File: functional_tensor.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (800 lines) | stat: -rw-r--r-- 35,461 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
# mypy: allow-untyped-defs
import contextlib
import warnings
import weakref
from abc import ABC, abstractmethod
from typing import Any, Callable, ContextManager, Dict, List, Optional, Tuple, Union

import torch
import torch.utils._pytree as pytree
from torch._C import _functionalization_reapply_views_tls as _reapply_views
from torch._ops import _get_dispatch_mode_pre_dispatch
from torch._subclasses.meta_utils import is_sparse_any
from torch.utils._python_dispatch import (
    _detect_infra_mode,
    _disable_infra_mode,
    return_and_correct_aliasing,
    TorchDispatchMode,
)


not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")


# NOTE Some special handling for tensor conversion during export is needed.
# Normally, when tracing through the model with tensor.to(), the maybe-aliasing
# relationship between input and output tensors will be baked into the graph.
# For example, if we got a tensor with device cpu and call tensor.to("cpu"),
# it will become a no-op in the graph. For a whole graph capture, this is not
# sound so we need to do something different. Instead, in export we will try to
# preserve the tensor conversion by forcing a non-semantic-breaking aten::_to_copy
# operator to be traced in the graph, and subsequently banning mutations on all
# such converted tensors.
# In addition to patching .to() method call in functionalization, we will have to
# patch other similar methods like float() and cpu(), because they intentionally
# don't fall back to .to() methods, but have the same behavior as .to() according to
# pytorch document. https://pytorch.org/docs/stable/generated/torch.Tensor.float.html
# thus we simply force them to go through .to() call.
def _conversion_method_template(**extra_kwargs):
    def _(self, *args, **kwargs):
        return self.to(*args, **{**kwargs, **extra_kwargs})

    return _


class FunctionalTensor(torch.Tensor):
    """
    Functional tensors represent tensors that will remove mutations
    from a program. If you perform a mutable operation on a functional tensor,
    it will re-dispatch to the functional variant of that operation.

    Historically, functionalization is implemented in C++ in the dispatcher.
    This class is a lightweight python shim around the C++ functionalization logic.

    FunctionalTensor is required to be used with a corresponding
    FunctionalTensormode active, because it relies
    on using the mode for dispatch (which can properly handle factory functions).
    """

    elem: torch.Tensor
    # Indicates to our torch_dispatch dispatching infra that
    # this is an "infra" mode with lower dispatching precedence.
    _mode_key = torch._C._TorchDispatchModeKey.FUNCTIONAL

    # Note: The reason we add these extra keys to our FunctionalTensor subclass
    # is to mirror the behavior of C++ functionalization (we can choose to change this
    # later, as long as it doesn't break anything).
    # FunctionalTensorWrapper copies **all** dispatch keys from the inner tensor
    # to the wrapper, excluding functorch and python dispatch keys.
    # Here I'm trying to re-use the keyset the functorch wrapper subclasses copy,
    # except that they don't include ZeroTensor so I'm manually adding it in.
    _extra_dispatch_keys = torch._C._additional_keys_to_prop_for_wrapper_tensors.add(
        torch._C.DispatchKey.ZeroTensor
    )

    # These are all aten ops that correspond to metadata queries.
    # We want FunctionalTensor to be able to handle them directly.
    metadata_fns = [
        torch.ops.aten.is_contiguous.default,  # type: ignore[has-type]
        torch.ops.aten.is_contiguous.memory_format,  # type: ignore[has-type]
        torch.ops.aten.is_strides_like_format.default,  # type: ignore[has-type]
        torch.ops.aten.is_non_overlapping_and_dense.default,  # type: ignore[has-type]
        torch.ops.aten.size.default,  # type: ignore[has-type]
        torch.ops.aten.sym_size.default,  # type: ignore[has-type]
        torch.ops.aten.stride.default,  # type: ignore[has-type]
        torch.ops.aten.sym_stride.default,  # type: ignore[has-type]
        torch.ops.aten.storage_offset.default,  # type: ignore[has-type]
        torch.ops.aten.sym_storage_offset.default,  # type: ignore[has-type]
        torch.ops.aten.numel.default,  # type: ignore[has-type]
        torch.ops.aten.sym_numel.default,  # type: ignore[has-type]
        torch.ops.aten.dim.default,  # type: ignore[has-type]
        torch.ops.prim.device.default,  # type: ignore[has-type]
    ]

