1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
# mypy: allow-untyped-defs
# Unpickler restricted to loading only state dicts
# Restrict constructing types to a list defined in _get_allowed_globals()
# Restrict BUILD operation to `Tensor`, `Parameter` and `OrderedDict` types only
# Restrict APPEND/APPENDS to `list`
# In `GLOBALS` operation do not do class lookup by name, but rather rely on dictionary
# defined by `_get_allowed_globals()` method, that contains:
# - torch types (Storage, dtypes, Tensor, `torch.Size`),
# - `torch._utils._rebuild` functions.
# - `torch.nn.Parameter`
# - `collections.Counter`
# - `collections.OrderedDict`
# Additionally, users can use an allowlist for adding classes they have deemed as safe using
# `_add_safe_globals()` (`torch.serialization.add_safe_globals`)
# `_clear_safe_globals()` (`torch.serialization.clear_safe_globals`)
# `_get_safe_globals()` (`torch.serialization.get_safe_globals`)
# Based of https://github.com/python/cpython/blob/main/Lib/pickle.py
# Expected to be useful for loading PyTorch model weights
# For example:
# data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read()
# buf = io.BytesIO(data)
# weights = torch.load(buf, weights_only = True)
import functools as _functools
import warnings
from _codecs import encode
from collections import Counter, OrderedDict
from pickle import (
APPEND,
APPENDS,
BINFLOAT,
BINGET,
BININT,
BININT1,
BININT2,
BINPERSID,
BINPUT,
BINUNICODE,
BUILD,
bytes_types,
decode_long,
EMPTY_DICT,
EMPTY_LIST,
EMPTY_SET,
EMPTY_TUPLE,
GLOBAL,
LONG1,
LONG_BINGET,
LONG_BINPUT,
MARK,
NEWFALSE,
NEWOBJ,
NEWTRUE,
NONE,
PROTO,
REDUCE,
SETITEM,
SETITEMS,
SHORT_BINSTRING,
STOP,
TUPLE,
TUPLE1,
TUPLE2,
TUPLE3,
UnpicklingError,
)
from struct import unpack
from sys import maxsize
from typing import Any, Callable, Dict, List, Set, Tuple, Union
import torch
from torch._utils import IMPORT_MAPPING, NAME_MAPPING
# modules in this list are never allowed, even if the user attempts to allowlist
# functions/classes from them
_blocklisted_modules = [
"sys",
"os",
"posix",
"nt",
]
_marked_safe_globals_set: Set[Union[Callable, Tuple[Callable, str]]] = set()
def _add_safe_globals(safe_globals: List[Union[Callable, Tuple[Callable, str]]]):
global _marked_safe_globals_set
_marked_safe_globals_set = _marked_safe_globals_set.union(set(safe_globals))
def _get_safe_globals() -> List[Union[Callable, Tuple[Callable, str]]]:
global _marked_safe_globals_set
return list(_marked_safe_globals_set)
def _clear_safe_globals():
global _marked_safe_globals_set
_marked_safe_globals_set = set()
def _remove_safe_globals(
globals_to_remove: List[Union[Callable, Tuple[Callable, str]]],
):
global _marked_safe_globals_set
_marked_safe_globals_set = _marked_safe_globals_set - set(globals_to_remove)
class _safe_globals:
def __init__(self, safe_globals: List[Union[Callable, Tuple[Callable, str]]]):
self.safe_globals = safe_globals
def __enter__(self):
_add_safe_globals(self.safe_globals)
def __exit__(self, type, value, tb):
_remove_safe_globals(self.safe_globals)
# Separate from _get_allowed_globals because of the lru_cache on _get_allowed_globals
# For example if user had a script like
# torch.load(file_a)
# torch.serialization._add_safe_globals([torch.foo])
# torch.load(file_b)
# the dynamic additions to safe_globals would not be picked up by
# _get_allowed_globals due to the lru_cache
def _get_user_allowed_globals():
rc: Dict[str, Any] = {}
for f in _marked_safe_globals_set:
if isinstance(f, tuple):
if len(f) != 2:
raise ValueError(
f"Expected tuple of length 2 (global, str of callable full path), but got tuple of length: {len(f)}"
)
if type(f[1]) is not str:
raise TypeError(
f"Expected second item in tuple to be str of callable full path, but got: {type(f[1])}"
)
f, name = f
rc[name] = f
else:
module, name = f.__module__, f.__name__
rc[f"{module}.{name}"] = f
return rc
def _tensor_rebuild_functions():
