1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
# mypy: allow-untyped-defs
from typing import Any, Dict, Optional
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from .utils import ReferenceQuantizedModule
__all__ = ["Embedding", "EmbeddingBag"]
class Embedding(nn.Embedding, ReferenceQuantizedModule):
"""A reference quantized Embedding module that fits into the
FX Graph Mode Quantization workflow, activation will be floating point Tensor,
we will store floating point weight as well in the module, but in forward we'll
quantize and dequantize the weight before running the floating point functional
embedding operator.
"""
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
device=None,
dtype=None,
weight_qparams: Optional[Dict[str, Any]] = None,
) -> None:
super().__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
device,
dtype,
)
self._init_weight_qparams(weight_qparams, device)
def _get_name(self):
return "QuantizedEmbedding(Reference)"
def forward(self, input: Tensor) -> Tensor:
weight_quant_dequant = self.get_weight()
return F.embedding(
input,
weight_quant_dequant,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
@classmethod
def from_float(cls, mod, weight_qparams):
return cls(
mod.num_embeddings,
mod.embedding_dim,
mod.padding_idx,
mod.max_norm,
mod.norm_type,
mod.scale_grad_by_freq,
mod.sparse,
mod.weight,
mod.weight.device,
mod.weight.dtype,
weight_qparams,
)
class EmbeddingBag(nn.EmbeddingBag, ReferenceQuantizedModule):
"""A reference quantized EmbeddingBag module that fits into the
FX Graph Mode Quantization workflow, activation will be floating point Tensor,
we will store floating point weight as well in the module, but in forward we'll
quantize and dequantize the weight before running the floating point functional
embedding operator.
"""
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
_weight: Optional[Tensor] = None,
include_last_offset: bool = False,
padding_idx: Optional[int] = None,
device=None,
dtype=None,
weight_qparams: Optional[Dict[str, Any]] = None,
) -> None:
super().__init__(
num_embeddings,
embedding_dim,
max_norm,
norm_type,
scale_grad_by_freq,
mode,
sparse,
_weight,
include_last_offset,
padding_idx,
device,
dtype,
)
self._init_weight_qparams(weight_qparams, device)
def _get_name(self):
return "QuantizedEmbedding(Reference)"
def forward(
self,
input: Tensor,
offsets: Optional[Tensor] = None,
per_sample_weights: Optional[Tensor] = None,
) -> Tensor:
weight_quant_dequant = self.get_weight()
return F.embedding_bag(
input,
weight_quant_dequant,
offsets,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.mode,
self.sparse,
per_sample_weights,
self.include_last_offset,
self.padding_idx,
)
@classmethod
def from_float(cls, mod, weight_qparams, use_precomputed_fake_quant=False):
return cls(
mod.num_embeddings,
mod.embedding_dim,
mod.max_norm,
mod.norm_type,
mod.scale_grad_by_freq,
mod.mode,
mod.sparse,
mod.weight,
mod.include_last_offset,
mod.padding_idx,
mod.weight.device,
mod.weight.dtype,
weight_qparams,
)
|