert isinstance(self.nested_int_memo, torch.SymInt)
return self.nested_int_memo * coeff
# Similar to FunctionalTensor.tolist
def tolist(self) -> Any:
if self.dim() == 0:
return self.item()
elif self.dim() == 1:
return [elem.item() for elem in self]
else:
return [elem.tolist() for elem in self]
_MetadataIntLike = Union[IntLikeType, "_PySymInputStub", "_SymIntOutputStub"]
@dataclass_slots
@dataclass
class TensorMetadata:
"""
The Tensor metadata relevant to hashing FakeTensors when caching.
"""
dtype: torch.dtype
shape: Tuple[_MetadataIntLike, ...]
stride: Tuple[_MetadataIntLike, ...]
device: torch.device
layout: torch.layout
memory_format: Optional[torch.memory_format]
storage_offset: _MetadataIntLike
storage_bytes: Optional[_MetadataIntLike]
requires_grad: bool
is_quantized: bool
is_conj: bool
is_neg: bool
is_inference: bool
is_sparse: bool # read: is sparse COO
is_coalesced: Optional[bool]
dense_dim: Optional[int]
sparse_dim: Optional[int]
def _flatten_into(
self,
result: List[object],
mode: FakeTensorMode,
state: _CacheKeyState,
) -> None:
# Flatten the TensorMetadata out into `result`. Make sure to call
# state.convert_sym_int() on any SymInts.
for field in dataclasses.fields(self):
value = getattr(self, field.name)
if isinstance(value, (tuple, list, torch.Size)):
# This will recursively flatten the iterable, calling
# convert_sym_int() as necessary.
mode._prep_args_for_hash(result, value, state)
elif isinstance(value, SymInt):
state.convert_sym_int(result, value)
else:
result.append(value)
def extract_tensor_metadata(t: Tensor) -> TensorMetadata:
"""
Extract the TensorMetadata of a tensor.
"""
memory_format: Optional[torch.memory_format] = suggest_memory_format(t)
# Don't call is_contiguous() on a Tensor which has symbolic sizes or things
# will go badly (guards will be messed up?)
if (
t._has_symbolic_sizes_strides
or is_sparse_any(t)
or not t.is_contiguous(memory_format=memory_format)
):
memory_format = None
storage_offset = t.storage_offset()
return TensorMetadata(
t.dtype,
t.shape,
t.stride() if t.layout == torch.strided else (),
t.device,
t.layout,
memory_format,
storage_offset,
# Only set storage_bytes for tensors that have storage (not sparse)
t.untyped_storage().nbytes() if not is_sparse_any(t) else None,
t.requires_grad,
t.is_quantized,
t.is_conj(),
t.is_neg(),
t.is_inference(),
t.is_sparse,
t.is_coalesced() if t.is_sparse else None,
t.dense_dim() if is_sparse_any(t) else None,
t.sparse_dim() if is_sparse_any(t) else None,
)
@dataclass_slots
@dataclass
class _DispatchCacheKey:
"""
Key for the FakeTensor dispatch cache.
"""
key: Tuple[object, ...]
hashvalue: int
def __init__(self, tup: Tuple[object, ...]) -> None:
self.key = tup
self.hashvalue = hash(tup)
def __eq__(self, other: object) -> bool:
return isinstance(other, _DispatchCacheKey) and self.key == other.key
def __hash__(self) -> int:
return self.hashvalue
def strip_shape_env(self) -> None:
# We need to strip the ShapeEnv from any values before we store in the
# cache so the cache doesn't keep our ShapeEnvs alive.
for v in self.key:
if isinstance(v, _PySymInputStub):
v.strip_shape_env()
@dataclass_slots
@dataclass(frozen=True)
class _DispatchCacheEntryOutputInfo:
"""
Entry type for the FakeTensor dispatch cache for an output. Accounts for two
possibilities:
1) The op is inplace, and a hit means we need to alias the argument at a
given index.
2) We need to synthesize a new FakeTensor given tensor metadata. For view
ops, we further capture the index of the arg to alias.
"""
inplace_idx: Optional[int]
metadata: Optional[TensorMetadata]
view_idx: Optional[int]
@dataclass_slots
@dataclass(frozen=True)
class _DispatchCacheEntry:
"""
Entry type for the FakeTensor dispatch cache. It supports two types of outputs
1) tensor
2) tuple of tensors
is_output_tuple flag helps in differentiating the return type
"""
output_infos: Tuple[_DispatchCacheEntryOutputInfo]
is_output_tuple: bool = False
@dataclass_slots
@dataclass(frozen=True)
class _BypassDispatchCache(Exception):
"""
Signals cases that should skip FakeTensor caching.
"""
reason: str
@dataclass_slots
@dataclass(frozen=True)
class DispatchCacheInfo:
"""
Information about the state of the FakeTensor dispatch cache.
"""
hits: int
misses: int
bypasses: Dict[str, int]
size: int
# We keep one instantiation of `fake_tensor_converter` active
# for the duration of `with FakeTensorMode()`.
# This allows accurate storage aliasing across invocation of
# different operators. While this will keep all freshly allocated
# tensors alive during `FakeTensorMode`, there will no be no
# new allocations of Tensors which have non-meta storage so
# memory should not significantly increase.
class FakeTensorMode(TorchDispatchMode):
cache: Dict[_DispatchCacheKey, _DispatchCacheEntry] = {}
cache_hits: int = 0
cache_misses: int = 0
cache_bypasses: Dict[str, int] = defaultdict(int)
# Every time you retrace using the same fake tensor mode, you should
# advance the epoch so we don't reuse unbacked memos
epoch: int = 0
in_kernel_invocation: bool = False
static_shapes: bool
shape_env: Optional[ShapeEnv]
_stack: Optional[str]
allow_meta: bool
# NestedTensor uses a tensor_id_counter to uniquely identify offsets.
# This counter is incremented when an offsets is used to create an NJT
# for the first time. To avoid mutating eager state if we construct NJT
# during tracing, we maintain a separate counter on the FakeTensorMode.
# The initial count is set to the current eager tensor_id_counter value
# upon initialization, and every time you retrace using the same fake tensor
# mode, you should reset the counter to the initial count.
nt_tensor_id_counter: int = -1
nt_tensor_id_initial_count: int = -1
def __init__(
self,
*,
allow_fallback_kernels: bool = True,
allow_non_fake_inputs: bool = False,
shape_env: Optional[ShapeEnv] = None,
static_shapes: Optional[bool] = None,
# TODO: This is a temporary measure, see
# https://github.com/pytorch/pytorch/pull/126245#discussion_r1604185748
# We're currently solely using this to impede population of
# item_memo for 0d scalar tensor inputs when export, because this
# causes things that used to be deferred runtime asserts to turn into
# guards, and then the guards are just lost. We can potentially fix
# this by ensuring guards also get put in the graph, but this is
# pending a rework of how deferred runtime asserts in export. Once
# that's done, we can remove this.
export: bool = False,
) -> None:
log.debug("create_mode 0x%x", id(self))
super().__init__()
self.allow_fallback_kernels = allow_fallback_kernels
import torch._dynamo.config
import torch._functorch.config
self.propagate_real_tensors = (
torch._functorch.config.fake_tensor_propagate_real_tensors
)
self.fake_tensor_converter = FakeTensorConverter(
copy_data=self.propagate_real_tensors,
export=export,
)
if static_shapes is not None:
self.static_shapes = static_shapes
else:
self.static_shapes = shape_env is None
# This is temporarily patched to True in Dynamo to grandfather in some
# places where we unconditionally allow scalar outputs, TO BE REMOVED
self.allow_scalar_outputs = False
self._allow_unsafe_data_ptr_access = (
torch._functorch.config.fake_tensor_allow_unsafe_data_ptr_access
)
self.allow_meta = torch._functorch.config.fake_tensor_allow_meta
self.cache_enabled = (
torch._dynamo.config.fake_tensor_cache_enabled
and not self.propagate_real_tensors
)
self.cache_crosscheck_enabled = (
torch._dynamo.config.fake_tensor_cache_crosscheck_enabled
)