return {
torch._utils._rebuild_parameter,
torch._utils._rebuild_parameter_with_state,
torch._utils._rebuild_qtensor,
torch._utils._rebuild_tensor,
torch._utils._rebuild_tensor_v2,
torch._utils._rebuild_tensor_v3,
torch._utils._rebuild_sparse_tensor,
torch._utils._rebuild_meta_tensor_no_storage,
torch._utils._rebuild_nested_tensor,
torch._utils._rebuild_wrapper_subclass,
# Allowlisting this, but not allowlisting the numpy functions by default
# Reasoning is that we don't have control over the numpy functions, but
# this utility is provided by pytorch
torch._utils._rebuild_device_tensor_from_numpy,
# In 2.6, we should no longer have a dependency on numpy and the above
# _rebuild_device_tensor_from_numpy function.
torch._utils._rebuild_device_tensor_from_cpu_tensor,
}
# Unpickling machinery
@_functools.lru_cache(maxsize=1)
def _get_allowed_globals():
rc: Dict[str, Any] = {
"collections.OrderedDict": OrderedDict,
"collections.Counter": Counter,
"torch.nn.parameter.Parameter": torch.nn.Parameter,
"torch.serialization._get_layout": torch.serialization._get_layout,
"torch.Size": torch.Size,
"torch.Tensor": torch.Tensor,
"torch.device": torch.device,
"_codecs.encode": encode, # for bytes
"builtins.bytearray": bytearray, # for bytearray
"builtins.set": set, # for set
"builtins.complex": complex, # for complex
}
# dtype
for t in torch.storage._dtype_to_storage_type_map().keys():
rc[str(t)] = t
for t in torch.storage._new_dtypes():
rc[str(t)] = t
# Tensor classes
for tt in torch._tensor_classes:
rc[f"{tt.__module__}.{tt.__name__}"] = tt
# Storage classes
for ts in torch._storage_classes:
if ts not in (torch.storage.TypedStorage, torch.storage.UntypedStorage):
# Wrap legacy storage types in a dummy class
rc[f"{ts.__module__}.{ts.__name__}"] = torch.serialization.StorageType(
ts.__name__
)
else:
rc[f"{ts.__module__}.{ts.__name__}"] = ts
# Quantization specific
for qt in [
torch.per_tensor_affine,
torch.per_tensor_symmetric,
torch.per_channel_affine,
torch.per_channel_symmetric,
torch.per_channel_affine_float_qparams,
]:
rc[str(qt)] = qt
# Rebuild functions
for f in _tensor_rebuild_functions():
rc[f"torch._utils.{f.__name__}"] = f
# Handles Tensor Subclasses, Tensor's with attributes.
# NOTE: It calls into above rebuild functions for regular Tensor types.
rc["torch._tensor._rebuild_from_type_v2"] = torch._tensor._rebuild_from_type_v2
return rc
def _read_global_instruction(readline: Callable) -> Tuple[str, str]:
module = readline()[:-1].decode("utf-8")
name = readline()[:-1].decode("utf-8")
# Patch since torch.save default protocol is 2
# users will be running this code in python > 3
if (module, name) in NAME_MAPPING:
module, name = NAME_MAPPING[(module, name)]
elif module in IMPORT_MAPPING:
module = IMPORT_MAPPING[module]
return module, name
def get_globals_in_pkl(file) -> Set[str]:
globals_in_checkpoint = set()
protocol = None
read = file.read
readline = file.readline
op_to_bytes_to_read = {
NEWOBJ[0]: 0,
REDUCE[0]: 0,
BUILD[0]: 0,
APPEND[0]: 0,
APPENDS[0]: 0,
SETITEM[0]: 0,
SETITEMS[0]: 0,
MARK[0]: 0,
TUPLE[0]: 0,
TUPLE1[0]: 0,
TUPLE2[0]: 0,
TUPLE3[0]: 0,
NONE[0]: 0,
NEWFALSE[0]: 0,
NEWTRUE[0]: 0,
EMPTY_TUPLE[0]: 0,
EMPTY_LIST[0]: 0,
EMPTY_DICT[0]: 0,
EMPTY_SET[0]: 0,
BINPERSID[0]: 0,
BININT[0]: 4,
BININT1[0]: 1,
BININT2[0]: 2,
BINFLOAT[0]: 8,
BINGET[0]: 1,
LONG_BINGET[0]: 4,
BINPUT[0]: 1,
LONG_BINPUT[0]: 4,
}
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
if key[0] == GLOBAL[0]:
module, name = _read_global_instruction(readline)
globals_in_checkpoint.add(f"{module}.{name}")
elif key[0] in op_to_bytes_to_read:
bytes_to_read = op_to_bytes_to_read[key[0]]
if bytes_to_read:
read(bytes_to_read)
# ops where bytes to read depends on the data
elif key[0] == BINUNICODE[0]:
strlen = unpack("<I", read(4))[0]
if strlen > maxsize:
raise UnpicklingError("String is too long")
read(strlen)
elif key[0] in {SHORT_BINSTRING[0], LONG1[0]}:
strlen = read(1)[0]
read(strlen)
# first and last op
elif key[0] == PROTO[0]:
protocol = read(1)[0]
elif key[0] == STOP[0]:
return globals_in_checkpoint
else:
raise UnpicklingError(f"Unsupported operand {key[0]}")
class Unpickler:
def __init__(self, file, *, encoding: str = "bytes"):
self.encoding = encoding
self.readline = file.readline
self.read = file.read
self.memo: Dict[int, Any] = {}
self.proto: int = -1
def load(self):
"""Read a pickled object representation from the open file.
