1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
|
# mypy: allow-untyped-defs
import collections
import copy
import operator
from typing import Any, Callable, Dict, List, Optional, Set, Tuple
import torch
import torch.fx
from torch.ao.ns.fx.graph_passes import _maybe_get_fqn
from torch.ao.ns.fx.ns_types import NSResultsType, NSSingleResultValuesType
from torch.ao.ns.fx.utils import ( # TODO(future PR): make this work correctly for methods
get_normalized_nth_input,
get_target_type_str,
)
from torch.ao.quantization import QConfigMapping
from torch.ao.quantization.fx.match_utils import _MatchResult
from torch.ao.quantization.qconfig import QConfigAny
from torch.ao.quantization.utils import getattr_from_fqn
from torch.fx import Graph, GraphModule, Node
from torch.utils._pytree import tree_map
SHADOW_NODE_NAME_PREFIX = "shadow"
SHADOW_WRAPPER_NODE_NAME_PREFIX = "shadow_wrapper"
# TODO(future PR): reuse existing mapping instead of creating a new one
BINARY_FUNCTIONS = {
torch.add,
torch.Tensor.add,
operator.add,
torch.mul,
torch.Tensor.mul,
operator.mul,
}
def _get_attr_name(subgraph_idx, subgraph_candidate_idx):
return f"{SHADOW_NODE_NAME_PREFIX}_{subgraph_idx}_{subgraph_candidate_idx}"
def _get_attr_wrapper_name(subgraph_idx, subgraph_candidate_idx):
return f"{SHADOW_WRAPPER_NODE_NAME_PREFIX}_{subgraph_idx}_{subgraph_candidate_idx}"
class OutputProp:
"""
Output propagation (modeled from shape propagation).
Given a GraphModule and an example input, saves the output flowing
through each node on `node.traced_result`.
Code based on the example from
https://pytorch.org/docs/stable/fx.html#the-interpreter-pattern
"""
def __init__(self, mod):
self.mod = mod
self.graph = mod.graph
self.modules = dict(self.mod.named_modules())
def propagate(self, *args):
args_iter = iter(args)
env: Dict[str, Node] = {}
def load_arg(a):
return torch.fx.graph.map_arg(a, lambda n: env[n.name])
def fetch_attr(target: str):
target_atoms = target.split(".")
attr_itr = self.mod
for i, atom in enumerate(target_atoms):
if not hasattr(attr_itr, atom):
raise RuntimeError(
f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}"
)
attr_itr = getattr(attr_itr, atom)
return attr_itr
for node in self.graph.nodes:
if node.op == "placeholder":
result = next(args_iter)
elif node.op == "get_attr":
result = fetch_attr(node.target)
elif node.op == "call_function":
result = node.target(*load_arg(node.args), **load_arg(node.kwargs))
elif node.op == "call_method":
self_obj, *args = load_arg(node.args)
kwargs = load_arg(node.kwargs)
result = getattr(self_obj, node.target)(*args, **kwargs)
elif node.op == "call_module":
result = self.modules[node.target](
*load_arg(node.args), **load_arg(node.kwargs)
)
if isinstance(result, torch.Tensor): # type: ignore[possibly-undefined]
node.traced_result = result
env[node.name] = result
return None
def _get_dedup_subgraphs(matches: Dict[str, _MatchResult]) -> Dict[str, List[Node]]:
# the original matches variable is unique by node, make it unique by subgraph
# instead
seen_nodes = set()
subgraphs_dedup = {}
# Dict items are not reversible until Python 3.8, so we hack it
# to be compatible with previous Python versions
# TODO(future PR): try reversed(list(matches.items()))
matches_items_reversed: List[Tuple[str, _MatchResult]] = []
for name, cur_match in matches.items():
matches_items_reversed.insert(0, (name, cur_match))
# Note: the order is important. `matches` currently provides the matches
# in reverse order. We would like to process the matches in non-reverse
# order, so that we can create an intuitive naming scheme, such as
# naming the first op's submodules `shadow_0_0` through `shadow_0_(n-1)`
for name, cur_match in matches_items_reversed: # type: ignore[call-overload]
was_seen = False
for node_or_tuple in cur_match[1]:
# Cur_match[1] has an unusual type. It says that it's a `List[Node]`,
# but it is really not. Furthermore, the contents of this field
# can change from match results of multiple nodes of the same pattern
#
# For example, for conv -> bn -> relu, we see
# match_results = {
# 'conv': (relu, [(bn, conv), relu], ...),
# 'bn': (relu, [(bn, conv), relu], ...),
# 'relu': (relu, [(bn, conv), relu], ...),
# }
#
# Ideally we should clean up the `find_matches` function to make
# this more intuitive. For the purposes of this prototype, we hack
# around it.
if isinstance(node_or_tuple, Node):
if node_or_tuple in seen_nodes:
was_seen = True
seen_nodes.add(node_or_tuple)
else:
assert isinstance(node_or_tuple, tuple)
for node in node_or_tuple:
assert isinstance(node, Node)
if node in seen_nodes:
was_seen = True
seen_nodes.add(node)
if was_seen:
continue
# Start with the unusual type, convert it to [op_0, ..., op_n]
list_of_nodes = []
if len(cur_match[1]) == 1:
list_of_nodes = cur_match[1]
else:
assert len(cur_match[1]) == 2
# either (a, b), or ((a, b), c) or (c, (a, b))
# cannot make any assumptions on order, not clear what the
# _find_matches function is doing to populate this
# TODO(future PR): make this code less confusing, see discussion
# in https://github.com/pytorch/pytorch/pull/80521/files#r975918836
def _order_nodes(node_a, node_b, node_c) -> List[Node]:
nodes = [node_a, node_b, node_c]
first_node = None
mid_node = None
last_node = None
for n in nodes:
prev_n = n.args[0]
next_n = next(iter(n.users))
if prev_n not in nodes:
first_node = n
elif next_n not in nodes:
last_node = n
else:
mid_node = n
assert (
first_node is not None
and mid_node is not None
and last_node is not None
)
assert mid_node.args[0] is first_node
assert last_node.args[0] is mid_node
return [last_node, mid_node, first_node]
if isinstance(cur_match[1][0], Node) and isinstance(cur_match[1][1], Node):
# (a, b)
list_of_nodes = cur_match[1]
elif isinstance(cur_match[1][0], tuple):
# ((a, b), c)
node_a, node_b = cur_match[1][0]
node_c = cur_match[1][1]
list_of_nodes = _order_nodes(node_a, node_b, node_c)
elif isinstance(cur_match[1][1], tuple):
# (a, (b, c))
node_a, node_b = cur_match[1][1]
node_c = cur_match[1][0]
list_of_nodes = _order_nodes(node_a, node_b, node_c)
# [node_n, ..., node_0], note that the order is reversed
# to make it chronological for simple subgraphs
list_of_nodes.reverse()
subgraphs_dedup[name] = list_of_nodes
return subgraphs_dedup
def _get_logger_for_subgraph(
model: GraphModule,
first_node: Node,
last_node: Node,
subgraph_idx: int,
subgraph_candidate_idx: int,
qconfig_str: str,
logger_cls: Callable,
fqn: Optional[str],
) -> torch.nn.Module:
"""
Given a model and a linear subgraph starting from `first_node` and
ending with `last_node`, creates a logger for the end of this
subgraph.
"""
if fqn is None:
fqn = ""
logger_mod_orig = logger_cls(
first_node.name, # ref_node_name
last_node.name, # prev_node_name
f"subgraph_{subgraph_idx}_{subgraph_candidate_idx}", # model_name
"model", # ref_name
get_target_type_str(last_node, model), # prev_node_target_type
get_target_type_str(first_node, model), # ref_node_target_type
NSSingleResultValuesType.NODE_OUTPUT.value, # results_type
0, # index_within_arg
0, # index_of_arg
fqn, # fqn
qconfig_str,
)
# Usually we expect the user to add loggers, then calibrate, then convert,
# and then populate loggers. This is why the loggers start disabled.
# TODO(future PR): reconsider the design to make this more intuitive.
logger_mod_orig.enabled = False
return logger_mod_orig
def create_submodule_from_subgraph(
model: torch.nn.Module,
first_node: Node,
last_node: Node,
) -> GraphModule:
"""
Input: a model, and a linear subgraph within the model from first_node to
last_node.
Output: a new submodule containing a copy of the subgraph, with the inputs
to the first node becoming the inputs to the submodule, and all other
nodes in the subgraph being copied.
Example inputs:
`model`: a module with graph
x0 -> op1 -> x1 -> op2 -> x2
|
arg1
`first_node`: op1
`last_node`: op2
Example output: a new module with graph
input1 -> op1_copy -> x1 -> op2_copy -> output1
|
arg1
"""
#
# create a blank GraphModule with an empty graph
#
class M(torch.nn.Module):
def forward(self, x):
pass
m = M()
gm = torch.fx.symbolic_trace(m)
g = gm.graph
for node in reversed(gm.graph.nodes):
g.erase_node(node)
#
# modify the graph to have a copy of our subgraph
#
cur_node_orig = first_node
cur_args_orig = cur_node_orig.args
cur_kwargs_orig = cur_node_orig.kwargs
cur_name_idx = 0
iteration_limit = 100
cur_iteration = 0
while True:
if cur_node_orig is first_node:
# we are at the first node, we need to set up graph inputs
# TODO(future): some graphs could have placeholders which are unrelated
# to the first node, need to handle this
cur_args_copy = []
cur_kwargs_copy = {}
seen_names: Set[str] = set()
old_name_to_new_node: Dict[str, Node] = {}
def _add_placeholder(