    # Used by auto_functionalize to determine base of tensors during inference mode.
    _inference_mode_base: Optional["FunctionalTensor"] = None

    def __new__(cls, elem, mode):
        assert torch._is_functional_tensor(elem)

        # In general, we'd like our functional tensor subclass to only be in charge of functionalization,
        # and defer to the inner subclass for all other functionality.
        # Example: If our inner tensor is a ZeroTensor, we would want to defer running the ZeroTensor fallback
        # until after we redispatch to our inner ZeroTensor.
        # However, there are a few keys that we need to mirror between the inner and outer tensors.
        #   Conjugate
        #   Negative
        # Why? These keys are used to test metadata queries, like `.is_conj()` and `.is_neg()`.
        # We **need** calls to is_conj() to return the same thing on the outer and inner tensors,
        # Because user code / framework code that branches like so needs to do the same thing
        # when it sees the outer FunctionalTensor:
        #     if (x.is_conj()) {
        #         return at::view_as_real(x.resolve_conj());
        #     } else {
        #         return at::view_as_real(x);
        #     }
        extra_dispatch_keys = (
            FunctionalTensor._extra_dispatch_keys & torch._C._dispatch_keys(elem)
        )

        out = torch.Tensor._make_wrapper_subclass(  # type: ignore[arg-type, attr-defined]
            # TODO: right now, _make_wrapper_subclass's dynamic shape interaction is not great.
            # Calling the overload that has kwargs causes us to go down the first overload path,
            # which will **always** specialize sizes.
            # We should probably eventually fix this so that the first overload can just handle dynamic shapes.
            cls,
            elem.shape,  # sizes
            elem.stride() if not is_sparse_any(elem) else None,  # strides
            (
                elem.storage_offset() if not is_sparse_any(elem) else None
            ),  # storage_offset
            None,  # memory_format
            elem.dtype,  # dtype
            elem.layout,  # layout
            elem.device,  # device
            False,  # pin_memory
            elem.requires_grad,  # requires_grad
            None,  # dispatch_sizes_strides_policy
            False,  # dispatch_device
            False,  # dispatch_layout
            extra_dispatch_keys,  # _extra_dispatch_keys
        )
        torch._C._set_throw_on_mutable_data_ptr(out)
        out.elem = elem

        if (
            not mode.export
            and torch.is_inference_mode_enabled()
            and torch._inductor.config.enable_auto_functionalized_v2
        ):
            if out.is_base_tensor():
                out._inference_mode_base = None
                # This assumes that the FunctionalTensor.elem does not change its storage after this point.
                # Otherwise this would be invalid.
                mode._storage_to_base[out.elem.untyped_storage()] = out
            else:
                out._inference_mode_base = mode._storage_to_base[
                    out.elem.untyped_storage()
                ]
                assert out._inference_mode_base is not None
        return out

    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        unrecognized_types = [
            t
            for t in types
            if t not in [torch.Tensor, torch._subclasses.FakeTensor, FunctionalTensor]
        ]
        if unrecognized_types:
            not_implemented_log.debug(
                "FunctionalTensor unrecognized subclass(es): %s", unrecognized_types
            )
            return NotImplemented

