1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
"""
We will recreate all the RNN modules as we require the modules to be decomposed
into its building blocks to be able to observe.
"""
# mypy: allow-untyped-defs
import numbers
import warnings
from typing import Optional, Tuple
import torch
from torch import Tensor
__all__ = ["LSTMCell", "LSTM"]
class LSTMCell(torch.nn.Module):
r"""A quantizable long short-term memory (LSTM) cell.
For the description and the argument types, please, refer to :class:`~torch.nn.LSTMCell`
`split_gates`: specify True to compute the input/forget/cell/output gates separately
to avoid an intermediate tensor which is subsequently chunk'd. This optimization can
be beneficial for on-device inference latency. This flag is cascaded down from the
parent classes.
Examples::
>>> import torch.ao.nn.quantizable as nnqa
>>> rnn = nnqa.LSTMCell(10, 20)
>>> input = torch.randn(6, 10)
>>> hx = torch.randn(3, 20)
>>> cx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
... hx, cx = rnn(input[i], (hx, cx))
... output.append(hx)
"""
_FLOAT_MODULE = torch.nn.LSTMCell
__constants__ = ["split_gates"] # for jit.script
def __init__(
self,
input_dim: int,
hidden_dim: int,
bias: bool = True,
device=None,
dtype=None,
*,
split_gates=False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.input_size = input_dim
self.hidden_size = hidden_dim
self.bias = bias
self.split_gates = split_gates
if not split_gates:
self.igates: torch.nn.Module = torch.nn.Linear(
input_dim, 4 * hidden_dim, bias=bias, **factory_kwargs
)
self.hgates: torch.nn.Module = torch.nn.Linear(
hidden_dim, 4 * hidden_dim, bias=bias, **factory_kwargs
)
self.gates: torch.nn.Module = torch.ao.nn.quantized.FloatFunctional()
else:
# keep separate Linear layers for each gate
self.igates = torch.nn.ModuleDict()
self.hgates = torch.nn.ModuleDict()
self.gates = torch.nn.ModuleDict()
for g in ["input", "forget", "cell", "output"]:
# pyre-fixme[29]: `Union[torch._tensor.Tensor, torch.nn.modules.module.Module]`
self.igates[g] = torch.nn.Linear(
input_dim, hidden_dim, bias=bias, **factory_kwargs
)
# pyre-fixme[29]: `Union[torch._tensor.Tensor, torch.nn.modules.module.Module]`
self.hgates[g] = torch.nn.Linear(
hidden_dim, hidden_dim, bias=bias, **factory_kwargs
)
# pyre-fixme[29]: `Union[torch._tensor.Tensor, torch.nn.modules.module.Module]`
self.gates[g] = torch.ao.nn.quantized.FloatFunctional()
self.input_gate = torch.nn.Sigmoid()
self.forget_gate = torch.nn.Sigmoid()
self.cell_gate = torch.nn.Tanh()
self.output_gate = torch.nn.Sigmoid()
self.fgate_cx = torch.ao.nn.quantized.FloatFunctional()
self.igate_cgate = torch.ao.nn.quantized.FloatFunctional()
self.fgate_cx_igate_cgate = torch.ao.nn.quantized.FloatFunctional()
self.ogate_cy = torch.ao.nn.quantized.FloatFunctional()
self.initial_hidden_state_qparams: Tuple[float, int] = (1.0, 0)
self.initial_cell_state_qparams: Tuple[float, int] = (1.0, 0)
self.hidden_state_dtype: torch.dtype = torch.quint8
self.cell_state_dtype: torch.dtype = torch.quint8
def forward(
self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None
) -> Tuple[Tensor, Tensor]:
if hidden is None or hidden[0] is None or hidden[1] is None:
hidden = self.initialize_hidden(x.shape[0], x.is_quantized)
hx, cx = hidden
if not self.split_gates:
igates = self.igates(x)
hgates = self.hgates(hx)
gates = self.gates.add(igates, hgates) # type: ignore[operator]
input_gate, forget_gate, cell_gate, out_gate = gates.chunk(4, 1)
input_gate = self.input_gate(input_gate)
forget_gate = self.forget_gate(forget_gate)
cell_gate = self.cell_gate(cell_gate)
out_gate = self.output_gate(out_gate)
else:
# apply each input + hidden projection and add together
gate = {}
for (key, gates), igates, hgates in zip(
self.gates.items(), # type: ignore[operator]
self.igates.values(), # type: ignore[operator]
self.hgates.values(), # type: ignore[operator]
):
gate[key] = gates.add(igates(x), hgates(hx))