g: Graph, node: Node, seen_names, old_name_to_new_node
):
# note: for graphs starting with patterns such as `y = x + x`, we
# need to ensure we do not add multiple placeholders with the
# same name
counter = 0
while node.name + "_" + str(counter) in seen_names:
counter += 1
cur_name = node.name + "_" + str(counter)
seen_names.add(cur_name)
placeholder = g.placeholder(cur_name)
old_name_to_new_node[node.name] = placeholder
return placeholder
for arg in cur_node_orig.args:
if isinstance(arg, Node):
p = _add_placeholder(g, arg, seen_names, old_name_to_new_node)
cur_args_copy.append(p)
elif isinstance(arg, (list, tuple)):
new_arg = []
for inner_arg in arg:
if isinstance(inner_arg, Node):
new_arg.append(
_add_placeholder(
g, inner_arg, seen_names, old_name_to_new_node
)
)
else:
new_arg.append(inner_arg)
cur_args_copy.append(new_arg)
else:
cur_args_copy.append(arg)
# TODO(future PR): handle non-normalized kwargs
for kwarg_name, kwarg in cur_node_orig.kwargs.items():
if isinstance(kwarg, Node):
cur_kwargs_copy[kwarg_name] = _add_placeholder(
g, kwarg, seen_names, old_name_to_new_node
)
elif isinstance(kwarg, (list, tuple)):
new_kwarg = []
for inner_kwarg in kwarg:
p = _add_placeholder(
g, inner_kwarg, seen_names, old_name_to_new_node # type: ignore[arg-type]
)
new_kwarg.append(p)
cur_kwargs_copy[kwarg_name] = new_kwarg
else:
cur_kwargs_copy[kwarg_name] = kwarg
cur_args_copy = tuple(cur_args_copy) # type: ignore[assignment]
else:
# we are not at first node, first arg is from the previous node,
# and all other args are copied
# the current implementation is simplistic and cannot handle
# ops with two or more arguments which need to be passed from
# the previous op, so we assert them out
assert cur_node_orig.target not in BINARY_FUNCTIONS
# at this point in the code, cur_node_copy is pointing to the copy
# of the previous node
# TODO(future PR): this is not handling complicated graphs correctly, need to
# look at actual relationships instead of assuming sequential graph
# TODO(future PR): this is ignoring kwargs, will need to support kwargs
# for any fusion pattern which has them for a node that is not the
# first node.
cur_args_copy = [cur_node_copy] # type: ignore[has-type, possibly-undefined] # noqa: F821
if len(cur_node_orig.args) > 1:
for arg in cur_node_orig.args[1:]:
if isinstance(arg, torch.nn.Parameter):
new_arg = arg.detach().clone() # type: ignore[assignment]
mod_name = f"mod_{cur_name_idx}"
cur_name_idx += 1
setattr(gm, mod_name, new_arg)
new_arg_placeholder = gm.placeholder(mod_name) # type: ignore[operator]
cur_args_copy.append(new_arg_placeholder)
elif isinstance(arg, (float, int, torch.dtype)):
cur_args_copy.append(arg)
else:
raise AssertionError(f"arg of type {type(arg)} not handled yet")
cur_args_copy = tuple(cur_args_copy) # type: ignore[assignment]
# copy the node
if cur_node_orig.op == "call_module":
orig_mod = getattr_from_fqn(model, cur_node_orig.target) # type: ignore[arg-type]
orig_mod_copy = copy.deepcopy(orig_mod)
mod_name = f"mod_{cur_name_idx}"
setattr(gm, mod_name, orig_mod_copy)
cur_name_idx += 1
cur_node_copy = g.call_module(mod_name, cur_args_copy, cur_kwargs_copy) # type: ignore[possibly-undefined,arg-type]
elif cur_node_orig.op == "call_function":
cur_node_copy = g.call_function(
cur_node_orig.target, # type: ignore[arg-type]
cur_args_copy, # type: ignore[arg-type]
cur_kwargs_copy, # type: ignore[possibly-undefined]
)
elif cur_node_orig.op == "call_method":
cur_node_copy = g.call_method(
cur_node_orig.target, # type: ignore[arg-type]
cur_args_copy, # type: ignore[arg-type]
cur_kwargs_copy, # type: ignore[possibly-undefined]
)
else:
raise AssertionError(f"{cur_node_orig.op} not supported yet")
if cur_node_orig is last_node:
break
# go to next node
assert (
len(cur_node_orig.users.keys()) == 1
), f"{cur_node_orig} has more than 1 users, not supported yet"
cur_node_orig = next(iter(cur_node_orig.users.keys()))
cur_args_orig = cur_node_orig.args
cur_kwargs_orig = cur_node_orig.kwargs
cur_iteration += 1
if cur_iteration > iteration_limit:
raise AssertionError("iteration limit exceeded")
# set up outputs
g.output(cur_node_copy)
gm.recompile()
return gm
def create_one_transformed_and_logged_copy_of_subgraph(
mt: GraphModule,
subgraph_idx: int,
subgraph_candidate_idx: int,
first_node: Node,
last_node: Node,
fqn: Optional[str],
list_of_node_name_to_qconfig: List[Dict[str, QConfigAny]],
example_inputs: Any,
last_added_shadow_node_list: List[Optional[Node]],
custom_prepare_fn: Optional[Callable] = None,
custom_prepare_kwargs: Optional[Dict[str, Any]] = None,
) -> None:
"""
Given a subgraph in `mt` and a subgraph candidate idx, inserts the
subgraph candidate copy and instruments it with loggers.
If subgraph_candidate_idx is 0, this is the baseline fp32 subgraph and we just
add a logger to the end.
If subgraph_candidate_idx is not 0, we create a copy of the subgraph and
prepare it with `prepare_fx`.
