1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
# mypy: allow-untyped-defs
import torch
import torch.ao.nn.intrinsic as nni
import torch.ao.nn.quantized as nnq
from torch.ao.nn.quantized.modules.utils import _quantize_weight
__all__ = [
"LinearReLU",
"LinearLeakyReLU",
"LinearTanh",
]
class LinearReLU(nnq.Linear):
r"""
A LinearReLU module fused from Linear and ReLU modules
We adopt the same interface as :class:`torch.ao.nn.quantized.Linear`.
Attributes:
Same as torch.ao.nn.quantized.Linear
Examples::
>>> # xdoctest: +SKIP
>>> m = nn.intrinsic.LinearReLU(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
_FLOAT_MODULE = nni.LinearReLU # type: ignore[assignment]
def __init__(self, in_features, out_features, bias=True, dtype=torch.qint8):
super().__init__(in_features, out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.ops.quantized.linear_relu(
x, self._packed_params._packed_params, self.scale, self.zero_point
)
def _get_name(self):
return "QuantizedLinearReLU"
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
return super().from_float(mod, use_precomputed_fake_quant)
@classmethod
def from_reference(cls, ref_linear_relu, output_scale, output_zero_point):
return super().from_reference(
ref_linear_relu[0], output_scale, output_zero_point
)
class LinearLeakyReLU(nnq.Linear):
r"""
For onednn backend only
A LinearLeakyReLU module fused from Linear and LeakyReLU modules
We adopt the same interface as :class:`torch.ao.nn.quantized.Linear`.
Attributes:
Same as torch.ao.nn.quantized.Linear
+ negative_slope
Examples::
>>> # xdoctest: +SKIP
>>> m = nn.intrinsic.LinearLeakyReLU(20, 30, 0.01)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
_FLOAT_MODULE = nni.LinearLeakyReLU # type: ignore[assignment]
def __init__(
self, in_features, out_features, negative_slope, bias=True, dtype=torch.qint8
):
super().__init__(in_features, out_features, bias, dtype)
self.negative_slope = negative_slope
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.ops.quantized.linear_leaky_relu(
x,
self._packed_params._packed_params,
self.scale,
self.zero_point,
self.negative_slope,
)
def _get_name(self):
return "QuantizedLinearLeakyReLU"
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
assert (
type(mod) == nni.LinearLeakyReLU
), "Input float module should be LinearLeakyReLU"
assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined"
activation_post_process = mod.activation_post_process
leaky_relu = mod[1]
mod = mod[0]
weight_post_process = mod.qconfig.weight()
weight_post_process(mod.weight)
dtype = weight_post_process.dtype
act_scale, act_zp = activation_post_process.calculate_qparams() # type: ignore[union-attr,operator]
assert dtype == torch.qint8, "Weight observer must have dtype torch.qint8"
qweight = _quantize_weight(mod.weight.float(), weight_post_process)
qlinear_leaky_relu = cls(
mod.in_features, mod.out_features, leaky_relu.negative_slope, dtype=dtype
)
qlinear_leaky_relu.set_weight_bias(qweight, mod.bias)
qlinear_leaky_relu.scale = float(act_scale)
qlinear_leaky_relu.zero_point = int(act_zp)
return qlinear_leaky_relu
@classmethod
def from_reference(cls, ref_mod, output_scale, output_zero_point):
linear = ref_mod[0]
leaky_relu = ref_mod[1]
qlinear_leaky_relu = cls(
linear.in_features, linear.out_features, leaky_relu.negative_slope
)
qweight = linear.get_quantized_weight()
qlinear_leaky_relu.set_weight_bias(qweight, linear.bias)
qlinear_leaky_relu.scale = float(output_scale)
qlinear_leaky_relu.zero_point = int(output_zero_point)
return qlinear_leaky_relu
class LinearTanh(nnq.Linear):
r"""
A LinearTanh module fused from Linear and Tanh modules
We adopt the same interface as :class:`torch.ao.nn.quantized.Linear`.
Attributes:
Same as torch.ao.nn.quantized.Linear
Examples::
>>> # xdoctest: +SKIP
>>> m = nn.intrinsic.LinearTanh(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
_FLOAT_MODULE = nni.LinearTanh # type: ignore[assignment]
def __init__(self, in_features, out_features, bias=True, dtype=torch.qint8):
super().__init__(in_features, out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.ops.quantized.linear_tanh(
x, self._packed_params._packed_params, self.scale, self.zero_point
)
def _get_name(self):
return "QuantizedLinearTanh"
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
assert type(mod) == nni.LinearTanh, "Input float module should be LinearTanh"
assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined"
activation_post_process = mod.activation_post_process
mod = mod[0]
weight_post_process = mod.qconfig.weight()
weight_post_process(mod.weight)
dtype = weight_post_process.dtype
act_scale, act_zp = activation_post_process.calculate_qparams() # type: ignore[union-attr,operator]
assert dtype == torch.qint8, "Weight observer must have dtype torch.qint8"
qweight = _quantize_weight(mod.weight.float(), weight_post_process)
qlinear_tanh = cls(mod.in_features, mod.out_features, dtype=dtype)
qlinear_tanh.set_weight_bias(qweight, mod.bias)
qlinear_tanh.scale = float(act_scale)
qlinear_tanh.zero_point = int(act_zp)
return qlinear_tanh
@classmethod
def from_reference(cls, ref_mod, output_scale, output_zero_point):
linear = ref_mod[0]
qlinear_tanh = cls(linear.in_features, linear.out_features)
qweight = linear.get_quantized_weight()
qlinear_tanh.set_weight_bias(qweight, linear.bias)
qlinear_tanh.scale = float(output_scale)
qlinear_tanh.zero_point = int(output_zero_point)
return qlinear_tanh
|