# A flag that controls, whether we want to invoke ops on mix of
# real weights/global variables and fake inputs
self.allow_non_fake_inputs = allow_non_fake_inputs
# [in_kernel_invocation]
# when FakeTensor is invoked in user code, .device should return
# the fake_device of the tensor so that code such as as `if x.is_cuda`
# or torch.zeros([10, 10], device=x.device) continues to execute as if
# the FakeTensor were real. However, within kernel execution, we return
# the `Meta` device because all computation within the kernels should
# behave as if the Tensors are on meta devices. Kernels should allocate
# new tensors on meta devices, and checks like `is_meta` should return true.
# within python refs, we always return the real device by defining
# the device property
self.in_kernel_invocation = False
# True if we enter'ed and actually enabled fake tensor mode,
# false if it was a no-op. Not thread safe but neither is
# in_kernel_invocation
# If another fake mode was already active when we enter, we also stash it here.
# That way when we exit, we know to re-enable the previous fake mode.
self.enter_stack: List[
Tuple[bool, Optional[TorchDispatchMode], Optional[bool]]
] = []
self.shape_env = shape_env
self._stack_trace = traceback.extract_stack()
self._stack = None
# Indicates to our torch_dispatch dispatching infra that
# this is an "infra" mode with lower dispatching precedence.
self._mode_key = torch._C._TorchDispatchModeKey.FAKE
import torch.nested._internal.nested_tensor
self.nt_tensor_id_initial_count = (
torch.nested._internal.nested_tensor._tensor_id_counter
)
self.nt_tensor_id_counter = self.nt_tensor_id_initial_count
def reset_nt_tensor_id_counter(self) -> None:
self.nt_tensor_id_counter = self.nt_tensor_id_initial_count
# Typically, there is only one fake tensor mode and you test for it by
# doing an isinstance test. However, in some situations, there might be
# TWO fake tensor modes. The canonical example of this is exporting
# a fake model: there is an outer fake mode created by the user, and
# an inner fake mode created by Dynamo. The two phase process is required
# because the outer fake mode typically won't have a ShapeEnv, even if
# the user is interested in exporting with dynamic shapes (so the inner
# fake mode will actually have a ShapeEnv and swap in symbolic sizes.)
#
# In this case, it's insufficient to test only one FakeTensor: you need
# to distinguish between our fake tensor and other fake tensors. That's
# what this function does.
def is_our_fake(self, t: object) -> TypeGuard[FakeTensor]:
return isinstance(t, FakeTensor) and t.fake_mode is self
# If we should avoid device init. This changes the behavior of various APIs:
# - We avoid constant-prop on Tensors with ops that move them to another device
# - We change the torch.tensor ctor contract to never materialize
# tensors on device
# (see NOTE: [torch.tensor, lift_fresh, and device movement])
@property
def avoid_device_init(self) -> bool:
if torch.xpu._is_compiled():
assert not torch.cuda._is_compiled()
return not torch.xpu.is_available()
return not (
torch.cuda.is_available()
or (hasattr(torch, "hpu") and torch.hpu.is_available())
)
@property
def stack(self) -> str:
if self._stack is None:
self._stack = "".join(traceback.format_list(self._stack_trace))
return self._stack
@count
def __torch_dispatch__(
self,
func: OpOverload,
types: Sequence[Type],
args: Sequence[object] = (),
kwargs: Mapping[str, object] = immutable_dict(),
) -> object:
# FakeTensorMode should not be set when we're inside of it.
assert (
torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE) is None
), func
try:
return self.dispatch(func, types, args, kwargs)
except TypeError:
log.exception("fake tensor raised TypeError")
raise
# No-op if FakeTensorMode is already in use
def __enter__(self) -> Self:
import torch.nested._internal.nested_tensor
prev_only_lift_cpu_tensors = None
if self.avoid_device_init:
# See NOTE: [torch.tensor, lift_fresh, and device movement]
prev_only_lift_cpu_tensors = torch._C._only_lift_cpu_tensors()
torch._C._set_only_lift_cpu_tensors(True)
maybe_prev_fake_mode = torch._C._unset_dispatch_mode(self._mode_key)
if self is not maybe_prev_fake_mode:
self.enter_stack.append(
(True, maybe_prev_fake_mode, prev_only_lift_cpu_tensors)
)
return super().__enter__()
else:
# no-op (still need to re-set the fake mode though since we unset it)
torch._C._set_dispatch_mode(self)
self.enter_stack.append((False, None, prev_only_lift_cpu_tensors))
return self
def __exit__(
self,
a: Optional[Type[BaseException]],
b: Optional[BaseException],
c: Optional[TracebackType],
) -> None:
(
live,
maybe_prev_fake_mode,
maybe_prev_only_lift_cpu_tensors,
) = self.enter_stack.pop()
if live:
out = super().__exit__(a, b, c)
# Re-enable the previous fake mode, if there was one.
if maybe_prev_fake_mode is not None:
torch._C._set_dispatch_mode(maybe_prev_fake_mode)
if maybe_prev_only_lift_cpu_tensors is not None:
torch._C._set_only_lift_cpu_tensors(maybe_prev_only_lift_cpu_tensors)
@classmethod
def is_infra_mode(cls) -> bool:
return True
@classmethod
def cache_info(cls) -> DispatchCacheInfo:
"""
Query the state of the dispatch cache.
"""
return DispatchCacheInfo(
FakeTensorMode.cache_hits,
FakeTensorMode.cache_misses,
dict(FakeTensorMode.cache_bypasses),
len(FakeTensorMode.cache),
)
@classmethod
def cache_clear(cls) -> None:
"""
Clear the dispatch cache.
"""
cls.cache_hits = 0
cls.cache_misses = 0
cls.cache_bypasses.clear()
cls.cache.clear()
def _cached_dispatch_impl(
self,
func: OpOverload,
types: Sequence[Type],
args: Sequence[object],
kwargs: Mapping[str, object],
) -> object:
"""
Lookup a cache entry for the given arguments. If none exists, dispatch
and cache the result (if the result is eligible for caching).
"""
output: object = _UNASSIGNED
try:
state = _CacheKeyState(self.shape_env)
key = self._cache_key(state, func, args, kwargs)
if state.cache_on_shape_env():
assert state.shape_env is not None
cache = state.shape_env.fake_tensor_cache
else:
cache = FakeTensorMode.cache
entry = cache.get(key, None)
if entry is not None:
output = self._output_from_cache_entry(state, entry, key, func, args)
FakeTensorMode.cache_hits += 1
if self.cache_crosscheck_enabled:
# For debugging / testing: Validate that the output synthesized
# from the cache matches the output created by normal dispatch.
self._crosscheck_cache_output(output, func, types, args, kwargs)
else:
self._validate_cache_key(func, args, kwargs)
output = self._dispatch_impl(func, types, args, kwargs)
entry = self._make_cache_entry(state, key, func, args, kwargs, output)
key.strip_shape_env()
cache[key] = entry
FakeTensorMode.cache_misses += 1
except _BypassDispatchCache as e:
FakeTensorMode.cache_bypasses[e.reason] += 1
if output is _UNASSIGNED:
output = self._dispatch_impl(func, types, args, kwargs)
return output
def _cache_key(
self,
state: _CacheKeyState,
func: OpOverload,
args: Sequence[object],
kwargs: Mapping[str, object],
) -> _DispatchCacheKey:
"""
Create a cache key given the dispatch args. Raises _BypassDispatchCache
for any situation that precludes caching.
"""
key_values = [
func,
# Capture the default_dtype mode since that can affect the output tensor,
# e.g., when operating on constant float values.
torch.get_default_dtype(),
# Capture the current device to support, e.g., cache tensor creation,
# where there isn't necessarily a tensor to take the device from.
torch._C._get_default_device(),
# We want to create tensors from cached metadata only when the inference
# mode is the same.
torch.is_inference_mode_enabled(),
# Shape env settings could affect behavior. One example seen in the wild:
# Disallowing dynamic shapes can introduce a DynamicOutputShapeException
# where it wasn't seen on a previous instance of the same op.
self.shape_env.settings if self.shape_env else None,
]
# Translate any FakeTensor args to metadata.
if args:
self._prep_args_for_hash(key_values, args, state)
if kwargs:
self._prep_args_for_hash(key_values, kwargs, state)
return _DispatchCacheKey(tuple(key_values))
def _validate_cache_key(
self,
func: OpOverload,
args: Sequence[object],
kwargs: Mapping[str, object],
) -> None:
"""
Validate that the cache key generated by _cache_key will be
reasonable.
