1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
# mypy: allow-untyped-defs
import torch
from torch.nn import (
BatchNorm1d,
BatchNorm2d,
BatchNorm3d,
Conv1d,
Conv2d,
Conv3d,
Linear,
ReLU,
)
from torch.nn.utils.parametrize import type_before_parametrizations
__all__ = [
"ConvReLU1d",
"ConvReLU2d",
"ConvReLU3d",
"LinearReLU",
"ConvBn1d",
"ConvBn2d",
"ConvBnReLU1d",
"ConvBnReLU2d",
"ConvBn3d",
"ConvBnReLU3d",
"BNReLU2d",
"BNReLU3d",
"LinearBn1d",
"LinearLeakyReLU",
"LinearTanh",
"ConvAdd2d",
"ConvAddReLU2d",
]
# Used for identifying intrinsic modules used in quantization
class _FusedModule(torch.nn.Sequential):
pass
class ConvReLU1d(_FusedModule):
r"""This is a sequential container which calls the Conv1d and ReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, relu):
assert (
type_before_parametrizations(conv) == Conv1d
and type_before_parametrizations(relu) == ReLU
), f"Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(relu)}"
super().__init__(conv, relu)
class ConvReLU2d(_FusedModule):
r"""This is a sequential container which calls the Conv2d and ReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, relu):
assert (
type_before_parametrizations(conv) == Conv2d
and type_before_parametrizations(relu) == ReLU
), f"Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(relu)}"
super().__init__(conv, relu)
class ConvReLU3d(_FusedModule):
r"""This is a sequential container which calls the Conv3d and ReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, relu):
assert (
type_before_parametrizations(conv) == Conv3d
and type_before_parametrizations(relu) == ReLU
), f"Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(relu)}"
super().__init__(conv, relu)
class LinearReLU(_FusedModule):
r"""This is a sequential container which calls the Linear and ReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, linear, relu):
assert (
type_before_parametrizations(linear) == Linear
and type_before_parametrizations(relu) == ReLU
), f"Incorrect types for input modules{type_before_parametrizations(linear)}{type_before_parametrizations(relu)}"
super().__init__(linear, relu)
class ConvBn1d(_FusedModule):
r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, bn):
assert (
type_before_parametrizations(conv) == Conv1d
and type_before_parametrizations(bn) == BatchNorm1d
), f"Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(bn)}"
super().__init__(conv, bn)
class ConvBn2d(_FusedModule):
r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, bn):
assert (
type_before_parametrizations(conv) == Conv2d
and type_before_parametrizations(bn) == BatchNorm2d
), f"Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(bn)}"
super().__init__(conv, bn)
class ConvBnReLU1d(_FusedModule):
r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, bn, relu):
assert (
type_before_parametrizations(conv) == Conv1d
and type_before_parametrizations(bn) == BatchNorm1d
and type_before_parametrizations(relu) == ReLU
), f"Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(bn)}{type_before_parametrizations(relu)}" # noqa: B950
super().__init__(conv, bn, relu)
class ConvBnReLU2d(_FusedModule):
r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, bn, relu):
assert (
type_before_parametrizations(conv) == Conv2d
and type_before_parametrizations(bn) == BatchNorm2d
and type_before_parametrizations(relu) == ReLU
), f"Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(bn)}{type_before_parametrizations(relu)}" # noqa: B950
super().__init__(conv, bn, relu)
class ConvBn3d(_FusedModule):
r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, bn):
assert (
type_before_parametrizations(conv) == Conv3d
and type_before_parametrizations(bn) == BatchNorm3d
), f"Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(bn)}"
super().__init__(conv, bn)
class ConvBnReLU3d(_FusedModule):
r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, bn, relu):
assert (
type_before_parametrizations(conv) == Conv3d
and type_before_parametrizations(bn) == BatchNorm3d
and type_before_parametrizations(relu) == ReLU
), f"Incorrect types for input modules{type_before_parametrizations(conv)}{type_before_parametrizations(bn)}{type_before_parametrizations(relu)}" # noqa: B950
super().__init__(conv, bn, relu)
class BNReLU2d(_FusedModule):
r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, batch_norm, relu):
assert (
type_before_parametrizations(batch_norm) == BatchNorm2d
and type_before_parametrizations(relu) == ReLU
), f"Incorrect types for input modules{type_before_parametrizations(batch_norm)}{type_before_parametrizations(relu)}"
super().__init__(batch_norm, relu)
class BNReLU3d(_FusedModule):
r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, batch_norm, relu):
assert (
type_before_parametrizations(batch_norm) == BatchNorm3d
and type_before_parametrizations(relu) == ReLU
), f"Incorrect types for input modules{type_before_parametrizations(batch_norm)}{type_before_parametrizations(relu)}"
super().__init__(batch_norm, relu)
class LinearBn1d(_FusedModule):
r"""This is a sequential container which calls the Linear and BatchNorm1d modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, linear, bn):
assert (
type_before_parametrizations(linear) == Linear
and type_before_parametrizations(bn) == BatchNorm1d
), f"Incorrect types for input modules{type_before_parametrizations(linear)}{type_before_parametrizations(bn)}"
super().__init__(linear, bn)
class LinearLeakyReLU(_FusedModule):
r"""This is a sequential container which calls the Linear and LeakyReLU modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, linear, leaky_relu):
assert (
type(linear) == Linear and type(leaky_relu) == torch.nn.LeakyReLU
), f"Incorrect types for input modules{type(linear)}{type(leaky_relu)}"
super().__init__(linear, leaky_relu)
class LinearTanh(_FusedModule):
r"""This is a sequential container which calls the Linear and Tanh modules.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, linear, tanh):
assert (
type(linear) == Linear and type(tanh) == torch.nn.Tanh
), f"Incorrect types for input modules{type(linear)}{type(tanh)}"
super().__init__(linear, tanh)
class ConvAdd2d(_FusedModule):
r"""This is a sequential container which calls the Conv2d modules with extra Add.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, add):
super().__init__(conv)
self.add = add
def forward(self, x1, x2): # type: ignore[override]
return self.add(self[0](x1), x2)
class ConvAddReLU2d(_FusedModule):
r"""This is a sequential container which calls the Conv2d, add, Relu.
During quantization this will be replaced with the corresponding fused module."""
def __init__(self, conv, add, relu):
super().__init__(conv)
self.add = add
self.relu = relu
def forward(self, x1, x2): # type: ignore[override]
return self.relu(self.add(self[0](x1), x2))
|