"""
# TODO(future PR): move logger classes to utils to remove circular dependency
from torch.ao.ns._numeric_suite_fx import OutputComparisonLogger, OutputLogger
if subgraph_candidate_idx == 0:
# idx = 0 is the floating point (original) version of the subgraph
# We keep the subgraph as is, and add a logger at the end
qconfig_str = ""
logger_mod_orig = _get_logger_for_subgraph(
mt,
first_node,
last_node,
subgraph_idx,
subgraph_candidate_idx,
qconfig_str,
OutputLogger,
fqn,
)
attr_name = _get_attr_name(subgraph_idx, subgraph_candidate_idx)
assert not hasattr(mt, attr_name)
setattr(mt, attr_name, logger_mod_orig)
with mt.graph.inserting_after(last_node):
new_node = mt.graph.call_module(attr_name, args=(last_node,), kwargs={})
last_added_shadow_node_list[0] = new_node
else:
# idx > 0 means we have a candidate qconfig to try, so we need
# to make a copy of the subgraph, feed it with the right inputs,
# and add a logger at the end
# get the qconfig
# subtract one because the first candidate is the floating point
# version of the subgraph
node_name_to_qconfig = list_of_node_name_to_qconfig[subgraph_candidate_idx - 1]
qconfig = node_name_to_qconfig[first_node.name]
# if no quantization is requested, skip
# TODO(future PR): deduplicate equivalent qconfigs that come from
# different qconfig mapping objects
if qconfig is None:
return
qconfig_mapping = QConfigMapping().set_global(qconfig)
# create a copy of the submodule, wrapped in a separate module
orig_mod_copy_wrapped = create_submodule_from_subgraph(
mt, first_node, last_node
)
# add a call to prepare_fx on the wrapper module
if custom_prepare_fn is None:
orig_mod_copy_wrapped = torch.ao.quantization.quantize_fx.prepare_fx(
orig_mod_copy_wrapped, qconfig_mapping, example_inputs=example_inputs
)
else:
if custom_prepare_kwargs is None:
custom_prepare_kwargs = {}
for kwarg_name in [
"example_inputs",
"prepare_custom_config",
"qconfig_mapping",
]:
assert (
kwarg_name not in custom_prepare_kwargs
), f"cannot specify {kwarg_name} in custom_prepare_kwargs"
prepare_kwargs: Dict[str, Any] = {
"example_inputs": example_inputs,
"qconfig_mapping": qconfig_mapping,
}
prepare_kwargs.update(custom_prepare_kwargs)
orig_mod_copy_wrapped = custom_prepare_fn(
orig_mod_copy_wrapped, **prepare_kwargs
)
# attach the wrapper to the model
attr_name = _get_attr_wrapper_name(subgraph_idx, subgraph_candidate_idx)
assert not hasattr(mt, attr_name)
setattr(mt, attr_name, orig_mod_copy_wrapped)
# add a call to the wrapper module from the parent graph
insert_after_node = last_added_shadow_node_list[0]
with mt.graph.inserting_after(insert_after_node):
# TODO(future PR): handle fusion patterns where non-first nodes
# need inputs
# pass in all node args and kwargs
new_args = []
for arg in first_node.args:
if isinstance(arg, Node):
new_args.append(arg)
elif (
isinstance(arg, (list, tuple))
and len(arg)
and isinstance(arg[0], Node)
):
new_args.extend(
inner_arg for inner_arg in arg if isinstance(inner_arg, Node)
)
new_kwargs = {}
for name, old_kwarg in first_node.kwargs.items():
if isinstance(old_kwarg, Node):
new_kwargs[name] = old_kwarg
elif isinstance(old_kwarg, (list, tuple)) and len(old_kwarg):
# TODO(future PR): clarify why we are adding kwargs to args
new_args.extend(old_kwarg) # type: ignore[arg-type]
new_args = tuple(new_args) # type: ignore[assignment]
new_node = mt.graph.call_module(attr_name, args=new_args, kwargs=new_kwargs) # type: ignore[arg-type]
# add a logger to parent graph to observe the shadow wrapper
logger_mod_orig = _get_logger_for_subgraph(
mt,
first_node,
last_node,
subgraph_idx,
subgraph_candidate_idx,
str(qconfig),
OutputComparisonLogger,
fqn,
)
attr_name = _get_attr_name(subgraph_idx, subgraph_candidate_idx)
assert not hasattr(mt, attr_name)
setattr(mt, attr_name, logger_mod_orig)
with mt.graph.inserting_after(new_node):
logger = mt.graph.call_module(
attr_name, args=(new_node, last_node), kwargs={}
)
last_added_shadow_node_list[0] = logger
mt.recompile()
def create_n_transformed_and_logged_copies_of_subgraph(
mt: GraphModule,
subgraph_idx: int,
match_name: str,
nodes_in_this_subgraph: List[Any],
qconfig_mappings: List[QConfigMapping],
list_of_node_name_to_qconfig: List[Dict[str, QConfigAny]],
custom_prepare_fn: Optional[Callable] = None,
custom_prepare_kwargs: Optional[Dict[str, Any]] = None,
) -> None:
"""
Given a model `mt` and a subgraph_idx, creates the needed copies
of the subgraph for all qconfigs, and instruments them with loggers.