input_gate = self.input_gate(gate["input"])
forget_gate = self.forget_gate(gate["forget"])
cell_gate = self.cell_gate(gate["cell"])
out_gate = self.output_gate(gate["output"])
fgate_cx = self.fgate_cx.mul(forget_gate, cx)
igate_cgate = self.igate_cgate.mul(input_gate, cell_gate)
fgate_cx_igate_cgate = self.fgate_cx_igate_cgate.add(fgate_cx, igate_cgate)
cy = fgate_cx_igate_cgate
# TODO: make this tanh a member of the module so its qparams can be configured
tanh_cy = torch.tanh(cy)
hy = self.ogate_cy.mul(out_gate, tanh_cy)
return hy, cy
def initialize_hidden(
self, batch_size: int, is_quantized: bool = False
) -> Tuple[Tensor, Tensor]:
h, c = torch.zeros((batch_size, self.hidden_size)), torch.zeros(
(batch_size, self.hidden_size)
)
if is_quantized:
(h_scale, h_zp) = self.initial_hidden_state_qparams
(c_scale, c_zp) = self.initial_cell_state_qparams
h = torch.quantize_per_tensor(
h, scale=h_scale, zero_point=h_zp, dtype=self.hidden_state_dtype
)
c = torch.quantize_per_tensor(
c, scale=c_scale, zero_point=c_zp, dtype=self.cell_state_dtype
)
return h, c
def _get_name(self):
return "QuantizableLSTMCell"
@classmethod
def from_params(cls, wi, wh, bi=None, bh=None, split_gates=False):
"""Uses the weights and biases to create a new LSTM cell.
Args:
wi, wh: Weights for the input and hidden layers
bi, bh: Biases for the input and hidden layers
"""
assert (bi is None) == (bh is None) # Either both None or both have values
input_size = wi.shape[1]
hidden_size = wh.shape[1]
cell = cls(
input_dim=input_size,
hidden_dim=hidden_size,
bias=(bi is not None),
split_gates=split_gates,
)
if not split_gates:
cell.igates.weight = torch.nn.Parameter(wi)
if bi is not None:
cell.igates.bias = torch.nn.Parameter(bi)
cell.hgates.weight = torch.nn.Parameter(wh)
if bh is not None:
cell.hgates.bias = torch.nn.Parameter(bh)
else:
# split weight/bias
for w, b, gates in zip([wi, wh], [bi, bh], [cell.igates, cell.hgates]):
for w_chunk, gate in zip(w.chunk(4, dim=0), gates.values()): # type: ignore[operator]
gate.weight = torch.nn.Parameter(w_chunk)
if b is not None:
for b_chunk, gate in zip(b.chunk(4, dim=0), gates.values()): # type: ignore[operator]
gate.bias = torch.nn.Parameter(b_chunk)
return cell
@classmethod
def from_float(cls, other, use_precomputed_fake_quant=False, split_gates=False):
assert type(other) == cls._FLOAT_MODULE
assert hasattr(other, "qconfig"), "The float module must have 'qconfig'"
observed = cls.from_params(
other.weight_ih,
other.weight_hh,
other.bias_ih,
other.bias_hh,
split_gates=split_gates,
)
observed.qconfig = other.qconfig
observed.igates.qconfig = other.qconfig
observed.hgates.qconfig = other.qconfig
if split_gates:
# also apply qconfig directly to Linear modules
for g in observed.igates.values():
g.qconfig = other.qconfig
for g in observed.hgates.values():
g.qconfig = other.qconfig
return observed
class _LSTMSingleLayer(torch.nn.Module):
r"""A single one-directional LSTM layer.
The difference between a layer and a cell is that the layer can process a
sequence, while the cell only expects an instantaneous value.
"""
def __init__(
self,
input_dim: int,
hidden_dim: int,
bias: bool = True,
device=None,
dtype=None,
*,
split_gates=False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.cell = LSTMCell(
input_dim, hidden_dim, bias=bias, split_gates=split_gates, **factory_kwargs
)
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
result = []
seq_len = x.shape[0]
for i in range(seq_len):
hidden = self.cell(x[i], hidden)
result.append(hidden[0]) # type: ignore[index]
result_tensor = torch.stack(result, 0)
return result_tensor, hidden
@classmethod
def from_params(cls, *args, **kwargs):
cell = LSTMCell.from_params(*args, **kwargs)
layer = cls(
cell.input_size, cell.hidden_size, cell.bias, split_gates=cell.split_gates
)
layer.cell = cell
return layer
class _LSTMLayer(torch.nn.Module):
r"""A single bi-directional LSTM layer."""