        if kwargs is None:
            kwargs = {}

        # FunctionalTensor needs to plumb all metadata requests to the inner tensor.
        # In theory we don't have to do this - but if we want to service metadata requests here,
        # we need to carefully make sure all metadata is accurate (including metadata mutations)
        if func in FunctionalTensor.metadata_fns:
            # All metadata accesses should be plumbed to the inner tensor, that way we don't have to worry
            # about the problem of keeping metadata in sync between the wrapper and inner tensor.
            # This also alleviates us from having to manually handle metadata mutations on the wrapper.
            assert len(kwargs) == 0
            if func in [
                torch.ops.aten.is_strides_like_format.default,
                torch.ops.aten.is_contiguous.memory_format,
            ]:
                assert len(args) == 2 and isinstance(args[0], FunctionalTensor)
                return func(torch._from_functional_tensor(args[0].elem), args[1])
            assert len(args) == 1 and isinstance(args[0], FunctionalTensor)

            return func(torch._from_functional_tensor(args[0].elem))
        # Originally I tried to implement my subclass without giving it a torch_dispatch, but I gave up:
        # - _make_wrapper_subclass requires a __torch_dispatch__
        # - If we want to use _make_subclass(), we have a problem: the subclass will share a TensorImpl with the inner tensor,
        #   which is of type FunctionalTensorWrapper! We explicitly do not want our wrapper to be a FunctionalTensorWrapper.
        # - If we use the default tensor.__new__(), we have another problem: it returns inner_tensor.alias(),
        #   which causes every subclass created above autograd to have autograd view metadata
        #   (in addition to also being a FunctionalTensorWrapper).
        raise RuntimeError(
            "Attempting to use FunctionalTensor on its own. Instead, please use it with a corresponding FunctionalTensorMode()"
        )

    def __repr__(self) -> str:  # type: ignore[override]
        return f"FunctionalTensor({repr(self.elem)})"

    @staticmethod
    def to_functional(x):
        # We will do the wrapping for the user.

        assert not torch._is_functional_tensor(x)
        # The only autograd metadata we care about on the FunctionalTensor is:
        # - requires_grad (so autograd runs)
        # - is_leaf (so that mutations on graph inputs that are not leaves are allowed by the autograd engine)
        #   this is handled by FunctionalTensor.to_functional
        x_functional = torch._to_functional_tensor(x)
        # Technically the FunctionalTensormode here is unnecessary,
        # but it avoids spurious NotImplemented logs during `ProxyTorchDispatchMode` tracing.
        # _mirror_autograd_meta_to queries tensor sizes,
        # and otherwise the sym_size() call will go to the proxy mode before hitting
        # FunctionalTensor.__torch_dispatch__

        functional_mode = _detect_infra_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL)
        assert functional_mode is not None

        with functional_mode:
            torch._mirror_autograd_meta_to(x, x_functional)  # type: ignore[attr-defined]
            out = FunctionalTensor(x_functional, functional_mode)
            torch._mirror_autograd_meta_to(x_functional, out)  # type: ignore[attr-defined]
        return out

    def from_functional(self):
        torch._sync(self)
        return torch._from_functional_tensor(self.elem)

    def is_base_tensor(self) -> bool:
        return torch._is_functional_tensor_base(self.elem)

    def replace_(self, output) -> None:
        torch._functionalize_replace(self.elem, output)

    def commit_update(self) -> None:
        torch._functionalize_commit_update(self.elem)

    def sync(self) -> None:
        torch._functionalize_sync(self.elem)

    def mark_mutation_hidden_from_autograd(self) -> None:
        torch._functionalize_mark_mutation_hidden_from_autograd(self.elem)

    def tolist(self) -> Any:
        if self.elem.dim() == 0:
            return self.elem.item()
        elif self.elem.dim() == 1:
            return [elem.item() for elem in self.elem]
        else:
            return [elem.tolist() for elem in self.elem]

    def to(self, *args, **kwargs):
        if _detect_infra_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL).export:
            # If copy is specified as pos arg, it's always the second one.
            if len([arg for arg in args if isinstance(arg, bool)]) <= 1:
                return super().to(*args, **{**kwargs, "copy": True})
        return super().to(*args, **kwargs)

    def cuda(self, device=None, *args, **kwargs):
        device = device or torch.cuda.current_device()
        if len(args) > 0:
            return self.to(device, *args, **kwargs)
        else:
            return self.to(device=device, **kwargs)

