1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
|
# mypy: allow-untyped-defs
from typing import Any, Dict, Optional, Tuple
import torch
import torch.nn as nn
from torch import _VF, Tensor
from torch.nn.utils.rnn import PackedSequence
from .utils import _quantize_and_dequantize_weight, _quantize_weight
__all__ = [
"RNNCellBase",
"RNNCell",
"LSTMCell",
"GRUCell",
"RNNBase",
"LSTM",
"GRU",
"get_quantized_weight",
]
def _apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor:
return tensor.index_select(dim, permutation)
def _get_weight_and_quantization_params(module, wn):
weight = getattr(module, wn)
params = [weight]
for param_name in [
wn + n for n in ["_qscheme", "_dtype", "_scale", "_zero_point", "_axis_int"]
]:
if hasattr(module, param_name):
param = getattr(module, param_name)
else:
param = None
params.append(param)
return params
def get_quantized_weight(module, wn):
if not hasattr(module, wn):
return None
params = _get_weight_and_quantization_params(module, wn)
weight = _quantize_weight(*params)
return weight
def _get_quantize_and_dequantized_weight(module, wn):
if not hasattr(module, wn):
return None
params = _get_weight_and_quantization_params(module, wn)
weight = _quantize_and_dequantize_weight(*params)
return weight
class RNNCellBase(nn.RNNCellBase):
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool,
num_chunks: int,
device=None,
dtype=None,
weight_qparams_dict=None,
) -> None:
super().__init__(
input_size, hidden_size, bias, num_chunks, device=device, dtype=dtype
)
# TODO(jerryzh168): maybe make this arg a required arg
if weight_qparams_dict is None:
weight_qparams = {
"qscheme": torch.per_tensor_affine,
"dtype": torch.quint8,
"scale": 1.0,
"zero_point": 0,
}
weight_qparams_dict = {
"weight_ih": weight_qparams,
"weight_hh": weight_qparams,
"is_decomposed": False,
}
assert (
len(weight_qparams_dict) == 3
), "Expected length for weight_qparams_dict to be 3 for QuantizedRNNCellBase(Reference)"
self._init_weight_qparams_dict(weight_qparams_dict, device)
def _init_weight_qparams_dict(self, weight_qparams_dict, device):
assert weight_qparams_dict is not None
self.is_decomposed = weight_qparams_dict["is_decomposed"]
for key, weight_qparams in weight_qparams_dict.items():
if key == "is_decomposed":
continue
# TODO: refactor the duplicated code to utils.py
weight_qscheme = weight_qparams["qscheme"]
weight_dtype = weight_qparams["dtype"]
setattr(self, key + "_qscheme", weight_qscheme)
setattr(self, key + "_dtype", weight_dtype)
assert weight_qscheme in [
None,
torch.per_tensor_affine,
torch.per_channel_affine,
], Exception(
f"qscheme: {weight_qscheme} is not support in {self._get_name()}"
)
if weight_qscheme is not None:
scale = weight_qparams["scale"]
scale_tensor = (
scale.detach().clone()
if isinstance(scale, torch.Tensor)
else torch.tensor(scale, dtype=torch.float, device=device)
)
self.register_buffer(key + "_scale", scale_tensor)
zp = weight_qparams["zero_point"]
zp_tensor = (
zp.detach().clone()
if isinstance(zp, torch.Tensor)
else torch.tensor(zp, dtype=torch.int, device=device)
)
self.register_buffer(key + "_zero_point", zp_tensor)
if weight_qscheme == torch.per_channel_affine:
axis = weight_qparams["axis"]
axis_tensor = (
axis.detach().clone()
if isinstance(axis, torch.Tensor)