Return the reconstituted object hierarchy specified in the file.
"""
self.metastack = []
self.stack: List[Any] = []
self.append = self.stack.append
read = self.read
readline = self.readline
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
# Risky operators
if key[0] == GLOBAL[0]:
module, name = _read_global_instruction(self.readline)
full_path = f"{module}.{name}"
if module in _blocklisted_modules:
raise UnpicklingError(
f"Trying to load unsupported GLOBAL {full_path} whose module {module} is blocked."
)
if full_path in _get_allowed_globals():
self.append(_get_allowed_globals()[full_path])
elif full_path in _get_user_allowed_globals():
self.append(_get_user_allowed_globals()[full_path])
elif full_path in (
[
"torch.nested._internal.nested_tensor.NestedTensor",
"torch.nested._internal.nested_tensor._rebuild_njt",
"torch._dynamo.decorators._DimRange",
]
):
raise UnpicklingError(
"``torch.nested`` and ``torch._dynamo`` must be imported to load nested jagged tensors (NJTs)"
)
elif full_path in (
[
"torch.distributed.device_mesh.DeviceMesh",
"torch.distributed.tensor._dtensor_spec.DTensorSpec",
"torch.distributed.tensor._dtensor_spec.TensorMeta",
"torch.distributed.tensor.DTensor",
"torch.distributed.tensor.placement_types.Partial",
"torch.distributed.tensor.placement_types.Replicate",
"torch.distributed.tensor.placement_types.Shard",
]
):
raise UnpicklingError(
"``torch.distributed.tensor`` must be imported to load DTensors"
)
else:
raise UnpicklingError(
f"Unsupported global: GLOBAL {full_path} was not an allowed global by default. "
f"Please use `torch.serialization.add_safe_globals([{name}])` or the "
f"`torch.serialization.safe_globals([{name}])` context manager to allowlist this global "
"if you trust this class/function."
)
elif key[0] == NEWOBJ[0]:
args = self.stack.pop()
cls = self.stack.pop()
if cls is torch.nn.Parameter:
self.append(torch.nn.Parameter(*args))
elif (
cls in _get_user_allowed_globals().values()
or cls in _get_allowed_globals().values()
):
self.append(cls.__new__(cls, *args))
else:
raise UnpicklingError(
"Can only create new object for nn.Parameter or classes allowlisted "
f"via `add_safe_globals` but got {cls}"
)
elif key[0] == REDUCE[0]:
args = self.stack.pop()
func = self.stack[-1]
if (
func not in _get_allowed_globals().values()
and func not in _get_user_allowed_globals().values()
):
raise UnpicklingError(
f"Trying to call reduce for unrecognized function {func}"
)
self.stack[-1] = func(*args)
elif key[0] == BUILD[0]:
state = self.stack.pop()
inst = self.stack[-1]
if type(inst) is torch.Tensor:
# Legacy unpickling
inst.set_(*state)
elif type(inst) is torch.nn.Parameter:
inst.__setstate__(state)
elif type(inst) is OrderedDict:
inst.__dict__.update(state)
elif (
type(inst) in _get_user_allowed_globals().values()
or type(inst) in _get_allowed_globals().values()
):
if hasattr(inst, "__setstate__"):
inst.__setstate__(state)
else:
# mimics load_build in pickle
# https://github.com/python/cpython/blob/f0c6fccd08904787a39269367f09f263d496114c/Lib/pickle.py#L1854-L1867
slotstate = None
if isinstance(state, tuple) and len(state) == 2:
state, slotstate = state
if state:
inst.__dict__.update(state)
if slotstate:
for k, v in slotstate.items():
setattr(inst, k, v)
else:
raise UnpicklingError(
"Can only build Tensor, Parameter, OrderedDict or types allowlisted "
f"via `add_safe_globals`, but got {type(inst)}"
)
# Stack manipulation
elif key[0] == APPEND[0]:
item = self.stack.pop()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise UnpicklingError(
f"Can only append to lists, but got {type(list_obj)}"
)
list_obj.append(item)