    char = _conversion_method_template(dtype=torch.int8)
    cpu = _conversion_method_template(device=torch.device("cpu"))
    bfloat16 = _conversion_method_template(dtype=torch.bfloat16)
    byte = _conversion_method_template(dtype=torch.uint8)
    double = _conversion_method_template(dtype=torch.float64)
    float = _conversion_method_template(dtype=torch.float32)
    bool = _conversion_method_template(dtype=torch.bool)
    half = _conversion_method_template(dtype=torch.float16)
    int = _conversion_method_template(dtype=torch.int32)
    long = _conversion_method_template(dtype=torch.int64)

    # TODO(sparse-team): fixes #133174 but can we do without the relay?
    def to_dense(self):  # type: ignore[override]
        return self.elem.to_dense()

    @property
    def layout(self):
        return self.elem.layout

    def __bool__(self):
        return bool(self.item())


class FunctionalTensorMode(TorchDispatchMode):
    def __init__(self, pre_dispatch=False, export=False, _allow_token_discovery=False):
        super().__init__()
        self.export = export
        self.is_on_stack = False
        self.enter_stack = []
        # Indicates to our torch_dispatch dispatching infra that
        # this is an "infra" mode with lower dispatching precedence.
        self._mode_key = torch._C._TorchDispatchModeKey.FUNCTIONAL
        self.pre_dispatch = pre_dispatch
        # This will be turned off later for pre-dispatch functionalization
        self._dispatch_key = torch._C.DispatchKey.PreDispatch if pre_dispatch else None  # type: ignore[attr-defined]
        # Map of effect type (ex. _EffectType.ORDERED) to a token. The tokens help keep
        # track of the ordering between side effectful operations.
        self._tokens: Dict[Any, torch.Tensor] = {}

        # Filled after forward tracing.
        self._tokens_forward_output: Dict[Any, torch.Tensor] = {}

        # Functionalization runs twice in AOTAutograd, once in
        # `run_functionalized_fw_and_collect_metadata` to collect metadata to
        # see which tensors need to be functionalized and discover how many
        # tokens we need, and another time in `make_fx` which does the actual
        # tracing to replace ops with their functional variants and handling
        # side-effectful ops. In the second stage there should be no token
        # discovery. This flag distinguishes between the two stages.
        self._allow_token_discovery = _allow_token_discovery

        self._storage_to_base: weakref.WeakKeyDictionary[
            torch.storage.UntypedStorage, Optional[FunctionalTensor]
        ] = weakref.WeakKeyDictionary()

    # No-op if FunctionalTensorMode is already in use
    def __enter__(self):
        def _get_prev_mode():
            if self._dispatch_key == torch._C.DispatchKey.PreDispatch:
                return _get_dispatch_mode_pre_dispatch(
                    torch._C._TorchDispatchModeKey.FUNCTIONAL
                )
            return torch._C._get_dispatch_mode(
                torch._C._TorchDispatchModeKey.FUNCTIONAL
            )

        if _get_prev_mode() is None:
            self.enter_stack.append(True)
            return super().__enter__()
        else:
            self.enter_stack.append(False)
            return self

    def __exit__(self, a, b, c):
        is_on_stack = self.enter_stack.pop()
        if is_on_stack:
            super().__exit__(a, b, c)

    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        if kwargs is None:
            kwargs = {}

        if self.export:
            # We need to make sure that we don't decompose to() as usual in export mode,
            # because it can get optimized away. Instead we always replace it with _to_copy().
            if func == torch.ops.aten.to.dtype_layout:
                kwargs.pop("copy", None)
                return self.__torch_dispatch__(
                    torch.ops.aten._to_copy.default, types, args, kwargs
                )
            if func == torch.ops.aten.to.dtype:
                schema = tuple(arg.name for arg in func._schema.arguments)
                for arg, name in zip(args[1:], schema[1:]):
                    kwargs[name] = arg
                kwargs.pop("copy", None)
                return self.__torch_dispatch__(
                    torch.ops.aten._to_copy.default, types, args[:1], kwargs
                )