else torch.tensor(axis, dtype=torch.int, device=device)
)
self.register_buffer(key + "_axis", axis_tensor)
else:
# added for TorchScriptability, not used
self.register_buffer(
key + "_axis", torch.tensor(0, dtype=torch.int, device=device)
)
setattr(self, key + "_axis_int", getattr(self, key + "_axis").item())
def _get_name(self):
return "QuantizedRNNCellBase(Reference)"
def get_quantized_weight_ih(self):
return get_quantized_weight(self, "weight_ih")
def get_quantized_weight_hh(self):
return get_quantized_weight(self, "weight_hh")
def get_weight_ih(self):
return _get_quantize_and_dequantized_weight(self, "weight_ih")
def get_weight_hh(self):
return _get_quantize_and_dequantized_weight(self, "weight_hh")
class RNNCell(RNNCellBase):
"""
We'll store weight_qparams for all the weights (weight_ih and weight_hh),
we need to pass in a `weight_qparams_dict` that maps from weight name,
e.g. weight_ih, to the weight_qparams for that weight
"""
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool = True,
nonlinearity: str = "tanh",
device=None,
dtype=None,
weight_qparams_dict: Optional[Dict[str, Any]] = None,
) -> None:
factory_kwargs = {
"device": device,
"dtype": dtype,
"weight_qparams_dict": weight_qparams_dict,
}
super().__init__(input_size, hidden_size, bias, num_chunks=1, **factory_kwargs)
self.nonlinearity = nonlinearity
def _get_name(self):
return "QuantizedRNNCell(Reference)"
# TODO: refactor nn.RNNCell to have a _forward that takes weight_ih and weight_hh as input
# and remove duplicated code, same for the other two Cell modules
def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
assert input.dim() in (
1,
2,
), f"RNNCell: Expected input to be 1-D or 2-D but received {input.dim()}-D tensor"
is_batched = input.dim() == 2
if not is_batched:
input = input.unsqueeze(0)
if hx is None:
hx = torch.zeros(
input.size(0), self.hidden_size, dtype=input.dtype, device=input.device
)
else:
hx = hx.unsqueeze(0) if not is_batched else hx
if self.nonlinearity == "tanh":
ret = _VF.rnn_tanh_cell(
input,
hx,
self.get_weight_ih(),
self.get_weight_hh(),
self.bias_ih,
self.bias_hh,
)
elif self.nonlinearity == "relu":
ret = _VF.rnn_relu_cell(
input,
hx,
self.get_weight_ih(),
self.get_weight_hh(),
self.bias_ih,
self.bias_hh,
)
else:
ret = input # TODO: remove when jit supports exception flow
raise RuntimeError(f"Unknown nonlinearity: {self.nonlinearity}")
if not is_batched:
ret = ret.squeeze(0)
return ret
@classmethod
def from_float(cls, mod, weight_qparams_dict):
ref_mod = cls(
mod.input_size,
mod.hidden_size,
mod.bias,
mod.nonlinearity,
mod.weight_ih.device,
mod.weight_ih.dtype,
weight_qparams_dict,
)
ref_mod.weight_ih = mod.weight_ih
ref_mod.weight_hh = mod.weight_hh
ref_mod.bias_ih = mod.bias_ih
ref_mod.bias_hh = mod.bias_hh
return ref_mod
class LSTMCell(RNNCellBase):
"""
We'll store weight_qparams for all the weights (weight_ih and weight_hh),
we need to pass in a `weight_qparams_dict` that maps from weight name,
e.g. weight_ih, to the weight_qparams for that weight
"""
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool = True,
device=None,
dtype=None,
weight_qparams_dict: Optional[Dict[str, Any]] = None,
) -> None:
factory_kwargs = {
"device": device,
"dtype": dtype,
"weight_qparams_dict": weight_qparams_dict,
}
