1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
# mypy: allow-untyped-defs
import torch
import torch.ao.nn.intrinsic
import torch.ao.nn.intrinsic.qat
import torch.ao.nn.quantized as nnq
import torch.nn.functional as F
from torch.nn.utils import fuse_conv_bn_weights
__all__ = [
"ConvReLU1d",
"ConvReLU2d",
"ConvReLU3d",
]
_reverse_repeat_padding = nnq.modules.conv._reverse_repeat_padding
# TODO: factor out the common parts to ConvNd
class ConvReLU1d(nnq.Conv1d):
r"""
A ConvReLU1d module is a fused module of Conv1d and ReLU
We adopt the same interface as :class:`torch.ao.nn.quantized.Conv1d`.
Attributes:
Same as torch.ao.nn.quantized.Conv1d
"""
_FLOAT_MODULE = torch.ao.nn.intrinsic.ConvReLU1d # type: ignore[assignment]
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode="zeros",
device=None,
dtype=None,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=padding_mode,
device=device,
dtype=dtype,
)
def forward(self, input):
# Temporarily using len(shape) instead of ndim due to JIT issue
# https://github.com/pytorch/pytorch/issues/23890
if len(input.shape) != 3:
raise ValueError("Input shape must be `(N, C, L)`!")
if self.padding_mode != "zeros":
# Padding in Conv1d is stored as (p, p), need to get (p,)
_reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding[:1])
input = F.pad(
input, _reversed_padding_repeated_twice, mode=self.padding_mode
)
return torch.ops.quantized.conv1d_relu(
input, self._packed_params, self.scale, self.zero_point
)
def _get_name(self):
return "QuantizedConvReLU1d"
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
if type(mod) == torch.ao.nn.intrinsic.qat.ConvBnReLU1d:
assert mod.bn.running_var is not None and mod.bn.running_mean is not None
mod.weight, mod.bias = fuse_conv_bn_weights(
mod.weight,
mod.bias,
mod.bn.running_mean,
mod.bn.running_var,
mod.bn.eps,
mod.bn.weight,
mod.bn.bias,
)
return super().from_float(mod, use_precomputed_fake_quant)
@classmethod
def from_reference(cls, ref_qconv, output_scale, output_zero_point):
assert (
type(ref_qconv) != torch.ao.nn.intrinsic.ConvBnReLU1d
), "BatchNorm1d should be fused into Conv1d before converting to reference module"
return super().from_reference(ref_qconv[0], output_scale, output_zero_point)
class ConvReLU2d(nnq.Conv2d):
r"""
A ConvReLU2d module is a fused module of Conv2d and ReLU
We adopt the same interface as :class:`torch.ao.nn.quantized.Conv2d`.
Attributes:
Same as torch.ao.nn.quantized.Conv2d
"""
_FLOAT_MODULE = torch.ao.nn.intrinsic.ConvReLU2d # type: ignore[assignment]
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode="zeros",
device=None,
dtype=None,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=padding_mode,
device=device,
dtype=dtype,
)
def forward(self, input):
# Temporarily using len(shape) instead of ndim due to JIT issue
# https://github.com/pytorch/pytorch/issues/23890
if len(input.shape) != 4:
raise ValueError("Input shape must be `(N, C, H, W)`!")
if self.padding_mode != "zeros":
_reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
input = F.pad(
input, _reversed_padding_repeated_twice, mode=self.padding_mode
)
return torch.ops.quantized.conv2d_relu(
input, self._packed_params, self.scale, self.zero_point
)
def _get_name(self):
return "QuantizedConvReLU2d"
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
if type(mod) == torch.ao.nn.intrinsic.qat.ConvBnReLU2d:
assert mod.bn.running_var is not None and mod.bn.running_mean is not None
mod.weight, mod.bias = fuse_conv_bn_weights(
mod.weight,
mod.bias,
mod.bn.running_mean,
mod.bn.running_var,
mod.bn.eps,
mod.bn.weight,
mod.bn.bias,
)
return super().from_float(
mod, use_precomputed_fake_quant=use_precomputed_fake_quant
)
@classmethod
def from_reference(cls, ref_qconv, output_scale, output_zero_point):
assert (
type(ref_qconv) != torch.ao.nn.intrinsic.ConvBnReLU2d
), "BatchNorm2d should be fused into Conv2d before converting to reference module"
return super().from_reference(ref_qconv[0], output_scale, output_zero_point)
class ConvReLU3d(nnq.Conv3d):
r"""
A ConvReLU3d module is a fused module of Conv3d and ReLU
We adopt the same interface as :class:`torch.ao.nn.quantized.Conv3d`.
Attributes: Same as torch.ao.nn.quantized.Conv3d
"""
_FLOAT_MODULE = torch.ao.nn.intrinsic.ConvReLU3d # type: ignore[assignment]
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode="zeros",
device=None,
dtype=None,
):
assert padding_mode != "reflect", "Conv3d does not support reflection padding"
super().__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=padding_mode,
device=device,
dtype=dtype,
)
def forward(self, input):
# Temporarily using len(shape) instead of ndim due to JIT issue
# https://github.com/pytorch/pytorch/issues/23890
if len(input.shape) != 5:
raise ValueError("Input shape must be `(N, C, D, H, W)`!")
if self.padding_mode != "zeros":
_reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
input = F.pad(
input, _reversed_padding_repeated_twice, mode=self.padding_mode
)
return torch.ops.quantized.conv3d_relu(
input, self._packed_params, self.scale, self.zero_point
)
def _get_name(self):
return "QuantizedConvReLU3d"
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
if type(mod) == torch.ao.nn.intrinsic.qat.ConvBnReLU3d:
assert mod.bn.running_var is not None and mod.bn.running_mean is not None
mod.weight, mod.bias = fuse_conv_bn_weights(
mod.weight,
mod.bias,
mod.bn.running_mean,
mod.bn.running_var,
mod.bn.eps,
mod.bn.weight,
mod.bn.bias,
)
return super().from_float(
mod, use_precomputed_fake_quant=use_precomputed_fake_quant
)
@classmethod
def from_reference(cls, ref_qconv, output_scale, output_zero_point):
assert (
type(ref_qconv) != torch.ao.nn.intrinsic.ConvBnReLU3d
), "BatchNorm3d should be fused into Conv3d before converting to reference module"
return super().from_reference(ref_qconv[0], output_scale, output_zero_point)
|