        unrecognized_types = [
            t
            for t in types
            if not issubclass(t, torch._subclasses.FakeTensor)
            and t not in [torch.Tensor, FunctionalTensor]
        ]

        if unrecognized_types:
            not_implemented_log.debug(
                "FunctionalTensor unrecognized subclass(es): %s", unrecognized_types
            )
            return NotImplemented

        def _can_decompose(func):
            # See https://github.com/pytorch/pytorch/pull/115258#issuecomment-1900755832
            # Never decompose dropout in export
            if self.export and func == torch.ops.aten.dropout.default:
                return False

            # We unconditionally decompose ops that are maybe aliasing or mutating ops
            from torch._decomp import _should_decompose_because_unsafe_op

            if _should_decompose_because_unsafe_op(func):
                return True

            # (1) we unconditionally decompose maybe-aliasing or maybe-mutating ops,
            # because we must know statically of an op mutates or aliasing in order to functionalize it properly
            # (2) for mutating ops that have CompositeImplicit decomps, we choose to decompose them today.
            # In theory, we could walk this back and avoid decomposing them later if we need to.
            alias_info_present = any(arg.alias_info for arg in func._schema.arguments)
            if alias_info_present or func._schema.is_mutable:
                return True

            # If we are here, it means we are seeing functional composite op.
            # For pre-dispatch IR, we don't want to decompose this op
            # For post-dispatch IR, we do want to decompose this op. it is fine
            # to decompose here even if you want to preserve a CIA in post-dispatch export
            # because we already override decompose behaviour so it will do the
            # right thing.
            if self.export:
                if self.pre_dispatch:
                    # If it is CIA custom op, we warn that we are assuming this op is indeed functional.
                    if func.namespace not in ["aten", "prim"] and func._can_decompose():
                        warnings.warn(
                            f"At pre-dispatch tracing, we assume that any custom op marked with "
                            f"CompositeImplicitAutograd and have functional schema are safe to not decompose. "
                            f"Found {func} to be one such op."
                        )
                    return False
                return True

            # in normal torch.compile IR, we decompose functional composite ops
            return True

        if (
            func not in FunctionalTensor.metadata_fns
            and _can_decompose(func)
            # Not all funcs from __torch_dispatch__ are actual dispatcher ops,
            # e.g. prim.device
            and torch._C._dispatch_has_kernel(func.name())
        ):
            with self:
                r = func.decompose(*args, **kwargs)
                if r is not NotImplemented:
                    return r

        def wrap(x):
            # Only wrap our outputs in subclasses if the inner functionalization call
            # also wrapped outputs into FunctionalTensorWrappers.
            # When can this happen? e.g. `torch.div(2, 2)`
            assert not isinstance(x, FunctionalTensor)
            if isinstance(x, torch.Tensor) and torch._is_functional_tensor(x):
                return FunctionalTensor(x, self)
            return x

        def unwrap(x):
            return x.elem

        from torch._higher_order_ops.auto_functionalize import (
            can_auto_functionalize,
            do_auto_functionalize,
            do_auto_functionalize_v2,
        )

        if can_auto_functionalize(
            func
        ) and not torch._C._dispatch_has_kernel_for_dispatch_key(
            func.name(), torch._C.DispatchKey.Functionalize
        ):
            # it doesn't matter what mode we use here because
            # the implementation of do_auto_functionalize doesn't
            # interact with FunctionalTensorMode at all
            import torch._inductor.config as inductor_config

            if self.export or not inductor_config.enable_auto_functionalized_v2:
                return do_auto_functionalize(func, args, kwargs)
            else:
                return do_auto_functionalize_v2(func, args, kwargs)

        from torch._higher_order_ops.effects import handle_effects, has_effects

        if has_effects(func, args, kwargs):
            assert not torch._C._dispatch_has_kernel_for_dispatch_key(
                func.name(), torch._C.DispatchKey.Functionalize
            )
            return handle_effects(
                self._allow_token_discovery, self._tokens, func, args, kwargs
            )

        args_unwrapped, kwargs_unwrapped = pytree.tree_map_only(
            FunctionalTensor, unwrap, (args, kwargs)
        )