super().__init__(input_size, hidden_size, bias, num_chunks=4, **factory_kwargs)
def _get_name(self):
return "QuantizedLSTMCell(Reference)"
def forward(
self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None
) -> Tuple[Tensor, Tensor]:
assert input.dim() in (
1,
2,
), f"LSTMCell: Expected input to be 1-D or 2-D but received {input.dim()}-D tensor"
is_batched = input.dim() == 2
if not is_batched:
input = input.unsqueeze(0)
if hx is None:
zeros = torch.zeros(
input.size(0), self.hidden_size, dtype=input.dtype, device=input.device
)
hx = (zeros, zeros)
else:
hx = (hx[0].unsqueeze(0), hx[1].unsqueeze(0)) if not is_batched else hx
ret = _VF.lstm_cell(
input,
hx,
self.get_weight_ih(),
self.get_weight_hh(),
self.bias_ih,
self.bias_hh,
)
if not is_batched:
ret = (ret[0].squeeze(0), ret[1].squeeze(0))
return ret
@classmethod
def from_float(cls, mod, weight_qparams_dict, use_precomputed_fake_quant=False):
ref_mod = cls(
mod.input_size,
mod.hidden_size,
mod.bias,
mod.weight_ih.device,
mod.weight_ih.dtype,
weight_qparams_dict,
)
ref_mod.weight_ih = mod.weight_ih
ref_mod.weight_hh = mod.weight_hh
ref_mod.bias_ih = mod.bias_ih
ref_mod.bias_hh = mod.bias_hh
return ref_mod
class GRUCell(RNNCellBase):
"""
We'll store weight_qparams for all the weights (weight_ih and weight_hh),
we need to pass in a `weight_qparams_dict` that maps from weight name,
e.g. weight_ih, to the weight_qparams for that weight
"""
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool = True,
device=None,
dtype=None,
weight_qparams_dict: Optional[Dict[str, Any]] = None,
) -> None:
factory_kwargs = {
"device": device,
"dtype": dtype,
"weight_qparams_dict": weight_qparams_dict,
}
super().__init__(input_size, hidden_size, bias, num_chunks=3, **factory_kwargs)
def _get_name(self):
return "QuantizedGRUCell(Reference)"
def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
assert input.dim() in (
1,
2,
), f"GRUCell: Expected input to be 1-D or 2-D but received {input.dim()}-D tensor"
is_batched = input.dim() == 2
if not is_batched:
input = input.unsqueeze(0)
if hx is None:
hx = torch.zeros(
input.size(0), self.hidden_size, dtype=input.dtype, device=input.device
)
else:
hx = hx.unsqueeze(0) if not is_batched else hx
ret = _VF.gru_cell(
input,
hx,
self.get_weight_ih(),
self.get_weight_hh(),
self.bias_ih,
self.bias_hh,
)
if not is_batched:
ret = ret.squeeze(0)
return ret
@classmethod
def from_float(cls, mod, weight_qparams_dict):
ref_mod = cls(
mod.input_size,
mod.hidden_size,
mod.bias,
mod.weight_ih.device,
mod.weight_ih.dtype,
weight_qparams_dict,
)
ref_mod.weight_ih = mod.weight_ih
ref_mod.weight_hh = mod.weight_hh
ref_mod.bias_ih = mod.bias_ih
ref_mod.bias_hh = mod.bias_hh
return ref_mod
class RNNBase(nn.RNNBase):
def __init__(
self,
mode: str,
input_size: int,
hidden_size: int,
num_layers: int = 1,
bias: bool = True,
batch_first: bool = False,
dropout: float = 0.0,
bidirectional: bool = False,
proj_size: int = 0,
device=None,
dtype=None,
weight_qparams_dict: Optional[Dict[str, Any]] = None,
) -> None:
super().__init__(
mode,
input_size,
hidden_size,
num_layers,
bias,
batch_first,
dropout,
bidirectional,
proj_size,
device,
dtype,
)
# TODO(jerryzh168): maybe make this arg a required arg
if weight_qparams_dict is None:
weight_qparams = {
"qscheme": torch.per_tensor_affine,
"dtype": torch.quint8,