elif key[0] == APPENDS[0]:
items = self.pop_mark()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise UnpicklingError(
f"Can only extend lists, but got {type(list_obj)}"
)
list_obj.extend(items)
elif key[0] == SETITEM[0]:
(v, k) = (self.stack.pop(), self.stack.pop())
self.stack[-1][k] = v
elif key[0] == SETITEMS[0]:
items = self.pop_mark()
for i in range(0, len(items), 2):
self.stack[-1][items[i]] = items[i + 1]
elif key[0] == MARK[0]:
self.metastack.append(self.stack)
self.stack = []
self.append = self.stack.append
elif key[0] == TUPLE[0]:
items = self.pop_mark()
self.append(tuple(items))
elif key[0] == TUPLE1[0]:
self.stack[-1] = (self.stack[-1],)
elif key[0] == TUPLE2[0]:
self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
elif key[0] == TUPLE3[0]:
self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
# Basic types construction
elif key[0] == NONE[0]:
self.append(None)
elif key[0] == NEWFALSE[0]:
self.append(False)
elif key[0] == NEWTRUE[0]:
self.append(True)
elif key[0] == EMPTY_TUPLE[0]:
self.append(())
elif key[0] == EMPTY_LIST[0]:
self.append([])
elif key[0] == EMPTY_DICT[0]:
self.append({})
elif key[0] == EMPTY_SET[0]:
self.append(set())
elif key[0] == BININT[0]:
self.append(unpack("<i", read(4))[0])
elif key[0] == BININT1[0]:
self.append(self.read(1)[0])
elif key[0] == BININT2[0]:
self.append(unpack("<H", read(2))[0])
elif key[0] == BINFLOAT[0]:
self.append(unpack(">d", self.read(8))[0])
elif key[0] == BINUNICODE[0]:
strlen = unpack("<I", read(4))[0]
if strlen > maxsize:
raise UnpicklingError("String is too long")
strval = str(read(strlen), "utf-8", "surrogatepass")
self.append(strval)
elif key[0] == SHORT_BINSTRING[0]:
strlen = read(1)[0]
strdata = read(strlen)
if self.encoding != "bytes":
strdata = strdata.decode(self.encoding, "strict")
self.append(strdata)
elif key[0] == BINPERSID[0]:
pid = self.stack.pop()
# Only allow persistent load of storage
if type(pid) is not tuple and not type(pid) is not int:
raise UnpicklingError(
f"persistent_load id must be tuple or int, but got {type(pid)}"
)
if (
type(pid) is tuple
and len(pid) > 0
and torch.serialization._maybe_decode_ascii(pid[0]) != "storage"
):
raise UnpicklingError(
f"Only persistent_load of storage is allowed, but got {pid[0]}"
)
self.append(self.persistent_load(pid))
elif key[0] in [BINGET[0], LONG_BINGET[0]]:
idx = (read(1) if key[0] == BINGET[0] else unpack("<I", read(4)))[0]
self.append(self.memo[idx])
elif key[0] in [BINPUT[0], LONG_BINPUT[0]]:
i = (read(1) if key[0] == BINPUT[0] else unpack("<I", read(4)))[0]
if i < 0:
raise ValueError("negative argument")
self.memo[i] = self.stack[-1]
elif key[0] == LONG1[0]:
n = read(1)[0]
data = read(n)
self.append(decode_long(data))
# First and last deserializer ops
elif key[0] == PROTO[0]:
self.proto = read(1)[0]
if self.proto != 2:
warnings.warn(
f"Detected pickle protocol {self.proto} in the checkpoint, which was "
"not the default pickle protocol used by `torch.load` (2). The weights_only "
"Unpickler might not support all instructions implemented by this protocol, "
"please file an issue for adding support if you encounter this."
)
elif key[0] == STOP[0]:
rc = self.stack.pop()
return rc
else:
raise UnpicklingError(f"Unsupported operand {key[0]}")
# Return a list of items pushed in the stack after last MARK instruction.
def pop_mark(self):
items = self.stack
self.stack = self.metastack.pop()
self.append = self.stack.append
return items
def persistent_load(self, pid):
raise UnpicklingError("unsupported persistent id encountered")
def load(file, *, encoding: str = "ASCII"):
return Unpickler(file, encoding=encoding).load()
|