        # Expectation: functionalization should not **already** be enabled above our mode.
        # Why would that be bad? when we return a FunctionalTensor here, we don't want functionalization
        # to run above this mode and further wrap that output in **another** C++ FunctionalTensorWrapper.
        is_included = torch._C._dispatch_tls_is_dispatch_key_included(
            torch._C.DispatchKey.Functionalize
        )
        is_excluded = torch._C._dispatch_tls_is_dispatch_key_excluded(
            torch._C.DispatchKey.Functionalize
        )
        assert is_excluded or not is_included
        include_to_set = (
            torch._C._dispatch_tls_local_include_set()
            | torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
        )
        exclude_to_set = (
            torch._C._dispatch_tls_local_exclude_set().remove(
                torch._C.DispatchKey.Functionalize
            )
            - FunctionalTensor._extra_dispatch_keys
        )

        # All we want to do here is re-use the existing C++ functionalization logic.
        # This requires swizzling our TLS dispatch keys so that the Functionalize key is active.
        with torch._C._ForceDispatchKeyGuard(include_to_set, exclude_to_set):
            try:
                # By default for python functionalization (for AOTAutograd), we reapply views.
                old_apply_views = torch._functionalize_enable_reapply_views(True)  # type: ignore[attr-defined]

                # Sometimes these functions cannot be directly dispatched to functionalize key
                # because args are sometimes not functional tensors for some reason?
                if func in FunctionalTensor.metadata_fns:
                    outs_unwrapped = func(*args_unwrapped, **kwargs_unwrapped)
                    outs_wrapped = pytree.tree_map_only(
                        torch.Tensor, wrap, outs_unwrapped
                    )
                else:
                    # When we dispatch to the C++ functionalization kernel, we might need to jump back to the
                    # PreDispatch mode stack afterwards, to handle any other PreDispatch modes underneath
                    # FunctionalTensorMode. If we call func() directly, we would need to exclude PreDispatch
                    # from the TLS in order to avoid infinite looping, but this would prevent us from coming
                    # back to PreDispatch later
                    outs_unwrapped = func._op_dk(
                        torch._C.DispatchKey.Functionalize,
                        *args_unwrapped,
                        **kwargs_unwrapped,
                    )
                    # We don't allow any mutation on result of dropout or _to_copy
                    if self.export:
                        if func in (
                            torch.ops.aten.dropout.default,
                            torch.ops.aten._to_copy.default,
                        ):
                            torch._freeze_functional_tensor(outs_unwrapped)  # type: ignore[attr-defined]
                    outs_wrapped = pytree.tree_map_only(
                        torch.Tensor, wrap, outs_unwrapped
                    )
            finally:
                torch._disable_functionalization()
                torch._functionalize_enable_reapply_views(old_apply_views)  # type: ignore[attr-defined]

        is_included = torch._C._dispatch_tls_is_dispatch_key_included(
            torch._C.DispatchKey.Functionalize
        )
        is_excluded = torch._C._dispatch_tls_is_dispatch_key_excluded(
            torch._C.DispatchKey.Functionalize
        )
        assert is_excluded or not is_included

        if (
            # If no outputs are our functional subclass, then don't try to fix up aliasing
            not any(
                isinstance(x, FunctionalTensor)
                for x in pytree.tree_leaves(outs_wrapped)
            )
            # Since lift_fresh lifts its argument into a functional tensor, we can skip the
            # aliasing correction step. Otherwise, we would be setting the storage of a
            # lifted tensor to that of an unlifted tensor.
            # Ref: https://github.com/pytorch/pytorch/issues/111506
            or func == torch.ops.aten.lift_fresh.default
        ):
            return outs_wrapped
        # for metadata mutations, need to manually mutate the metadata of the FunctionalTensor wrapper
        if (
            torch.Tag.inplace_view in func.tags
            and func is not torch.ops.aten.set_.source_Tensor
        ):
            with torch.utils._mode_utils.no_dispatch():
                func(*args, **kwargs)
        # Wrapper tensor subclasses do not have correct aliasing info! Use this util to manually correct the output aliasing.
        # inplace ops like `aten.add_()` are expected to return inputs **directly**, instead of creating fresh tensor objects.
        # Use this util to figure out the right thing to return.
        # If none of our inputs were wrapped, then we have no FunctionalTensor outputs that we need to fix up storages for.
        return return_and_correct_aliasing(func, args, kwargs, outs_wrapped)