"scale": 1.0,
"zero_point": 0,
}
weight_qparams_dict = {"is_decomposed": False} # type: ignore[dict-item]
for wn in self._flat_weights_names:
if wn.startswith("weight"):
weight_qparams_dict[wn] = weight_qparams
self._init_weight_qparams_dict(weight_qparams_dict, device)
def _init_weight_qparams_dict(self, weight_qparams_dict, device):
self.is_decomposed = weight_qparams_dict["is_decomposed"]
for key, weight_qparams in weight_qparams_dict.items():
if key == "is_decomposed":
continue
weight_qscheme = weight_qparams["qscheme"]
weight_dtype = weight_qparams["dtype"]
setattr(self, key + "_qscheme", weight_qscheme)
setattr(self, key + "_dtype", weight_dtype)
assert weight_qscheme in [
None,
torch.per_tensor_affine,
torch.per_channel_affine,
], Exception(
f"qscheme: {weight_qscheme} is not support in {self._get_name()}"
)
if weight_qscheme is not None:
self.register_buffer(
key + "_scale",
torch.tensor(
weight_qparams["scale"], dtype=torch.float, device=device
),
)
self.register_buffer(
key + "_zero_point",
torch.tensor(
weight_qparams["zero_point"], dtype=torch.int, device=device
),
)
if weight_qscheme == torch.per_channel_affine:
self.register_buffer(
key + "_axis",
torch.tensor(
weight_qparams["axis"], dtype=torch.int, device=device
),
)
else:
# added for TorchScriptability, not used
self.register_buffer(
key + "_axis", torch.tensor(0, dtype=torch.int, device=device)
)
setattr(self, key + "_axis_int", getattr(self, key + "_axis").item())
class LSTM(RNNBase):
"""Reference Quantized LSTM Module
We'll store weight_qparams for all the weights in _flat_weights, we need to pass in
a `weight_qparams_dict` that maps from weight name, e.g. weight_ih_l0,
to the weight_qparams for that weight
"""
def __init__(self, *args, **kwargs):
super().__init__("LSTM", *args, **kwargs)
# Same as above, see torch/nn/modules/module.py::_forward_unimplemented
def permute_hidden( # type: ignore[override]
self,
hx: Tuple[Tensor, Tensor],
permutation: Optional[Tensor],
) -> Tuple[Tensor, Tensor]:
if permutation is None:
return hx
return _apply_permutation(hx[0], permutation), _apply_permutation(
hx[1], permutation
)
def get_expected_cell_size(
self, input: Tensor, batch_sizes: Optional[Tensor]
) -> Tuple[int, int, int]:
if batch_sizes is not None:
mini_batch = int(batch_sizes[0])
else:
mini_batch = input.size(0) if self.batch_first else input.size(1)
num_directions = 2 if self.bidirectional else 1
expected_hidden_size = (
self.num_layers * num_directions,
mini_batch,
self.hidden_size,
)
return expected_hidden_size
# In the future, we should prevent mypy from applying contravariance rules here.
# See torch/nn/modules/module.py::_forward_unimplemented
def check_forward_args( # type: ignore[override]
self,
input: Tensor,
hidden: Tuple[Tensor, Tensor],
batch_sizes: Optional[Tensor],
):
self.check_input(input, batch_sizes)
self.check_hidden_size(
hidden[0],
self.get_expected_hidden_size(input, batch_sizes),
"Expected hidden[0] size {}, got {}",
)
self.check_hidden_size(
hidden[1],
self.get_expected_cell_size(input, batch_sizes),
"Expected hidden[1] size {}, got {}",
)
def get_quantized_weight_bias_dict(self):
"""dictionary from flat_weight_name to quantized weight or (unquantized) bias
e.g.
{
"weight_ih_l0": quantized_weight,
"bias_ih_l0": unquantized_bias,
...