"""
# Avoid caching for any ops that would require a more sophisticated
# caching implementation, e.g., data dependent ops or ops that modify
# the inputs.
if torch.Tag.data_dependent_output in func.tags:
raise _BypassDispatchCache("data dependent output")
if torch.Tag.dynamic_output_shape in func.tags:
raise _BypassDispatchCache("dynamic output shape")
if torch.Tag.inplace_view in func.tags:
raise _BypassDispatchCache("inplace view")
if func == aten._unsafe_view.default:
raise _BypassDispatchCache("unsafe view")
if func in self.lift_fns:
raise _BypassDispatchCache("lift")
if func.name() == "inductor::resize_storage_bytes_":
raise _BypassDispatchCache("inductor::resize_storage_bytes_")
if not torch._library.utils.is_builtin(func):
raise _BypassDispatchCache("non-builtin")
# In order to handle storage aliasing, we need to establish the alias
# for any view op on a cache hit. But CompositeImplicitAutograd ops may
# or may not alias the input, so just punt on caching these.
if func.is_view and torch._C._dispatch_has_kernel_for_dispatch_key(
func.name(), torch._C.DispatchKey.CompositeImplicitAutograd
):
raise _BypassDispatchCache("CompositeImplicitAutograd")
def _prep_args_for_hash(
self,
result: List[object],
args: Union[Mapping[str, object], Sequence[object], Iterable[object]],
state: _CacheKeyState,
) -> None:
"""
Translate the provided args into a form suitable for caching at FakeTensor
dispatch, i.e., convert unhashable types like lists & dicts into tuples and
convert FakeTensors into metadata. Raises _BypassDispatchCache to signal
unsupported cases that should bypass caching.
"""
if isinstance(args, dict):
self._prep_args_for_hash(result, args.keys(), state)
self._prep_args_for_hash(result, args.values(), state)
return
for arg in args:
if isinstance(arg, FakeTensor):
if not self.is_our_fake(arg):
raise _BypassDispatchCache("not our fake")
if arg.constant is not None:
raise _BypassDispatchCache("constant attribute")
if is_sparse_any(arg):
raise _BypassDispatchCache(f"{arg.layout} tensor")
# FIXME: For now back out caching when there are symbolic nbytes
# - this doesn't seem to play nice with set(). See T196779132 for examples.
if isinstance(arg.untyped_storage().nbytes(), SymInt):
raise _BypassDispatchCache("symbolic nbytes")
metadata = extract_tensor_metadata(arg)
metadata._flatten_into(result, self, state)
elif isinstance(arg, Tensor):
raise _BypassDispatchCache("non-fake tensor")
elif isinstance(arg, SymInt):
state.convert_sym_int(result, arg)
elif isinstance(arg, (SymBool, SymFloat)):
raise _BypassDispatchCache("symbolic shape")
elif isinstance(arg, (list, tuple, dict)):
self._prep_args_for_hash(result, arg, state)
else:
# It's important to capture the type of the arg since, e.g., 1 and 1.0
# hash to the same value, but can produce different dtypes for the
# output tensor.
result.append(type(arg))
result.append(arg)
def _validate_output_for_cache_entry(
self,
state: _CacheKeyState,
key: _DispatchCacheKey,
func: OpOverload,
args: Sequence[object],
kwargs: Mapping[str, object],
output: Optional[FakeTensor],
) -> None:
# Some ops return tuples of Tensors, but it's rare, so avoid
# the complexity of caching other types.
if not isinstance(output, FakeTensor):
raise _BypassDispatchCache("non-FakeTensor output")
# Avoid caching FakeTensors with constants attached since those
# can be invalidated.
if output.constant is not None:
raise _BypassDispatchCache("constant attribute")
# TODO: support caching sparse outputs?
if output.is_sparse:
raise _BypassDispatchCache("sparse output")
if is_sparse_compressed(output):
raise _BypassDispatchCache("sparse compressed output")
# Can an in-place op really reference a kwarg? If so, then we need
# to extend the implementation to handle it.
for kval in kwargs.values():
if id(kval) == id(output):
raise _BypassDispatchCache("kwarg aliases output")
def _get_output_info_for_cache_entry(
self,
state: _CacheKeyState,
key: _DispatchCacheKey,
func: OpOverload,
args: Sequence[object],
kwargs: Mapping[str, object],
output: FakeTensor,
) -> _DispatchCacheEntryOutputInfo:
# If this is an in-place op, the entry records which input arg is aliased.
for idx in range(len(args)):
if id(args[idx]) == id(output):
return _DispatchCacheEntryOutputInfo(
inplace_idx=idx, metadata=None, view_idx=None
)
# Otherwise, create an entry that records the output tensor's metadata.
view_idx = None
if func.is_view:
idxs = [i for i, t in enumerate(args) if isinstance(t, Tensor)]
assert len(idxs) == 1
view_idx = idxs[0]
metadata = extract_tensor_metadata(output)
metadata.shape = tuple(state.convert_output(v) for v in metadata.shape)
metadata.stride = tuple(state.convert_output(v) for v in metadata.stride)
metadata.storage_offset = state.convert_output(metadata.storage_offset)
metadata.storage_bytes = (
None
if metadata.storage_bytes is None
else state.convert_output(metadata.storage_bytes)
)
entry = _DispatchCacheEntryOutputInfo(
inplace_idx=None,
metadata=metadata,
view_idx=view_idx,
)
# N.B.: Some checks for bypassing the cache would be performed on the
# output tensor synthesized from the cached metadata. As an optimization,
# we can synthesize a tensor here and do the checks on that instance.
# This approach keeps the (more frequent) cache-hit path as lightweight
# as possible.
entry_for_synth_output = _DispatchCacheEntry(
output_infos=(entry,), is_output_tuple=False
)
synth_output = self._output_from_cache_entry(
state, entry_for_synth_output, key, func, args
)
# Make sure the dispatch_key_set from the synthesized output tensor will
# be the same.
synth_key_set = torch._C._dispatch_key_set(synth_output)
key_set = torch._C._dispatch_key_set(output)
if synth_key_set != key_set:
raise _BypassDispatchCache("dispatch_key_set mismatch")
return entry
def _make_cache_entry(
self,
state: _CacheKeyState,
key: _DispatchCacheKey,
func: OpOverload,
args: Sequence[object],
kwargs: Mapping[str, object],
output: Optional[FakeTensor],
) -> _DispatchCacheEntry:
"""
Make a cache entry object for the given 'output' Tensor. Raises
_BypassDispatchCache if the output tensor has characteristics that
prevent caching it.