"""
# for now, assume that
# 1. the first node has one input
# 2. the last node has one output
# for now, ignore all subgraphs that contain non-nodes (tuples, etc)
# TODO(future PR): implement this
if any(not isinstance(node, Node) for node in nodes_in_this_subgraph):
return
first_node = nodes_in_this_subgraph[0]
last_node = nodes_in_this_subgraph[-1]
# We used output propagation to populate example values on each
# node. Use the example values from the previous node as the input
# to the current node.
prev_node = get_normalized_nth_input(first_node, mt, 0)
if isinstance(prev_node, list):
example_inputs = [x.traced_result for x in prev_node]
elif isinstance(prev_node, tuple):
example_inputs = (x.traced_result for x in prev_node) # type: ignore[assignment]
else:
# currently some customer models do not have a traced_result in
# every node, so we have to guard for this case since we cannot
# quantize without an example input
# TODO(future PR): add a test case for this once we have an easy
# repro, see https://github.com/pytorch/pytorch/pull/80521/files#r975940489
# for additional context
if hasattr(prev_node, "traced_result"):
example_inputs = (prev_node.traced_result,) # type: ignore[attr-defined, assignment]
else:
print(
"unable to get example input for node "
+ f"{first_node.format_node()}, skipping"
)
return
# If there are no quantization configs for this subgraph, skip adding
# loggers. This reduces memory usage for models where not all layers are
# quantized.
# TODO(future): consider making this configurable
found_at_least_one_qconfig = False
for subgraph_candidate_idx in range(len(qconfig_mappings) + 1):
if subgraph_candidate_idx == 0:
# fp32 baseline does not need a qconfig
continue
# a. we have N shadows, so len(qconfig_mappings) is N
# b. we will have the fp32 layer + N shadows, so overall number of
# (original_op) + (*shadows) will be N+1
# c. since `subgraph_candidate_idx` represents (b), we need
# to subtract 1 to query from (a)
node_name_to_qconfig = list_of_node_name_to_qconfig[subgraph_candidate_idx - 1]
qconfig = node_name_to_qconfig[first_node.name]
if qconfig is not None:
found_at_least_one_qconfig = True
break
if not found_at_least_one_qconfig:
print(
"unable to find at least one qconfig for node "
+ f"{first_node.format_node()}, skipping"
)
return
fqn = _maybe_get_fqn(first_node, mt)
# We want the results to contain the subgraphs in natural order,
# and the graph to also contain shadow wrappers and shadow loggers
# in natural order.
# If we just iterate in reverse, the graph will be in natural
# order but the eventual results will be in reverse order.
# So, we keep track of the last shadow logger we added and
# always insert after it.
last_added_shadow_node_list: List[Optional[Node]] = [None]
for subgraph_candidate_idx in range(len(qconfig_mappings) + 1):
create_one_transformed_and_logged_copy_of_subgraph(
mt,
subgraph_idx,
subgraph_candidate_idx,
first_node,
last_node,
fqn,
list_of_node_name_to_qconfig,
example_inputs,
last_added_shadow_node_list,
custom_prepare_fn,
custom_prepare_kwargs,
)
def create_add_loggers_graph(
model: GraphModule,
subgraphs_dedup: Dict[str, List[Node]],
qconfig_mapping: QConfigMapping,
node_name_to_qconfig: Dict[str, QConfigAny],
) -> None:
r"""
Given a model, a model graph partition (currently a set of matched
subgraphs) and instructions how to transform each subgraph
(currently quantizing it according to qconfig_mapping), modifies
the model graph to create an alternate path through the original graph,
with each of the subgraphs quantized. This is useful to compare
propagation error of a transformation such as quantization.
For example, given layer op0 and op1, there are four cases when handling op1:
1. op0 and op1 quantized
2. op0 and op1 unquantized
3. op0 quantized, op1 unquantized
4. op0 unquantized, op1 quantized
Example input, case 1:
.. code::
x0_0 -> op0_0 -> x1_0 -> log -----> op1_0 -> x2_0 -> log
\ \ \ \ # noqa: W605
---> op0_1 -> x1_1 ----> clog op1_1 -> x2_1 ----> clog
Example output, case 1:
.. code::
x0_0 -> op0_0 -> x1_0 -> log -----> op1_0 -> x2_0 -> log
\ \ \ # noqa: W605
---> op0_1 -> x1_1 ----> clog -> op1_1 -> x2_1 ----> clog
"""
# TODO(future PR): move logger classes to utils to remove circular dependency
from torch.ao.ns._numeric_suite_fx import OutputComparisonLogger, OutputLogger
def _get_subgraph_containing_node(node, subgraphs_dedup):
for subgraph in subgraphs_dedup.values():
if node in subgraph:
return subgraph
return None
# First, we need to create shadow branches, going from
#
# x0 -> op0 -> x1 -> ...
#
#
# to
#
# x0 -> op0_0 -> x1_0 -> log -> ...
# \ \
# -> op0_1 -> x1_1 -> clog
#
# Later, the outputs of each shadow will be rerouted to calculate
# propagation error.
# Note: we cannot iterate over matched subgraphs because some nodes
# may not be matched. So, we iterate over nodes in the graph, and
# associate them to matched subgraphs if possible.
nodes_to_skip = set()
# for each subgraph, save a mapping from first node of subgraph
# to first and last node of the shadow of this subgraph
orig_first_node_to_shadow_in_node = {}
orig_first_node_to_shadow_out_node = {}
# need to record original list because we will mutate the graph as we go
orig_nodes = list(model.graph.nodes) # type: ignore[union-attr, arg-type]
cur_subgraph_idx = 0
for n in orig_nodes:
if n.op in ("placeholder", "get_attr", "output") or n in nodes_to_skip:
continue
maybe_subgraph = _get_subgraph_containing_node(n, subgraphs_dedup)
insert_submodule_copy = False
if maybe_subgraph is not None:
first_node, last_node = maybe_subgraph[0], maybe_subgraph[-1]
nodes_to_skip.update(maybe_subgraph)
qconfig = node_name_to_qconfig[first_node.name]
if qconfig is not None:
insert_submodule_copy = True
else:
first_node, last_node = n, n
if insert_submodule_copy:
match_name = first_node.name
create_n_transformed_and_logged_copies_of_subgraph(
model,
cur_subgraph_idx,
match_name,
maybe_subgraph,
[qconfig_mapping],
[node_name_to_qconfig],
None,
None, # type: ignore[arg-type]
)
# find the created shadow module and record it so we
# can find it easily in step 2
expected_shadow_target = f"shadow_wrapper_{cur_subgraph_idx}_1"
new_shadow_mod = None
for maybe_shadow_mod in model.graph.nodes:
if (
maybe_shadow_mod.op == "call_module"
and maybe_shadow_mod.target == expected_shadow_target
):
new_shadow_mod = maybe_shadow_mod
break
assert new_shadow_mod is not None
orig_first_node_to_shadow_in_node[first_node] = new_shadow_mod
orig_first_node_to_shadow_out_node[first_node] = new_shadow_mod
else:
# create a copy of the subgraph by only copying FX nodes
# but not copying any parameters, to minimize memory usage
subgraph_to_use = (
maybe_subgraph if maybe_subgraph is not None else [first_node]
)
# add a regular logger after last_node
qconfig_str = ""
subgraph_candidate_idx = 0
fqn = _maybe_get_fqn(first_node, model)
logger_mod_orig = _get_logger_for_subgraph(
model,
first_node,
last_node,
cur_subgraph_idx,
subgraph_candidate_idx,
qconfig_str,
OutputLogger,
fqn,
)
attr_name = _get_attr_name(cur_subgraph_idx, subgraph_candidate_idx)
assert not hasattr(model, attr_name)
setattr(model, attr_name, logger_mod_orig)
insertion_point = last_node
with model.graph.inserting_after(insertion_point):
logger = model.graph.call_module(
attr_name, args=(last_node,), kwargs={}
)
insertion_point = logger
# create a copy of the subgraph
cur_node_orig = first_node
cur_node_copy = None
first_node_copy = None
while cur_node_orig in subgraph_to_use:
# TODO(future PR): make this support all possible args/kwargs
if cur_node_orig is first_node:
new_args = cur_node_orig.args
new_kwargs = cur_node_orig.kwargs
else:
first_arg_for_copy = cur_node_copy
new_args = (first_arg_for_copy, *cur_node_orig.args[1:])
new_kwargs = cur_node_orig.kwargs
# make a copy of cur_node_orig
with model.graph.inserting_after(insertion_point):
cur_node_copy = model.graph.create_node(
cur_node_orig.op,
cur_node_orig.target,
new_args,
new_kwargs,
# cur_node_orig.name, # TODO(future PR): set name explicitly
)
if first_node_copy is None:
first_node_copy = cur_node_copy
# since now only linear subgraphs are supported, all nodes
# except the last one must have only one user
if cur_node_orig != last_node:
assert len(cur_node_orig.users.keys()) == 1
cur_node_orig = next(iter(cur_node_orig.users.keys()))
assert not cur_node_orig.name.startswith(SHADOW_NODE_NAME_PREFIX)
insertion_point = cur_node_copy
# add a comparison logger after last_node's copy
subgraph_candidate_idx = 1
logger_mod_orig = _get_logger_for_subgraph(
model,
first_node,
last_node,
cur_subgraph_idx,
subgraph_candidate_idx,
qconfig_str,
OutputComparisonLogger,
fqn,
)
attr_name = _get_attr_name(cur_subgraph_idx, subgraph_candidate_idx)
assert not hasattr(model, attr_name)
setattr(model, attr_name, logger_mod_orig)
with model.graph.inserting_after(insertion_point):
logger = model.graph.call_module(
attr_name, args=(cur_node_copy, last_node), kwargs={}
)
# save the final node so we can use it in step 2
orig_first_node_to_shadow_in_node[first_node] = first_node_copy
orig_first_node_to_shadow_out_node[first_node] = cur_node_copy
cur_subgraph_idx += 1
model.recompile()
# Now, we go from
#
# x0 -> op0_0 -> x1_0 -> log -> x1 -> op1_0 -> ...
# \ \ \
# -> op0_1 -> x1_1 -> clog -> op1_1 -> ...
#
# to
#
# x0 -> op0_0 -> x1_0 -> log --> x1_0 -> op1_0 -> ...
# \ \
# -> op0_1 -> x1_1 -> clog -> x1_1 -> op1_1 -> ...
#
# sample values of key internal variables for the example above:
#
# orig_first_node_to_shadow_in_node = {op0_0: op0_1, op1_0: op1_1}
# orig_first_node_to_shadow_out_node = {op0_0: op0_1, op1_0: op1_1}
#
# note: for subgraphs with more than one node, in_node will be different
# compared to out_node
nodes_to_skip = set()
for n in orig_nodes:
if n.op in ("placeholder", "get_attr", "output") or n in nodes_to_skip:
continue
maybe_subgraph = _get_subgraph_containing_node(n, subgraphs_dedup)
if maybe_subgraph is not None:
first_node, last_node = maybe_subgraph[0], maybe_subgraph[-1]
nodes_to_skip.update(maybe_subgraph)
else:
first_node, last_node = n, n
def maybe_remap_node_to_shadow(node):
"""
If unshadowed `node` has a shadow version, return that. If not,
return `node`.