    @classmethod
    def is_infra_mode(cls) -> bool:
        return True


@contextlib.contextmanager
def disable_functional_mode():
    return _disable_infra_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL)


# This is similar to torch.func.functionalize, but:
# - It uses FunctionalTensorMode, and FunctionalTensor (a python subclass).
#   One important advantage to using this mode is that it will let us
#   run functionalization underneath __torch_dispatch__,
#   which we need in AOTAutograd.
# - Doing so means that it does not automatically compose with other
#   functorch transforms, since these transforms always run above __torch_dispatch__.
#   That's why this util lives here, and not in functorch.
def dispatch_functionalize(func, mode: FunctionalTensorMode = FunctionalTensorMode()):
    # TODO: pull these from aot autograd
    def to_fun(t):
        if isinstance(t, torch.Tensor):
            return FunctionalTensor.to_functional(t)
        return t

    def from_fun(t):
        if not isinstance(t, FunctionalTensor):
            # quick sanity assert
            if isinstance(t, torch.Tensor):
                assert not torch._is_functional_tensor(t)
            return t
        torch._sync(t)
        return torch._from_functional_tensor(t.elem)

    def inner(*args, **kwargs):
        disable_above = torch._C._ExcludeDispatchKeyGuard(
            torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
        )
        with disable_above, mode:
            func_args = pytree.tree_map_only(torch.Tensor, to_fun, args)
            func_kwargs = pytree.tree_map_only(torch.Tensor, to_fun, kwargs)
            func_outputs = func(*func_args, **func_kwargs)
            outputs = pytree.tree_map_only(FunctionalTensor, from_fun, func_outputs)

            return outputs

    return inner


class BaseFunctionalizeAPI(ABC):
    @abstractmethod
    def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
        pass

    @abstractmethod
    def unwrap_tensors(
        self, args: Union[torch.Tensor, Tuple[torch.Tensor, ...]]
    ) -> Any:
        pass

    @abstractmethod
    def functionalize(self, inner_f: Callable) -> Callable:
        pass

    @abstractmethod
    def redispatch_to_next(self) -> ContextManager:
        pass

    @abstractmethod
    def replace(self, input_tensor, output_tensor) -> None:
        pass

    @abstractmethod
    def commit_update(self, tensor) -> None:
        pass

    @abstractmethod
    def sync(self, tensor) -> None:
        pass

    @abstractmethod
    def mark_mutation_hidden_from_autograd(self, tensor) -> None:
        pass


class PythonFunctionalizeAPI(BaseFunctionalizeAPI):
    def __init__(
        self, mode: Optional[FunctionalTensorMode] = None, pre_dispatch: bool = False
    ) -> None:
        super().__init__()
        self.mode = mode if mode else FunctionalTensorMode()
        self.pre_dispatch = pre_dispatch

    def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
        with self.mode:
            return torch.utils._pytree.tree_map_only(
                torch.Tensor, FunctionalTensor.to_functional, args
            )

    def unwrap_tensors(
        self, args: Union[torch.Tensor, Tuple[torch.Tensor, ...], List[torch.Tensor]]
    ) -> Any:
        return torch.utils._pytree.tree_map_only(
            FunctionalTensor, FunctionalTensor.from_functional, args
        )

    def functionalize(self, inner_f: Callable) -> Callable:
        return dispatch_functionalize(inner_f, self.mode)