"""
if output is None:
output_info = _DispatchCacheEntryOutputInfo(
inplace_idx=None, metadata=None, view_idx=None
)
return _DispatchCacheEntry(
output_infos=(output_info,), is_output_tuple=False
)
if isinstance(output, tuple):
for out_element in output:
self._validate_output_for_cache_entry(
state, key, func, args, kwargs, out_element
)
else:
self._validate_output_for_cache_entry(
state, key, func, args, kwargs, output
)
if isinstance(output, tuple):
output_infos = [
self._get_output_info_for_cache_entry(
state, key, func, args, kwargs, out_elem
)
for out_elem in output
]
return _DispatchCacheEntry(
output_infos=tuple(output_infos), is_output_tuple=True
)
else:
output_info = self._get_output_info_for_cache_entry(
state, key, func, args, kwargs, output
)
return _DispatchCacheEntry(
output_infos=(output_info,), is_output_tuple=False
)
def _get_output_tensor_from_cache_entry(
self,
state: _CacheKeyState,
entry: _DispatchCacheEntryOutputInfo,
key: _DispatchCacheKey,
func: OpOverload,
args: Sequence[object],
) -> Optional[FakeTensor]:
if entry.inplace_idx is not None:
# This is an in-place op; return the aliased arg.
inplace_arg = args[entry.inplace_idx]
assert isinstance(inplace_arg, FakeTensor)
return inplace_arg
# Synthesize a new FakeTensor with the cached metadata.
metadata = entry.metadata
if metadata is None:
return None
assert not is_sparse_any(metadata)
def check_value(
value: _MetadataIntLike, state: _CacheKeyState
) -> Union[IntLikeType]:
if isinstance(value, _SymIntOutputStub):
assert state.shape_env is not None
return value.extract(key, state.shape_env)
else:
assert not isinstance(value, _PySymInputStub)
return value
shape = tuple(check_value(v, state) for v in metadata.shape)
stride = tuple(check_value(v, state) for v in metadata.stride)
storage_offset = check_value(metadata.storage_offset, state)
if metadata.storage_bytes is not None:
check_value(metadata.storage_bytes, state)
maybe_suppress: Callable[[], typing.ContextManager] = contextlib.nullcontext
if self.shape_env is not None:
maybe_suppress = self.shape_env.suppress_guards
with in_kernel_invocation_manager(self), maybe_suppress():
empty = torch.empty_strided(
shape,
stride,
dtype=metadata.dtype,
layout=metadata.layout,
device="meta",
requires_grad=metadata.requires_grad,
)
if metadata.is_conj:
torch._C._set_conj(empty, True)
if metadata.is_neg:
torch._C._set_neg(empty, True)
if func.is_view:
# For view ops, the storage should be the same as the tensor input.
view_arg = args[cast(int, entry.view_idx)]
assert isinstance(view_arg, FakeTensor)
storage = view_arg.untyped_storage()
with in_kernel_invocation_manager(self), maybe_suppress():
empty.set_(storage, storage_offset, shape, stride)
return FakeTensor(self, empty, metadata.device)
def _output_from_cache_entry(
self,
state: _CacheKeyState,
entry: _DispatchCacheEntry,
key: _DispatchCacheKey,
func: OpOverload,
args: Sequence[object],
) -> Union[Optional[FakeTensor], Tuple[Optional[FakeTensor], ...]]:
"""
Create a new FakeTensor from the cache entry.
"""
if entry.is_output_tuple:
outputs = [
self._get_output_tensor_from_cache_entry(
state,
output_info,
key,
func,
args,
)
for output_info in entry.output_infos
]
return tuple(outputs)
else:
return self._get_output_tensor_from_cache_entry(
state, entry.output_infos[0], key, func, args
)
def _crosscheck_cache_output(
self,
output: Union[Optional[FakeTensor], Tuple[Optional[FakeTensor], ...]],
func: OpOverload,
types: Sequence[Type],
args: Sequence[object],
kwargs: Mapping[str, object],
) -> None:
"""
Helper to validate that the output synthesized from the cache matches
the output created by normal dispatch.
"""
try:
true_output = self._dispatch_impl(func, types, args, kwargs)
except Exception as e:
raise RuntimeError(
f"FakeTensor cache crosscheck failure: func={func}, "
f"args={args}, kwargs={kwargs}: Dispatch raised={e}"
) from e
try:
if (true_output is not None) and (output is not None):
if isinstance(true_output, tuple):
assert len(true_output) == len(output)
for a, b in zip(true_output, output):
assert_metadata_eq(assert_eq, a, b)
else:
assert not isinstance(output, tuple)
assert_metadata_eq(assert_eq, true_output, output)
else:
assert true_output is None
assert output is None
except Exception as e:
raise RuntimeError(
f"FakeTensor cache crosscheck failure: func={func}, "
f"args={args}, kwargs={kwargs}"
) from e
def dispatch(
self,
func: OpOverload,
types: Sequence[Type],
args: Sequence[object] = (),
kwargs: Mapping[str, object] = immutable_dict(),
) -> object:
kwargs = kwargs or {}
with no_dispatch():
log.debug("%s %s %s", func, args, kwargs)
if func in _DISPATCH_META_HANDLERS:
return _DISPATCH_META_HANDLERS[func](args)
if log.getEffectiveLevel() <= logging.DEBUG:
log.debug(
"%sFakeTensorMode.__torch_dispatch__: %s", " " * RECURSION_COUNT, func
)
# NOTE: incr is intentionally unused for a RAII pattern
incr = IncrementRecursionCount()
# Some attribute queries that can be serviced directly
# See Note [is_coalesced is dispatched]
if func in _DISPATCH_HANDLE_DIRECTLY:
# NB: no_dispatch is ok here too, this func is very simple
with in_kernel_invocation_manager(self):
return func(*args, **kwargs)
if self.cache_enabled:
return self._cached_dispatch_impl(func, types, args, kwargs)
else:
return self._dispatch_impl(func, types, args, kwargs)
def _maybe_infer_fake(
self, func: OpOverload, path: KeyPath, fake: object, real: object
) -> Optional[object]:
"""
Helper to cross-check fake/real output properties & values,
and create new fake vals if mismatched.
"""
import sympy
from torch._subclasses.fake_utils import _check_fake_real_tensors
def _check_fake_real_vals(fake: Any, real: Any) -> None:
# use real values + ShapeEnv to check mismatches between potentially symbolic values
if isinstance(fake, (SymInt, SymFloat)):
# symbolic expression, ask ShapeEnv to substitute known backed/unbacked values
assert self.shape_env is not None
if (
not fake.node.expr.free_symbols
- self.shape_env.var_to_val.keys()
- self.shape_env.unbacked_var_to_val.keys()
):
if (
self.shape_env._maybe_evaluate_static(
sympy.Eq(fake.node.expr, real), compute_hint=True
)
is not sympy.S.true
):
raise MetadataMismatchError(
f"mismatch between fake value {fake} and real value {real} "
)
elif isinstance(
fake, (int, float, bool)
): # concrete value, check direct equality
if fake != real:
raise MetadataMismatchError(
f"mismatch between fake value {fake} and real value {real} "
)
if isinstance(fake, torch.Tensor):
try:
_check_fake_real_tensors(
real, # type: ignore[arg-type]
fake, # type: ignore[arg-type]
context="Real tensor propagation found",
sizes=False, # manual check below
strides=False, # skip strides
storage_offset=True,
requires_grad=False, # issues with FakeTensorConverter preserving requires_grad
)
except MetadataMismatchError as exc:
if torch._functorch.config.generate_fake_kernels_from_real_mismatches:
dtrace_structured(
"mismatched_fake_kernel",
metadata_fn=lambda: {
"op": str(func),
"reason": exc.reason, # noqa: F821
},
)
return _infer_fake_from_real_tensor(self, func, real) # type: ignore[arg-type]
raise MetadataMismatchError(
f"Real tensor propagation found a metadata mismatch between "
f"fake tensor {fake} and real tensor {real}, "
f" at output{keystr(path)}, for func: {func}"
) from exc
for j, (s_fake, s_real) in enumerate(zip(fake.size(), real.size())): # type: ignore[attr-defined]
try:
_check_fake_real_vals(s_fake, s_real)
except MetadataMismatchError as exc:
if (
torch._functorch.config.generate_fake_kernels_from_real_mismatches
):
dtrace_structured(
"mismatched_fake_kernel",
metadata_fn=lambda: {
"op": str(func),
"reason": exc.reason, # noqa: F821
},
)
return _infer_fake_from_real_tensor(self, func, real) # type: ignore[arg-type]
raise MetadataMismatchError(
f"Real tensor propagation found an output size mismatch between "
f"fake shape {s_fake} and real shape {s_real}, "
f"at output{keystr(path)}.size({j}), for func: {func}"
) from exc
else:
try:
_check_fake_real_vals(fake, real)
except MetadataMismatchError as exc:
raise MetadataMismatchError(
f"Real tensor propagation found an output value mismatch between "
f"fake output value {fake} and real output value {real}, "
f"at output{keystr(path)}, for func: {func}"
) from exc
return fake
def _maybe_infer_fake_kernel_from_pytree_out(
self,
func: OpOverload,
fake_in: object,
real_in: object,
fake_out: object,
real_out: object,
) -> Optional[object]:
"""
Helper to cross-check fake/real output properties & values,
and create new fake vals if mismatched, but at the kernel level.
