File: linear.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (35 lines) | stat: -rw-r--r-- 1,008 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# mypy: allow-untyped-defs
import torch


__all__ = ["Linear"]


class Linear(torch.ao.nn.qat.Linear):
    r"""
    A linear module attached with FakeQuantize modules for weight,
    used for dynamic quantization aware training.

    We adopt the same interface as `torch.nn.Linear`, please see
    https://pytorch.org/docs/stable/nn.html#torch.nn.Linear
    for documentation.

    Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to
    default.
    """

    def __init__(
        self,
        in_features,
        out_features,
        bias=True,
        qconfig=None,
        device=None,
        dtype=None,
    ) -> None:
        super().__init__(in_features, out_features, bias, qconfig, device, dtype)
        if not torch.ao.quantization.qconfig._activation_is_memoryless(qconfig):
            raise ValueError(
                "Dynamic QAT requires a memoryless observer."
                + "This means a MovingAverage observer with averaging constant equal to 1"
            )