    def redispatch_to_next(self) -> ContextManager:
        # [NOTE] We don't do anything here because at the time
        # we exercise this path, we would have already popped the
        # FunctionalTensorMode from mode stack. Since FunctionalTensorMode
        # is now stateful, it is better to explicitly pass in correct mode
        # directly instead of globally setting it.
        return contextlib.nullcontext()

    def replace(self, input_tensor, output_tensor) -> None:
        assert isinstance(input_tensor, FunctionalTensor)
        assert not isinstance(output_tensor, FunctionalTensor)
        input_tensor.replace_(output_tensor)

    def commit_update(self, tensor) -> None:
        assert isinstance(tensor, FunctionalTensor)
        tensor.commit_update()

    def sync(self, tensor) -> None:
        assert isinstance(tensor, FunctionalTensor)
        tensor.sync()

    def mark_mutation_hidden_from_autograd(self, tensor) -> None:
        assert isinstance(tensor, FunctionalTensor)
        tensor.mark_mutation_hidden_from_autograd()


class CppFunctionalizeAPI(BaseFunctionalizeAPI):
    def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
        from torch._functorch.eager_transforms import _wrap_all_tensors_to_functional

        return _wrap_all_tensors_to_functional(args, level=0)

    def unwrap_tensors(
        self, args: Union[torch.Tensor, Tuple[torch.Tensor, ...]]
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
        from torch._functorch.eager_transforms import (
            _unwrap_all_tensors_from_functional,
        )

        return _unwrap_all_tensors_from_functional(args, reapply_views=_reapply_views())

    def functionalize(self, inner_f: Callable) -> Callable:
        return torch.func.functionalize(inner_f)

    def redispatch_to_next(self) -> ContextManager:
        return torch._C._ExcludeDispatchKeyGuard(
            torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
        )

    def replace(self, input_tensor, output_tensor) -> None:
        torch._functionalize_replace(input_tensor, output_tensor)

    def commit_update(self, tensor) -> None:
        torch._functionalize_commit_update(tensor)

    def sync(self, tensor) -> None:
        torch._functionalize_sync(tensor)

    def mark_mutation_hidden_from_autograd(self, tensor) -> None:
        torch._functionalize_mark_mutation_hidden_from_autograd(tensor)


class FunctorchFunctionalizeAPI(BaseFunctionalizeAPI):
    def __init__(self, interpreter):
        self.interpreter = interpreter

    def wrap_tensors(self, args: Tuple[Any]) -> Tuple[Any]:
        from torch._functorch.eager_transforms import _wrap_all_tensors_to_functional

        return _wrap_all_tensors_to_functional(args, level=self.interpreter.level())

    def unwrap_tensors(
        self, args: Union[torch.Tensor, Tuple[torch.Tensor, ...]]
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
        from torch._functorch.eager_transforms import (
            _unwrap_all_tensors_from_functional,
        )

        return _unwrap_all_tensors_from_functional(
            args, reapply_views=self.interpreter.functionalize_add_back_views()
        )

    def functionalize(self, inner_f: Callable) -> Callable:
        return torch.func.functionalize(
            inner_f,
            remove=(
                "mutations_and_views"
                if self.interpreter.functionalize_add_back_views()
                else "mutations"
            ),
        )

    def redispatch_to_next(self) -> ContextManager:
        return self.interpreter.lower()

    def replace(self, input_tensor, output_tensor) -> None:
        torch._functionalize_replace(input_tensor, output_tensor)

    def commit_update(self, tensor) -> None:
        torch._functionalize_commit_update(tensor)

    def sync(self, tensor) -> None:
        torch._functionalize_sync(tensor)

    def mark_mutation_hidden_from_autograd(self, tensor) -> None:
        torch._functionalize_mark_mutation_hidden_from_autograd(tensor)


def mb_unwrap_functional_tensor(tensor: torch.Tensor):
    if isinstance(tensor, FunctionalTensor):
        return torch._from_functional_tensor(tensor.elem)
    return tensor