Means this handles pytree outputs & checks aliasing.
"""
from torch._subclasses.fake_utils import _check_alias_info
fake_paths_leaves, fake_spec = pytree.tree_flatten_with_path(fake_out)
real_leaves, _ = pytree.tree_flatten(real_out)
try:
# catch aliasing mismatches between fake/real tensors
_check_alias_info(
"Real tensor propagation found", real_out, real_in, fake_out, fake_in
)
except MetadataMismatchError as exc:
# if mismatch found, optionally infer fake kernel
if torch._functorch.config.generate_fake_kernels_from_real_mismatches:
dtrace_structured(
"mismatched_fake_kernel",
metadata_fn=lambda: {
"op": str(func),
"reason": (
f"Mismatched aliasing spec between fake kernel and real kernel: {exc.reason}" # noqa: F821
),
},
)
# if aliasing mismatches are found, it's likely that the fake tensor impl
# is incorrectly aliasing, since we don't support aliasing custom ops.
# in this case we can default to inferring non-aliasing fake kernels from the real outputs.
return tree_map(
lambda x: _infer_fake_from_real_tensor(self, func, x), real_out
)
else:
raise MetadataMismatchError(
f"Real tensor propagation found an aliasing mismatch between "
f"fake output {fake_out} and real output {real_out}, "
f" for func: {func}"
) from exc
# if no errors raised, run cross checks on fake/real tensors,
# optionally overriding individual fake tensors, if individual meta kernel output is incorrect.
fake_leaves = [
self._maybe_infer_fake(func, _fake_path, _fake_out, _real_out)
for (_fake_path, _fake_out), _real_out in zip(
fake_paths_leaves, real_leaves
)
]
return pytree.tree_unflatten(fake_leaves, fake_spec)
def _dispatch_impl(
self,
func: OpOverload,
types: Sequence[Type],
args: Sequence[object],
kwargs: Mapping[str, object],
) -> Optional[FakeTensor]:
flat_args, args_spec = pytree.tree_flatten((args, kwargs))
# DO NOT PUT LOGIC BEFORE UNRECOGNIZED TYPE CHECKING
# We must throw NotImplemented in case of unrecognized types to handle subclasses.
# Throwing the exception will pass the control to the next __torch_dispatch__.
# See [subclass inputs] below
# NB: If you're seeing a mysterious infinite loop involving fake
# tensor, it might be related to this line. Though I'm not sure
# how you'll know to read this comment, as this line won't show up
# in the stack trace.
has_unrecognized_types = _check_for_subclass(flat_args)
if has_unrecognized_types:
unrecognized_types = [
type(x) for x in flat_args if _check_for_subclass_arg(x)
]
not_implemented_log.debug(
"FakeTensorMode unrecognized subclass(es): %s", unrecognized_types
)
return NotImplemented
flat_arg_fake_tensors = [t for t in flat_args if self.is_our_fake(t)]
has_symbolic_sizes = any(
i._has_symbolic_sizes_strides for i in flat_arg_fake_tensors
) or any(isinstance(a, SymInt) for a in flat_args)
converter = self.fake_tensor_converter
is_lift_func = func in self.lift_fns
# To constant propagate through these functions:
# 1, If this is a lift due to a torch.tensor call,
# the input tensor is guaranteed to be a
# constant, so we keep a copy of the original argument along so
# we can query it if we're asked to item() it at some later point.
# (Note that you can always call a lift fn manually, so we do
# have to check if there are any fake tensors!)
# 2, Some functions that allow Python numbers to bind to Tensors, e.g, torch.div
if (is_lift_func and not flat_arg_fake_tensors) or (
should_allow_numbers_as_tensors(func)
and not has_symbolic_sizes
and not flat_arg_fake_tensors
):
assert all(
t.constant is not None for t in flat_arg_fake_tensors
), f"{func} should not have fake inputs without constants"
const_flat_args = [
a.constant if self.is_our_fake(a) else a for a in flat_args
]
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
out = func(*const_args, **const_kwargs)
if type(out) is Tensor and self.may_turn_const(out):
# NB: not in_kernel_invocation_manager because we're doing real
# compute here
# NB: no_dispatch() here is VERY DANGEROUS (like, segfault
# dangerous) if this is actually a wrapper subclass tensor,
# therefore the exact type test above
with no_dispatch():
out = out.clone()
return converter.from_real_tensor(self, out, make_constant=True)
# if we are in the dispatch mode, we will enter this function even if the inputs
# are not FakeTensors. For now, throw if any non-Fake Tensor inputs
# and just support constructors.
# this is generated from torch.tensor(), which does not use the
# dispatcher, to allow wrapper subclasses to wrap the new tensor
if is_lift_func:
assert len(kwargs) == 0 and len(args) == 1, f"{args} {kwargs}"
if type(args[0]) is Tensor:
return converter.from_real_tensor(self, args[0])
# If we are trying to avoid device init, then we need to avoid constant
# prop on constant tensors for ops that change devices.
avoiding_device_init = False
if self.avoid_device_init:
if (
func == torch.ops.aten._to_copy.default
and "device" in kwargs
and kwargs["device"] != "cpu"
):
avoiding_device_init = True
if func == torch.ops.prims.device_put.default:
avoiding_device_init = True
# Recompute flat_arg_fake_tensors here again in case some of the inputs
# were real tensors and fakified in validate_and_convert_non_fake_tensors
(flat_args, flat_arg_fake_tensors) = self.validate_and_convert_non_fake_tensors(
func, converter, flat_args, args_spec
)
del args, kwargs # Invalidated
# The current constant handling only support tracing systems
# (aot autograd, torchdynamo) where each operation is run consecutively.
# Because each operation is run in order, we can trace out and support
# sequences like: x = torch.tensor(0.); y = x.add_(1)
# Whenver a constant is written to but with inputs that cannot be evaluated
# statically, such as random_(), we invalidate all constants that alias the input
# We will rely on functionalization for use of fake tensors constants as persistent
# objects on an FX Graph.
# We dispatch size/stride/numel on the FakeTensor not its constant, so bail on inplace_view
all_constant = all(e.constant is not None for e in flat_arg_fake_tensors)
if (
torch.Tag.nondeterministic_seeded not in func.tags
and torch.Tag.inplace_view not in func.tags
and all_constant
and len(flat_arg_fake_tensors) != 0
and not has_symbolic_sizes
and not avoiding_device_init
):
const_flat_args = [
a.constant if self.is_our_fake(a) else a for a in flat_args
]
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
# NB: not in_kernel_invocation_manager(self) as we want to do REAL
# compute
with no_dispatch():
out = func(*const_args, **const_kwargs)
flat_out = pytree.tree_leaves(out)
flat_out_tensors = [t for t in flat_out if isinstance(t, Tensor)]
all_constant = all(self.may_turn_const(t) for t in flat_out_tensors)
if all_constant:
return pytree.tree_map_only(
Tensor,
lambda t: converter.from_real_tensor(self, t, make_constant=True),
out,
)
# we weren't able to turn outputs to constants,
# so invalidate all constants that might be aliases of the outputs
for ten in flat_out_tensors:
converter.invalidate_constant_aliases(ten)
# we are falling through to running non constant tensors, any input constant that
# is written to must be invalidated
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
self.invalidate_written_to_constants(func, flat_arg_fake_tensors, args, kwargs)
def maybe_to_real_tensor(
t: T,
) -> Optional[Union[T, Tensor, torch._C.ScriptObject]]:
if isinstance(t, FakeTensor):
return t.real_tensor
elif isinstance(t, py_sym_types):
assert self.shape_env is not None
return t.node.pytype(
t.node.expr.xreplace(self.shape_env.var_to_val).xreplace(
self.shape_env.unbacked_var_to_val
)
)
elif isinstance(t, FakeScriptObject):
return t.real_obj
else:
return t
from torch.fx.experimental.symbolic_shapes import (
compute_unbacked_bindings,
free_unbacked_symbols,
)
nil = object()
real_out = nil
if (
self.propagate_real_tensors
and all(e.real_tensor is not None for e in flat_arg_fake_tensors)
# TODO: Handle SymFloat/SymBool
and not any(
(
isinstance(a, SymInt)
and (syms := free_unbacked_symbols(a))
and self.shape_env is not None
and any(s not in self.shape_env.unbacked_var_to_val for s in syms)
)
for a in flat_args
)
):
log.debug("propagate_real_tensors %s", func)
real_flat_args = [maybe_to_real_tensor(a) for a in flat_args]
real_args, real_kwargs = pytree.tree_unflatten(real_flat_args, args_spec)
is_builtin = library_utils.is_builtin(func)
if not is_builtin:
mutation_checker = library_utils.MutationChecker(
func, real_flat_args, args_spec
)
real_out = func(*real_args, **real_kwargs)
if not is_builtin:
mutation_checker.check() # type: ignore[possibly-undefined]
library_utils.check_aliasing_constraint(func._name, flat_args, real_out)
elif self.propagate_real_tensors:
# This can happen occasionally legitimately, specifically when you
# are inside the meta of a data dependent operation and you create
# a tensor on an unbacked SymInt; at this point in time we don't
# know what the unbacked SymInt is, but we will know later.
# However, if there's a bug in the condition above, this condition
# will also trigger.
log.debug(
"SKIPPED propagate_real_tensors %s(%s, %s) %s",
func,
flat_arg_fake_tensors,
flat_args,
self.shape_env.unbacked_var_to_val if self.shape_env else None,
)
def maybe_propagate_real_tensors(fake_out: T) -> T:
import sympy
log.debug("maybe_propagate_real_tensors %s", func)
def go(t: object, real_t: Tensor) -> None:
if isinstance(t, FakeTensor):
# NB: unconditionally overwrite
log.debug(
"maybe_propagate_real_tensors %s -> %s", id(t), id(real_t)
)
t.real_tensor = real_t
for s, real_s in zip(t.size(), real_t.size()):
go(s, real_s) # type: ignore[arg-type]
for s, real_s in zip(t.stride(), real_t.stride()):
go(s, real_s) # type: ignore[arg-type]
go(t.storage_offset(), real_t.storage_offset()) # type: ignore[arg-type]
elif isinstance(t, py_sym_types) and free_unbacked_symbols(t):
if isinstance(t.node.expr, sympy.Symbol):
assert self.shape_env is not None
self.shape_env.set_unbacked_var_to_val(t.node.expr, real_t)
elif (
isinstance(s := t.node.expr, sympy.Eq)
and isinstance(s.lhs, sympy.Symbol)
and s.rhs == 1
):
assert self.shape_env is not None
self.shape_env.set_unbacked_var_to_val(s, int(real_t))
if real_out is not nil:
# cross check fake/real outputs, and optionally override fake kernel mismatches
if (
not torch._functorch.config.generate_fake_kernels_from_real_mismatches
):
self._maybe_infer_fake_kernel_from_pytree_out(
func,
(args, kwargs),
(real_args, real_kwargs),
fake_out,
real_out,
)
else:
# make it clear this can override the output only when the flag is True
fake_out = self._maybe_infer_fake_kernel_from_pytree_out( # type: ignore[assignment]
func,
(args, kwargs),
(real_args, real_kwargs),
fake_out,
real_out,
)
# populate unbacked_var_to_val
if (
not isinstance(fake_out, Tensor)
and not isinstance(real_out, Tensor)
and type(fake_out) != type(real_out)
):
# This can happen when decompositions have different return types,
# e.g. namedtuple vs. tuple vs. list.
tree_map_(
go,
tuple(pytree.tree_flatten(fake_out)),
tuple(pytree.tree_flatten(real_out)),
)
else:
tree_map_(go, fake_out, real_out)
# If a data-dependent op is used in a decomposition, we
# may need to get the unbacked settings "early"
# TODO: Is this really needed?
compute_unbacked_bindings(self.shape_env, fake_out, peek=True)
return fake_out
# Try for fastpath
if has_symbolic_sizes:
fast_impl = get_fast_op_impls().get(func)
if fast_impl is not None:
return maybe_propagate_real_tensors(fast_impl(self, *args, **kwargs))
# If there's a Python meta, prefer that over the decomposition
from torch._decomp import meta_table as meta_table
if func not in meta_table and not self.cpp_meta_supports_symint(func):
from torch._decomp import decomposition_table
# Prefer Python decompositions over C++ ones
if func in decomposition_table and (
has_symbolic_sizes
or (
# TODO: Remove these exclusions, so that we can remove
# this leg entirely
torch_decomp_decompositions(func)
and all(not is_sparse_any(e) for e in flat_arg_fake_tensors)
)
):
with self:
return maybe_propagate_real_tensors(
decomposition_table[func](*args, **kwargs)
)
with self:
# Decomposes CompositeImplicitAutograd ops
r = func.decompose(*args, **kwargs)
if r is not NotImplemented:
return maybe_propagate_real_tensors(r)
# prims already wrap FakeTensor inputs to FakeTensor outputs
# and do device logic, we dont need do anything but run them
# and ensure that Meta kernels are dispatched to (see)
# Fake Tensor Dispatch Keys
# TODO - we should be use the prim aten impl
# TODO - fix prims complex ops
if (
"prims::" in func._schema.name
and hasattr(func, "prim_meta_impl")
and not stride_incorrect_op(func)
):
with self:
return maybe_propagate_real_tensors(
func.prim_meta_impl(*args, **kwargs)
)
profiles = torch._dynamo.config._custom_ops_profile
if profiles is not None:
if func in profiles.data:
return profiles.generic_fake_kernel(func, self, *args, **kwargs)
if (
self.propagate_real_tensors
and real_out is not nil
and not library_utils.is_builtin(func)
and self.shape_env is not None
):
# Automatically infer a Fake kernel if there isn't one.
if not library_utils.has_fake_kernel(func):
result = inferred_fake_kernel_from_real_out(self, func, real_out)
dtrace_structured(
"missing_fake_kernel",
metadata_fn=lambda: {
"op": str(func),
},
)
return maybe_propagate_real_tensors(result)
# Users can register FakeTensor rules for custom operators
# Call them if they exist.
maybe_fake_impl = torch._library.simple_registry.singleton.find(
func.name()
).fake_impl.kernel
if maybe_fake_impl:
ctx = torch._library.fake_impl.FakeImplCtx(self, func)
with torch._library.fake_impl.set_ctx_getter(lambda: ctx), self:
result = maybe_fake_impl(*args, **kwargs)
return maybe_propagate_real_tensors(result)
# special handling for funcs registered through `register_op_impl`,
# e.g., manipulating args on constructor calls to construct meta tensors
# and then afterwards wrapping them to a FakeTensor
for run_impl_check, op_impl in op_implementations_checks:
if run_impl_check(func):
op_impl_out = op_impl(self, func, *args, **kwargs)
if op_impl_out is not NotImplemented:
return maybe_propagate_real_tensors(op_impl_out)
def maybe_run_unsafe_fallback(
error: Optional[RuntimeError] = None,
) -> Optional[FakeTensor]:
# We infer the meta of a custom ops that return None to just
# return None. custom ops are not allowed to mutate metadata
# of their inputs, so this is safe.
if torch._library.utils.can_generate_trivial_fake_impl(func):
return None
# no meta kernel registered, fallback to kernel for the device
if has_symbolic_sizes or not self.can_run_unsafe_fallback(func):
raise UnsupportedOperatorException(func)
if error is None:
error = UnsupportedOperatorException(func)
return run_fallback_kernel(self, func, flat_args, args_spec, error)
# Optimization: If there is no Meta kernel, it takes a surprisingly long
# amount of time to catch the NotImplementedError, so we check it here.
if not has_meta(func):
fallback = maybe_run_unsafe_fallback()
return maybe_propagate_real_tensors(fallback)
# run kernel registered to meta for func, which include
# python meta registrations, prims, decomps, and c++ meta fns (structured kernels)
# It's possible that the kernel will return NotImplementedError
try:
with in_kernel_invocation_manager(self):
r = func(*args, **kwargs)
except NotImplementedError as not_implemented_error:
return maybe_run_unsafe_fallback(not_implemented_error)
except Exception:
log.exception("failed while attempting to run meta for %s", func)
raise
return maybe_propagate_real_tensors(
self.wrap_meta_outputs_with_default_device_logic(
r, func, flat_args, device=kwargs.get("device")
)
)