def __init__(
self,
input_dim: int,
hidden_dim: int,
bias: bool = True,
batch_first: bool = False,
bidirectional: bool = False,
device=None,
dtype=None,
*,
split_gates=False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.batch_first = batch_first
self.bidirectional = bidirectional
self.layer_fw = _LSTMSingleLayer(
input_dim, hidden_dim, bias=bias, split_gates=split_gates, **factory_kwargs
)
if self.bidirectional:
self.layer_bw = _LSTMSingleLayer(
input_dim,
hidden_dim,
bias=bias,
split_gates=split_gates,
**factory_kwargs,
)
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
if self.batch_first:
x = x.transpose(0, 1)
if hidden is None:
hx_fw, cx_fw = (None, None)
else:
hx_fw, cx_fw = hidden
hidden_bw: Optional[Tuple[Tensor, Tensor]] = None
if self.bidirectional:
if hx_fw is None:
hx_bw = None
else:
hx_bw = hx_fw[1]
hx_fw = hx_fw[0]
if cx_fw is None:
cx_bw = None
else:
cx_bw = cx_fw[1]
cx_fw = cx_fw[0]
if hx_bw is not None and cx_bw is not None:
hidden_bw = hx_bw, cx_bw
if hx_fw is None and cx_fw is None:
hidden_fw = None
else:
hidden_fw = torch.jit._unwrap_optional(hx_fw), torch.jit._unwrap_optional(
cx_fw
)
result_fw, hidden_fw = self.layer_fw(x, hidden_fw)
if hasattr(self, "layer_bw") and self.bidirectional:
x_reversed = x.flip(0)
result_bw, hidden_bw = self.layer_bw(x_reversed, hidden_bw)
result_bw = result_bw.flip(0)
result = torch.cat([result_fw, result_bw], result_fw.dim() - 1)
if hidden_fw is None and hidden_bw is None:
h = None
c = None
elif hidden_fw is None:
(h, c) = torch.jit._unwrap_optional(hidden_bw)
elif hidden_bw is None:
(h, c) = torch.jit._unwrap_optional(hidden_fw)
else:
h = torch.stack([hidden_fw[0], hidden_bw[0]], 0) # type: ignore[list-item]
c = torch.stack([hidden_fw[1], hidden_bw[1]], 0) # type: ignore[list-item]
else:
result = result_fw
h, c = torch.jit._unwrap_optional(hidden_fw) # type: ignore[assignment]
if self.batch_first:
result.transpose_(0, 1)
return result, (h, c)
@classmethod
def from_float(cls, other, layer_idx=0, qconfig=None, **kwargs):
r"""
There is no FP equivalent of this class. This function is here just to
mimic the behavior of the `prepare` within the `torch.ao.quantization`
flow.
"""
assert hasattr(other, "qconfig") or (qconfig is not None)
input_size = kwargs.get("input_size", other.input_size)
hidden_size = kwargs.get("hidden_size", other.hidden_size)
bias = kwargs.get("bias", other.bias)
batch_first = kwargs.get("batch_first", other.batch_first)
bidirectional = kwargs.get("bidirectional", other.bidirectional)
split_gates = kwargs.get("split_gates", False)
layer = cls(
input_size,
hidden_size,
bias,
batch_first,
bidirectional,
split_gates=split_gates,
)
layer.qconfig = getattr(other, "qconfig", qconfig)
wi = getattr(other, f"weight_ih_l{layer_idx}")
wh = getattr(other, f"weight_hh_l{layer_idx}")
bi = getattr(other, f"bias_ih_l{layer_idx}", None)
bh = getattr(other, f"bias_hh_l{layer_idx}", None)
layer.layer_fw = _LSTMSingleLayer.from_params(
wi, wh, bi, bh, split_gates=split_gates
)
if other.bidirectional:
wi = getattr(other, f"weight_ih_l{layer_idx}_reverse")
wh = getattr(other, f"weight_hh_l{layer_idx}_reverse")
bi = getattr(other, f"bias_ih_l{layer_idx}_reverse", None)
bh = getattr(other, f"bias_hh_l{layer_idx}_reverse", None)
layer.layer_bw = _LSTMSingleLayer.from_params(
wi, wh, bi, bh, split_gates=split_gates
)
return layer
class LSTM(torch.nn.Module):
r"""A quantizable long short-term memory (LSTM).
For the description and the argument types, please, refer to :class:`~torch.nn.LSTM`
Attributes:
layers : instances of the `_LSTMLayer`
.. note::
To access the weights and biases, you need to access them per layer.
See examples below.
Examples::
>>> import torch.ao.nn.quantizable as nnqa
>>> rnn = nnqa.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))
>>> # To get the weights:
>>> # xdoctest: +SKIP
>>> print(rnn.layers[0].weight_ih)
tensor([[...]])
