File: conv_add.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (145 lines) | stat: -rw-r--r-- 4,380 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# mypy: allow-untyped-defs
import torch
import torch.ao.nn.intrinsic
import torch.ao.nn.intrinsic.qat
import torch.ao.nn.quantized as nnq
import torch.nn.functional as F


_reverse_repeat_padding = nnq.modules.conv._reverse_repeat_padding


class ConvAdd2d(nnq.Conv2d):
    r"""
    A ConvAdd2d module is a fused module of Conv2d and Add

    We adopt the same interface as :class:`torch.ao.nn.quantized.Conv2d`.

    Attributes:
        Same as torch.ao.nn.quantized.Conv2d

    """
    _FLOAT_MODULE = torch.ao.nn.intrinsic.ConvAdd2d  # type: ignore[assignment]

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias=True,
        padding_mode="zeros",
        device=None,
        dtype=None,
    ):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
            padding_mode=padding_mode,
            device=device,
            dtype=dtype,
        )

    def forward(self, input, extra_input):  # type: ignore[override]
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 4:
            raise ValueError("Input shape must be `(N, C, H, W)`!")
        if self.padding_mode != "zeros":
            _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
            input = F.pad(
                input, _reversed_padding_repeated_twice, mode=self.padding_mode
            )
        return torch.ops.quantized.conv2d_add(
            input, extra_input, self._packed_params, self.scale, self.zero_point
        )

    def _get_name(self):
        return "QuantizedConvAdd2d"

    @classmethod
    def from_float(cls, mod, use_precomputed_fake_quant=False):
        return super().from_float(
            mod, use_precomputed_fake_quant=use_precomputed_fake_quant
        )

    @classmethod
    def from_reference(cls, ref_qconv, output_scale, output_zero_point):
        return super().from_reference(ref_qconv[0], output_scale, output_zero_point)


class ConvAddReLU2d(nnq.Conv2d):
    r"""
    A ConvAddReLU2d module is a fused module of Conv2d, Add and Relu

    We adopt the same interface as :class:`torch.ao.nn.quantized.Conv2d`.

    Attributes:
        Same as torch.ao.nn.quantized.Conv2d

    """
    _FLOAT_MODULE = torch.ao.nn.intrinsic.ConvAddReLU2d  # type: ignore[assignment]

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias=True,
        padding_mode="zeros",
        device=None,
        dtype=None,
    ):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
            padding_mode=padding_mode,
            device=device,
            dtype=dtype,
        )

    def forward(self, input, extra_input):  # type: ignore[override]
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 4:
            raise ValueError("Input shape must be `(N, C, H, W)`!")
        if self.padding_mode != "zeros":
            _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
            input = F.pad(
                input, _reversed_padding_repeated_twice, mode=self.padding_mode
            )
        return torch.ops.quantized.conv2d_add_relu(
            input, extra_input, self._packed_params, self.scale, self.zero_point
        )

    def _get_name(self):
        return "QuantizedConvAddReLU2d"

    @classmethod
    def from_float(cls, mod, use_precomputed_fake_quant=False):
        return super().from_float(
            mod, use_precomputed_fake_quant=use_precomputed_fake_quant
        )

    @classmethod
    def from_reference(cls, ref_qconv, output_scale, output_zero_point):
        return super().from_reference(ref_qconv[0], output_scale, output_zero_point)