# WARNING: DO NOT add any additional namespaces/operators here if they refer to operators
# outside of the pytorch/pytorch library! Any pre-existing things here
# are either in the pytorch/pytorch library or have been grandfathered in.
# The fallback does not always work and MAY CRASH and emit unreadable error messages
# so it should not be allowed by default.
_can_run_unsafe_fallback_allowed_namespaces = ordered_set(
"debugprims",
"prims",
"aten",
"xla",
"vision",
"torchtext",
"torchaudio",
"quantized",
)
def can_run_unsafe_fallback(self, func: OpOverload) -> bool:
if not self.allow_fallback_kernels:
return False
# It's OK to try the fallback for built-in ops (e.g. aten, prims)
# because we control and test these but the fallback leads to unexpected behavior
# in user-defined custom ops
return (
func.namespace in self._can_run_unsafe_fallback_allowed_namespaces
or func.name() == "fbgemm::gmm"
)
def validate_and_convert_non_fake_tensors(
self,
func: OpOverload,
converter: FakeTensorConverter,
flat_args: Sequence[object],
args_spec: TreeSpec,
) -> Tuple[List[object], List[FakeTensor]]:
"""
Checks if the list of tensors are fake tensors.
If not, try to convert them to fake tensors.
Returns the original args, kwargs, and a flattened list of (args, kwargs) that are fake tensors.
"""
flat_arg_fake_tensors: List[FakeTensor] = []
def validate(x: T) -> Union[T, FakeTensor]:
if not isinstance(x, Tensor):
return x
nonlocal flat_arg_fake_tensors
if not self.is_our_fake(x):
if torch.Tag.inplace_view in func.tags:
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
raise AssertionError(
f"Can't call metadata mutating ops on non-Fake Tensor inputs. Found in {render_call(func, args, kwargs)}"
)
if not self.allow_non_fake_inputs:
if isinstance(x, FakeTensor) and x.fake_mode is not self:
raise AssertionError("Mixing fake modes NYI")
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
raise AssertionError(
f"Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode "
f"with 'allow_non_fake_inputs'. Found in {render_call(func, args, kwargs)}"
)
out = converter.from_real_tensor(self, x)
else:
out = x
flat_arg_fake_tensors.append(out)
return out
validated_args = [validate(a) for a in flat_args]
return validated_args, flat_arg_fake_tensors
def wrap_meta_outputs_with_default_device_logic(
self,
r: object,
func: OpOverload,
flat_args: Sequence[object],
device: torch.device,
) -> PyTree:
converter = self.fake_tensor_converter
# Lazily initialized, in case there are no tensor returns
common_device = None
has_scalar_only_inputs = False
def wrap(e: T) -> Union[T, FakeTensor]:
nonlocal common_device
nonlocal has_scalar_only_inputs
if not isinstance(e, Tensor):
return e
if common_device is None:
(
common_device,
has_scalar_only_inputs,
) = FakeTensor._find_common_device(func, flat_args)
is_our_fake = self.is_our_fake(e)
if is_our_fake:
torch._check(
e.device == common_device,
lambda: f"FakeTensor is wrapped to wrong device, found {e.device}, expected {common_device}",
)
return cast(T, e)
elif converter is not None:
if has_scalar_only_inputs:
# Under FakeTensorMode, op accepts scalar only inputs, such as aten.add/sub/mul/div,
# returns a real scalar tensor on CPU. See TensorMeta() in _prims/__init__.py for details.
# We thus directly convert real tensor to fake tensor.
return converter.from_real_tensor(self, e)
else:
return converter.from_meta_and_device(
self, e, device or common_device
)
else:
return e
return tree_map(wrap, r)
def create_symbolic_nested_int(
self, *, nt_tensor_id: Optional[int] = None
) -> torch.SymInt:
# See Note: [Creating symbolic nested int]
# Returned nested int always has coeff=1; multiply the result by coeff if needed
import torch.nested._internal.nested_tensor
from torch.nested._internal.nested_int import NestedIntNode
if nt_tensor_id is None:
nt_tensor_id = self.nt_tensor_id_counter
assert self.enter_stack, "should only called while FakeTensorMode is active"
self.nt_tensor_id_counter += 1
hint = torch.SymInt(NestedIntNode(nt_tensor_id, 1))
src = torch._dynamo.source.EphemeralSource("intermediate_offsets_or_lengths")
assert self.shape_env is not None
ret = self.shape_env.create_symintnode(
sym=self.shape_env.create_symbol(
val=hint,
source=src,
),
hint=hint,
source=src,
)
return ret
_cpp_meta_supports_symint = ordered_set(
aten.empty.memory_format,
aten.empty_strided.default,
aten.as_strided_scatter.default,
aten.as_strided.default,
aten.as_strided_.default,
aten.zeros.default,
aten.detach.default,
aten.view_as_real.default,
aten.view_as_complex.default,
aten.set_.source_Storage_storage_offset,
aten._sparse_coo_tensor_with_dims_and_tensors.default,
)
def cpp_meta_supports_symint(self, func: OpOverload) -> bool:
if torch.Tag.view_copy in func.tags:
return True
return func in self._cpp_meta_supports_symint
lift_fns = ordered_set(aten.lift_fresh.default, aten.lift_fresh_copy.default)
def may_turn_const(self, t: Tensor) -> bool:
return (
t.numel() <= CONSTANT_NUMEL_LIMIT
and not is_sparse_any(t)
and not self.is_our_fake(t)
and not t.device.type == "meta"
)
def invalidate_written_to_constants(
self,
func: OpOverload,
flat_arg_fake_tensors: Sequence[FakeTensor],
args: Sequence[object],
kwargs: Mapping[str, object],
) -> None:
any_constant = any(e.constant is not None for e in flat_arg_fake_tensors)
schema_info = get_schema_info(func)
if any_constant and schema_info.is_mutable():
_, new_kwargs = normalize_function( # type: ignore[misc]
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True # type: ignore[arg-type]
)
for k, v in new_kwargs.items():
k = k if (k != "input" or schema_info.has_argument(k)) else "self"
if (
self.is_our_fake(v)
and schema_info.is_mutable(k)
and v.constant is not None
):
self.fake_tensor_converter.invalidate_constant_aliases(v.constant)
def from_tensor(
self,
tensor: Tensor,
*,
static_shapes: Optional[bool] = None,
source: Optional[Source] = None,
symbolic_context: Optional[SymbolicContext] = None,
trace: bool = True,
) -> FakeTensor:
shape_env: Optional[ShapeEnv] = self.shape_env
if static_shapes is None:
static_shapes = self.static_shapes
if static_shapes:
assert (
symbolic_context is None
), "cannot set both static_shapes and symbolic_context"
shape_env = None
return self.fake_tensor_converter.from_real_tensor(
self,
tensor,
shape_env=shape_env,
source=source,
symbolic_context=symbolic_context,
trace=trace,
)
_StoragePointer = object
# NB: returns fake tensors
def run_fallback_kernel(
fake_mode: FakeTensorMode,
func: OpOverload,
flat_args: Sequence[object],
args_spec: PyTree,
orig_not_implemented_exception: RuntimeError,
) -> FakeTensor:
# these should all be supported, just to be safe
# avoid fallback for operators which inplace modify metadata
# because the input fake tensors would be umodified
if torch.Tag.inplace_view in func.tags:
raise orig_not_implemented_exception
inp_impls = {}
# Don't use in_kernel_invocation_manager(fake_mode) as we want to do
# REAL compute (not with meta device)
with no_dispatch():
def to_real_tensor(e: T) -> Union[T, Tensor]:
if fake_mode.is_our_fake(e):
out = torch.zeros_like(e, device=e.fake_device)
if e.is_sparse:
out._coalesced_(e.is_coalesced())
inp_impls[id(out)] = e