>>> print(rnn.layers[0].weight_hh)
AssertionError: There is no reverse path in the non-bidirectional layer
"""
_FLOAT_MODULE = torch.nn.LSTM
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int = 1,
bias: bool = True,
batch_first: bool = False,
dropout: float = 0.0,
bidirectional: bool = False,
device=None,
dtype=None,
*,
split_gates: bool = False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = float(dropout)
self.bidirectional = bidirectional
self.training = False # Default to eval mode. If we want to train, we will explicitly set to training.
num_directions = 2 if bidirectional else 1
if (
not isinstance(dropout, numbers.Number)
or not 0 <= dropout <= 1
or isinstance(dropout, bool)
):
raise ValueError(
"dropout should be a number in range [0, 1] "
"representing the probability of an element being "
"zeroed"
)
if dropout > 0:
warnings.warn(
"dropout option for quantizable LSTM is ignored. "
"If you are training, please, use nn.LSTM version "
"followed by `prepare` step."
)
if num_layers == 1:
warnings.warn(
"dropout option adds dropout after all but last "
"recurrent layer, so non-zero dropout expects "
f"num_layers greater than 1, but got dropout={dropout} "
f"and num_layers={num_layers}"
)
layers = [
_LSTMLayer(
self.input_size,
self.hidden_size,
self.bias,
batch_first=False,
bidirectional=self.bidirectional,
split_gates=split_gates,
**factory_kwargs,
)
]
layers.extend(
_LSTMLayer(
self.hidden_size,
self.hidden_size,
self.bias,
batch_first=False,
bidirectional=self.bidirectional,
split_gates=split_gates,
**factory_kwargs,
)
for layer in range(1, num_layers)
)
self.layers = torch.nn.ModuleList(layers)
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
if self.batch_first:
x = x.transpose(0, 1)
max_batch_size = x.size(1)
num_directions = 2 if self.bidirectional else 1
if hidden is None:
zeros = torch.zeros(
num_directions,
max_batch_size,
self.hidden_size,
dtype=torch.float,
device=x.device,
)
zeros.squeeze_(0)
if x.is_quantized:
zeros = torch.quantize_per_tensor(
zeros, scale=1.0, zero_point=0, dtype=x.dtype
)
hxcx = [(zeros, zeros) for _ in range(self.num_layers)]
else:
hidden_non_opt = torch.jit._unwrap_optional(hidden)
if isinstance(hidden_non_opt[0], Tensor):
hx = hidden_non_opt[0].reshape(
self.num_layers, num_directions, max_batch_size, self.hidden_size
)
cx = hidden_non_opt[1].reshape(
self.num_layers, num_directions, max_batch_size, self.hidden_size
)
hxcx = [
(hx[idx].squeeze(0), cx[idx].squeeze(0))
for idx in range(self.num_layers)
]
else:
hxcx = hidden_non_opt
hx_list = []
cx_list = []
for idx, layer in enumerate(self.layers):
x, (h, c) = layer(x, hxcx[idx])
hx_list.append(torch.jit._unwrap_optional(h))
cx_list.append(torch.jit._unwrap_optional(c))
hx_tensor = torch.stack(hx_list)
cx_tensor = torch.stack(cx_list)
# We are creating another dimension for bidirectional case
# need to collapse it
hx_tensor = hx_tensor.reshape(-1, hx_tensor.shape[-2], hx_tensor.shape[-1])
cx_tensor = cx_tensor.reshape(-1, cx_tensor.shape[-2], cx_tensor.shape[-1])
if self.batch_first:
x = x.transpose(0, 1)
return x, (hx_tensor, cx_tensor)
def _get_name(self):
return "QuantizableLSTM"
@classmethod
def from_float(cls, other, qconfig=None, split_gates=False):
assert isinstance(other, cls._FLOAT_MODULE)
assert hasattr(other, "qconfig") or qconfig
observed = cls(
other.input_size,
other.hidden_size,
other.num_layers,
other.bias,
other.batch_first,
other.dropout,
other.bidirectional,
split_gates=split_gates,
)
observed.qconfig = getattr(other, "qconfig", qconfig)
for idx in range(other.num_layers):
observed.layers[idx] = _LSTMLayer.from_float(
other, idx, qconfig, batch_first=False, split_gates=split_gates
)
# Prepare the model
if other.training:
observed.train()
observed = torch.ao.quantization.prepare_qat(observed, inplace=True)
else:
observed.eval()
observed = torch.ao.quantization.prepare(observed, inplace=True)
return observed
@classmethod
def from_observed(cls, other):
# The whole flow is float -> observed -> quantized
# This class does float -> observed only
raise NotImplementedError(
"It looks like you are trying to convert a "
"non-quantizable LSTM module. Please, see "
"the examples on quantizable LSTMs."
)
|