}
"""
quantized_weight_bias_dict = {}
for wn in self._flat_weights_names:
if hasattr(self, wn):
if wn.startswith("weight"):
weight_or_bias = get_quantized_weight(self, wn)
else:
weight_or_bias = getattr(self, wn)
else:
weight_or_bias = None
quantized_weight_bias_dict[wn] = weight_or_bias
return quantized_weight_bias_dict
def get_flat_weights(self):
flat_weights = []
for wn in self._flat_weights_names:
if hasattr(self, wn):
weight = getattr(self, wn)
if wn.startswith("weight"):
params = _get_weight_and_quantization_params(self, wn)
weight = _quantize_and_dequantize_weight(*params)
else:
weight = None
flat_weights.append(weight)
return flat_weights
def forward(self, input, hx=None): # noqa: F811
orig_input = input
# xxx: isinstance check needs to be in conditional for TorchScript to compile
batch_sizes = None
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
max_batch_size = int(batch_sizes[0])
else:
batch_sizes = None
is_batched = input.dim() == 3
batch_dim = 0 if self.batch_first else 1
if not is_batched:
input = input.unsqueeze(batch_dim)
max_batch_size = input.size(0) if self.batch_first else input.size(1)
sorted_indices = None
unsorted_indices = None
if hx is None:
num_directions = 2 if self.bidirectional else 1
real_hidden_size = (
self.proj_size if self.proj_size > 0 else self.hidden_size
)
h_zeros = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
real_hidden_size,
dtype=input.dtype,
device=input.device,
)
c_zeros = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
self.hidden_size,
dtype=input.dtype,
device=input.device,
)
hx = (h_zeros, c_zeros)
else:
if batch_sizes is None: # If not PackedSequence input.
if is_batched: # type: ignore[possibly-undefined]
if hx[0].dim() != 3 or hx[1].dim() != 3:
msg = (
"For batched 3-D input, hx and cx should "
f"also be 3-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors"
)
raise RuntimeError(msg)
else:
if hx[0].dim() != 2 or hx[1].dim() != 2:
msg = (
"For unbatched 2-D input, hx and cx should "
f"also be 2-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors"
)
raise RuntimeError(msg)
hx = (hx[0].unsqueeze(1), hx[1].unsqueeze(1))
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
self.check_forward_args(input, hx, batch_sizes)
if batch_sizes is None:
result = _VF.lstm(
input,
hx,
self.get_flat_weights(),
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
self.batch_first,
)
else:
result = _VF.lstm(
input,
batch_sizes,
hx,
self.get_flat_weights(),
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
)
output = result[0]
hidden = result[1:]
# xxx: isinstance check needs to be in conditional for TorchScript to compile
if isinstance(orig_input, PackedSequence):
output_packed = PackedSequence(
output, batch_sizes, sorted_indices, unsorted_indices
)
return output_packed, self.permute_hidden(hidden, unsorted_indices)
else:
if not is_batched: # type: ignore[possibly-undefined]
output = output.squeeze(batch_dim) # type: ignore[possibly-undefined]
hidden = (hidden[0].squeeze(1), hidden[1].squeeze(1))
return output, self.permute_hidden(hidden, unsorted_indices)
def _get_name(self):
return "QuantizedLSTM(Reference)"
@classmethod
def from_float(cls, mod, weight_qparams_dict):
ref_mod = cls(
mod.input_size,
mod.hidden_size,
mod.num_layers,
mod.bias,
mod.batch_first,
mod.dropout,
mod.bidirectional,
weight_qparams_dict=weight_qparams_dict,
)
for wn in mod._flat_weights_names:
setattr(ref_mod, wn, getattr(mod, wn))
return ref_mod
class GRU(RNNBase):
"""Reference Quantized GRU Module
We'll store weight_qparams for all the weights in _flat_weights, we need to pass in
a `weight_qparams_dict` that maps from weight name, e.g. weight_ih_l0,
to the weight_qparams for that weight
"""
def __init__(self, *args, **kwargs):
if "proj_size" in kwargs:
raise ValueError(
"proj_size argument is only supported for LSTM, not RNN or GRU"
)
super().__init__("GRU", *args, **kwargs)
def get_quantized_weight_bias_dict(self):
"""dictionary from flat_weight_name to quantized weight or (unquantized) bias
e.g.