return out
return e
flat_args = [to_real_tensor(a) for a in flat_args]
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
r = func(*args, **kwargs)
storages: Set[_StoragePointer] = set()
for e in flat_args:
if isinstance(e, Tensor):
if not is_sparse_any(e):
storages.add(e._typed_storage()._cdata)
# TODO: also check metadata change on inputs
# proper aliasing/metadata relationship between outputs and inputs will
# not be set up, bc of conversion to device, unless we can reuse an
# input impl
def map_out(e: T) -> Union[T, FakeTensor]:
if id(e) not in inp_impls and (
isinstance(e, Tensor)
and not is_sparse_any(e)
and e._typed_storage()._cdata in storages
):
raise orig_not_implemented_exception
if isinstance(e, Tensor):
if id(e) in inp_impls:
return inp_impls[id(e)]
else:
return fake_mode.fake_tensor_converter.from_real_tensor(fake_mode, e)
else:
return e
return pytree.tree_map(map_out, r)
# Just for use to allow copying a module to fake tensors,
# does not apply elsewhere
class FakeCopyMode(TorchFunctionMode):
def __init__(self, fake_mode: FakeTensorMode) -> None:
self.fake_mode = fake_mode
def __torch_function__(
self,
func: OpOverload,
types: Sequence[Type],
args: Sequence[object] = (),
kwargs: Optional[Mapping[str, object]] = None,
) -> FakeTensor:
kwargs = kwargs if kwargs else {}
# clone will get called in Parameter deepcopy
if func == torch._C.TensorBase.clone:
assert isinstance(args[0], Tensor)
return func(
self.fake_mode.from_tensor(args[0], static_shapes=True), **kwargs
)
elif func == Tensor.__deepcopy__:
assert len(args) == 2 and len(kwargs) == 0
tensor = cast(Tensor, args[0])
memo = cast(Dict[int, FakeTensor], args[1])
if id(tensor) in memo:
return memo[id(tensor)]
out = self.fake_mode.from_tensor(tensor, static_shapes=True)
memo[id(tensor)] = out
return out
else:
with torch._C.DisableTorchFunctionSubclass():
return func(*args, **kwargs)
def _device_handler(args: Sequence[object]) -> torch.device:
# NB: Don't use is_our_fake, just serve the fake information
# as is. Notice we don't use 'self'; we use args[0].fake_mode
# because they may not be the same. It would also be possible
# to return NotImplemented here, in which case the FakeTensor
# handler on args[0] would handle it, but we're being nice and
# short-circuiting quickly.
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
# [subclass inputs]
# Suppose we enable fake tensor mode. This means that fake tensor
# mode will run first. But what if we do an operation that
# involves a tensor subclass that will desugar into normal tensor
# operations? Without returning NotImplemented, fake tensor mode will run first,
# decide that a conversion was made (since there was a non fake
# tensor argument), and report an error that converting non
# fake tensor is not supported. What we actually wanted to happen
# was to give the subclass a chance to figure out what it wants to
# before erroring out. Returning NotImplemented here allows this.
def _check_for_subclass(flat_args: Sequence[object]) -> bool:
return any(_check_for_subclass_arg(x) for x in flat_args)
def _check_for_subclass_arg(x: object) -> bool:
return (
not isinstance(x, FakeTensor)
and isinstance(x, Tensor)
and type(x) is not Tensor
and type(x) is not torch.nn.Parameter
)
_DISPATCH_META_HANDLERS = {
torch.ops.prim.device.default: _device_handler,
torch.ops.aten.size.default: lambda args: tuple(
int(s) for s in cast(Tensor, args[0]).size()
),
torch.ops.aten.stride.default: lambda args: tuple(
int(s) for s in cast(Tensor, args[0]).stride()
),
torch.ops.aten.storage_offset.default: lambda args: int(
cast(Tensor, args[0]).storage_offset()
),
}
_DISPATCH_HANDLE_DIRECTLY = ordered_set(
torch.ops.aten.is_coalesced.default,
torch.ops.aten.dense_dim.default,
torch.ops.aten.sparse_dim.default,
)
from torch._subclasses.fake_impls import ( # noqa: F401
_device_not_kwarg_ops,
_is_tensor_constructor,
_like_tensor_constructors,
contains_tensor_types,
get_fast_op_impls,
has_meta,
op_implementations_checks,
stride_incorrect_op,
)
@atexit.register
def dump_cache_stats() -> None:
log.info("FakeTensor cache stats:")
log.info(" cache_hits: %s", FakeTensorMode.cache_hits)
log.info(" cache_misses: %s", FakeTensorMode.cache_misses)
bypasses = FakeTensorMode.cache_bypasses
if bypasses:
log.info(" cache_bypasses:")
width = max(len(k) for k in bypasses)
for k, v in sorted(bypasses.items(), key=lambda i: -i[1]):
log.info(" %-*s %s", width + 1, f"{k}:", v)
def _infer_fake_from_real_tensor(
mode: FakeTensorMode, op: torch._ops.OpOverload, real_out: torch.Tensor
) -> torch.Tensor:
def unsupported(reason: str) -> None:
raise RuntimeError(
f"propagate_real_tensors: we cannot infer a Fake kernel "
f"(meta kernel) for operator {op._name} because {reason}. "
f"Please use torch.library.register_fake to add a Fake kernel."
)
if real_out.storage_offset() != 0:
unsupported(
f"a return has a non-zero storage offset {real_out.storage_offset()}"
)
# Since PT2 is rank specialized, there's no such thing as a symbolic
# output rank. So we can assume the fake tensor has the same number of
# dimensions as the real tensor output.
#
# We shouldn't assume the Fake sizes/strides are exactly what we see on
# the real tensor output (perhaps we should give users a lever to toggle
# this). This is because there's a good amount of operators that return
# outputs with data-dependent output shape.
# So we infer the output sizes to all be unbacked symints
fake_shape = [
torch._library.fake_impl.allocate_size(mode.shape_env)
for _ in range(real_out.dim())
]
# We infer what the strides are. We had a couple of options for this:
# - assume the strides are computable from the sizes
# - use new fresh unbacked symints in the strides
# This doesn't work that well (PT2 doesn't support unbacked symint strides well)
# - use the real strides
# This can only be used if we assume the strides are static.
# We went with the first option.
fake_strides = [-1] * real_out.dim()
strides = [(s, idx) for idx, s in enumerate(real_out.stride())]
strides.sort()
expected = 1
fake_stride = expected
for s, idx in strides:
if s != expected:
unsupported(
f"a return was not dense in memory (sizes {real_out.shape} strides {real_out.stride()})"
)
fake_strides[idx] = fake_stride
expected = expected * real_out.shape[idx]
fake_stride = fake_stride * fake_shape[idx]
with mode:
return torch.empty_strided(
fake_shape,
fake_strides,
device=real_out.device,
dtype=real_out.dtype,
layout=real_out.layout,
)
def inferred_fake_kernel_from_real_out(
mode: FakeTensorMode, op: torch._ops.OpOverload, real_out: Any
) -> Any:
assert mode.shape_env is not None
# Only support operators that have all Tensor outputs
# This is a general limitation on custom ops that we impose for PT2
# to avoid baking non-symbolic float/int outputs into the graph.
real_flat_out, spec = pytree.tree_flatten(real_out)
if not all(isinstance(t, torch.Tensor) for t in real_flat_out):
raise RuntimeError(
f"propagate_real_tensors: we don't support operators that return "
f"non-Tensors. Got {op._schema}"
)
fake_flat_out = [_infer_fake_from_real_tensor(mode, op, t) for t in real_flat_out]
return pytree.tree_unflatten(fake_flat_out, spec)
|