{
"weight_ih_l0": quantized_weight,
"bias_ih_l0": unquantized_bias,
...
}
"""
quantized_weight_bias_dict = {}
for wn in self._flat_weights_names:
if hasattr(self, wn):
if wn.startswith("weight"):
weight_or_bias = get_quantized_weight(self, wn)
else:
weight_or_bias = getattr(self, wn)
else:
weight_or_bias = None
quantized_weight_bias_dict[wn] = weight_or_bias
return quantized_weight_bias_dict
def get_flat_weights(self):
flat_weights = []
for wn in self._flat_weights_names:
if hasattr(self, wn):
weight = getattr(self, wn)
if wn.startswith("weight"):
params = _get_weight_and_quantization_params(self, wn)
weight = _quantize_and_dequantize_weight(*params)
else:
weight = None
flat_weights.append(weight)
return flat_weights
def forward(self, input, hx=None): # noqa: F811
# Note: this is copied from the forward of GRU in https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py
# only changed self._flat_weights to self.get_flat_weights()
# TODO: maybe we can try inheriting from that class and define get_flat_weights
# as a @property? this might interfere with TorchScript, if we remove that
# requirement in the future we should be able to do this
orig_input = input
# xxx: isinstance check needs to be in conditional for TorchScript to compile
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
max_batch_size = int(batch_sizes[0])
else:
batch_sizes = None
assert input.dim() in (
2,
3,
), f"GRU: Expected input to be 2-D or 3-D but received {input.dim()}-D tensor"
is_batched = input.dim() == 3
batch_dim = 0 if self.batch_first else 1
if not is_batched:
input = input.unsqueeze(batch_dim)
if hx is not None:
if hx.dim() != 2:
raise RuntimeError(
f"For unbatched 2-D input, hx should also be 2-D but got {hx.dim()}-D tensor"
)
hx = hx.unsqueeze(1)
else:
if hx is not None and hx.dim() != 3:
raise RuntimeError(
f"For batched 3-D input, hx should also be 3-D but got {hx.dim()}-D tensor"
)
max_batch_size = input.size(0) if self.batch_first else input.size(1)
sorted_indices = None
unsorted_indices = None
if hx is None:
num_directions = 2 if self.bidirectional else 1
hx = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
self.hidden_size,
dtype=input.dtype,
device=input.device,
)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
self.check_forward_args(input, hx, batch_sizes)
if batch_sizes is None:
result = _VF.gru(
input,
hx,
self.get_flat_weights(),
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
self.batch_first,
)
else:
result = _VF.gru(
input,
batch_sizes,
hx,
self.get_flat_weights(),
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
)
output = result[0]
hidden = result[1]
# xxx: isinstance check needs to be in conditional for TorchScript to compile
if isinstance(orig_input, PackedSequence):
output_packed = PackedSequence(
output, batch_sizes, sorted_indices, unsorted_indices
)
return output_packed, self.permute_hidden(hidden, unsorted_indices)
else:
if not is_batched: # type: ignore[possibly-undefined]
output = output.squeeze(batch_dim) # type: ignore[possibly-undefined]
hidden = hidden.squeeze(1)
return output, self.permute_hidden(hidden, unsorted_indices)
def _get_name(self):
return "QuantizedGRU(Reference)"
@classmethod
def from_float(cls, mod, weight_qparams_dict):
ref_mod = cls(
mod.input_size,
mod.hidden_size,
mod.num_layers,
mod.bias,
mod.batch_first,
mod.dropout,
mod.bidirectional,
weight_qparams_dict=weight_qparams_dict,
)
for wn in mod._flat_weights_names:
setattr(ref_mod, wn, getattr(mod, wn))
return ref_mod
|