"""
if not isinstance(node, Node):
# handle scalars
return node
if node.op in ("placeholder", "get_attr"):
return node
# Find the shadowed version of this arg from the previous
# subgraph. For this, we need to:
# 1. navigate to the first node of the previous subgraph
# 2. get the output of the shadow wrapper which has (1) as an input
# For now, assume the arg is in matched subgraphs. In the
# future we may have to handle the case where this is not true.
prev_subgraph = _get_subgraph_containing_node(node, subgraphs_dedup)
if prev_subgraph is None:
prev_subgraph = [node]
prev_first_node = prev_subgraph[0]
prev_shadow_output = orig_first_node_to_shadow_out_node[prev_first_node]
return prev_shadow_output
cur_shadow_input = orig_first_node_to_shadow_in_node[first_node]
assert cur_shadow_input is not None
cur_shadow_input.args = tree_map(
maybe_remap_node_to_shadow, cur_shadow_input.args
)
cur_shadow_input.kwargs = tree_map(
maybe_remap_node_to_shadow, cur_shadow_input.kwargs
)
model.recompile()
def _get_weight_info_from_shadow_wrapper(shadow_wrapper: torch.nn.Module):
# input: shadow wrapper module
# output if shadow wrapper module has a weighted op:
# (quantize_fn, (quantize_fn_args))
# output if shadow wrapper module doesn't have a weighted op:
# None
# For now, assume that the weight is the second input
# to the shadow module. If that changes, we can fix it later.
placeholders_seen = 0
for shadow_n in shadow_wrapper.graph.nodes: # type: ignore[union-attr]
if shadow_n.op != "placeholder":
continue
placeholders_seen += 1
if placeholders_seen != 2:
continue
# the subgraph looks like
#
# _input_scale_1 = self._input_scale_1
# _input_zero_point_1 = self._input_zero_point_1
# quantize_per_channel = torch.quantize_per_channel(
# w2_0, _input_scale_1, _input_zero_point_1,
# 0, torch.qint8)
#
# we have `w2_0`, and are navigating this subgraph
# to get `_input_scale_1` and `_input_zero_point_1`
assert len(shadow_n.users) == 1
quant_node = next(iter(shadow_n.users.keys()))
new_args: Any = None
if quant_node.target == torch.quantize_per_channel:
_weight, scale_node, zp_node, axis, dtype = quant_node.args
scale_val = getattr_from_fqn(shadow_wrapper, scale_node.target)
zp_val = getattr_from_fqn(shadow_wrapper, zp_node.target)
new_args = (scale_val, zp_val, axis, dtype)
else:
assert quant_node.target == torch.quantize_per_tensor
_weight, scale_node, zp_node, dtype = quant_node.args
scale_val = getattr_from_fqn(shadow_wrapper, scale_node.target)
zp_val = getattr_from_fqn(shadow_wrapper, zp_node.target)
new_args = (scale_val, zp_val, dtype)
return (quant_node.target, new_args)
return None
def extract_weight_comparison(m: GraphModule) -> NSResultsType:
# example graph:
#
# w1 = self.w1
# b1 = self.b1
# linear = torch._C._nn.linear(x, w1, b1)
# shadow_0_0 = self.shadow_0_0(linear)
# shadow_wrapper_0_1 = self.shadow_wrapper_0_1(x, w1, b1)
# shadow_0_1 = self.shadow_0_1(shadow_wrapper_0_1, linear)
#
# algorithm:
# 1. for each call_function node matching our allowlist:
# 2. if corresponding shadow wrapper exists, extract the weight pair
#
# Note: this is not super robust, but that's ok because this is
# just for legacy customers who depend on the previous two-model version
# of this API. TBD if we need to make this robust.
# Note: modules are not supported, since existing customers only
# use functions.
# TODO(future PR): move this to config
weighted_ops = {
torch.nn.functional.linear,
}
results: NSResultsType = {"model": {NSSingleResultValuesType.WEIGHT.value: {}}}
for n in m.graph.nodes: # type: ignore[union-attr]
if not (n.op == "call_function" and n.target in weighted_ops):
continue
# Check if we have a corresponding shadow wrapper
# TODO(future PR, if needed): support kwargs
# TODO(future PR, if needed): support multiple shadow users
first_arg = n.args[0]
shadow_wrapper_node = None
for user in first_arg.users:
# TODO(before land): fix string match
if user.op == "call_module" and user.target.startswith("shadow_wrapper"):
shadow_wrapper_node = user
break
if shadow_wrapper_node is None:
continue
shadow_wrapper = getattr_from_fqn(
m, shadow_wrapper_node.target
) # type: ignore[arg-type]
weight_info = _get_weight_info_from_shadow_wrapper(shadow_wrapper)
if weight_info is None:
continue
# get weight
w_node = n.args[1]
w_obj = getattr_from_fqn(m, w_node.target).detach()
# get a quantized version of weight
quant_fn, quant_fn_args_except_first = weight_info
new_args = (w_obj, *quant_fn_args_except_first)
w_obj_q = quant_fn(*new_args)
# add a comparison
ref_node_name = n.name
prev_node_name = n.name
ref_node_type = get_target_type_str(n, m)
prev_node_type = ref_node_type
fqn = None
if hasattr(m, "_node_name_to_scope"):
fqn = m._node_name_to_scope[n.name][0] # type: ignore[index]
comparison = torch.ao.ns.fx.utils.compute_sqnr(w_obj, w_obj_q)
result_fp32 = {
"res_type": NSSingleResultValuesType.WEIGHT.value,
"values": [w_obj],
"prev_node_name": prev_node_name,
"prev_node_target_type": prev_node_type,
"ref_node_name": ref_node_name,
"ref_node_target_type": ref_node_type,
"index_within_arg": 0,
"index_of_arg": 0,
"fqn": fqn,
"qconfig_str": "",
"comparisons": [comparison],
"comparison_fn_name": "sqnr",
}
result_q = {
"res_type": NSSingleResultValuesType.WEIGHT.value,
"values": [w_obj_q],
"prev_node_name": prev_node_name,
"prev_node_target_type": prev_node_type,
"ref_node_name": ref_node_name,
"ref_node_target_type": ref_node_type,
"index_within_arg": 0,
"index_of_arg": 0,
"fqn": fqn,
"qconfig_str": "",
"comparisons": [comparison],
"comparison_fn_name": "sqnr",
}
# go from subgraph_n_1 to subgraph_n_0
_1, _2, node_idx, _3 = shadow_wrapper_node.target.split("_")
name_fp32 = f"subgraph_{node_idx}_0"
name_q = f"subgraph_{node_idx}_1"
results["model"][NSSingleResultValuesType.WEIGHT.value][name_fp32] = [
result_fp32
]
results["model"][NSSingleResultValuesType.WEIGHT.value][name_q] = [result_q]
return results
# TODO(future PR): redesign this to make it easier to consume outputs
def group_results_by_subgraph(results: NSResultsType) -> Any:
"""
Creates a comparison of results
Input:
{
'model': {
'node_output': {
'subgraph_0_0': [
'values': [torch.tensor(...), ...], ...
'ref_node_name': ...,
'ref_node_target_type': ...,
'qconfig_str': ...,
'comparisons': [], ...
'comparison_fn_name': '',
'fqn': '...',
],
'subgraph_0_1': [
'values': [torch.tensor(...), ...], ...
'ref_node_name': ...,
'ref_node_target_type': ...,
'qconfig_str': ...,
'comparisons': [torch.tensor(...), ...], ...
'comparison_fn_name': '...',
'fqn': '...',
],
...
},
},
}
Output:
{
'subgraph_0': {
'0': {
'ref_node_name': '...',
'ref_node_target_type': ...,
'values': [torch.tensor(...), ...],
'qconfig_str': None,
'comparisons': [torch.tensor(...), ...], ...
'comparison_fn_name': '...',
'fqn': '...',
},
'1': {
'ref_node_name': '...',
'ref_node_target_type': ...,
'values': [torch.tensor(...), ...],
'qconfig_str': '...',
'comparisons': [torch.tensor(...), ...], ...
'comparison_fn_name': '...',
'fqn': '...',
},
},
}
"""
subgraph_name_to_subgraph_results: Any = collections.defaultdict(dict)
# node_output or weight
key_to_use = next(iter(results["model"].keys()))
for subgraph_name_with_idx, subgraph_candidate_results in results["model"][
key_to_use
].items():
# convert from `subgraph_m_n` to `subgraph_m` and `n`
(
subgraph_str,
subgraph_idx,
subgraph_candidate_idx,
) = subgraph_name_with_idx.split("_")
subgraph_name = f"{subgraph_str}_{subgraph_idx}"
subgraph_results = {
"ref_node_name": subgraph_candidate_results[0]["ref_node_name"],
"ref_node_target_type": subgraph_candidate_results[0][
"ref_node_target_type"
],
"fqn": subgraph_candidate_results[0]["fqn"],
"values": subgraph_candidate_results[0]["values"],
"qconfig_str": subgraph_candidate_results[0]["qconfig_str"],
"comparisons": subgraph_candidate_results[0]["comparisons"],
"comparison_fn_name": subgraph_candidate_results[0]["comparison_fn_name"],
}
subgraph_name_to_subgraph_results[subgraph_name][
subgraph_candidate_idx
] = subgraph_results
return dict(subgraph_name_to_subgraph_results)
# TODO(future PR): redesign this to make it easier to consume outputs
def create_results_comparison(
results_grouped,
) -> Any:
"""
Input:
{
'subgraph_0': {
'0': {
'ref_node_name': '...',
'ref_node_target_type': ...,
'values': [torch.tensor(...), ...],
'qconfig_str': '',
'comparisons': [],
'comparison_fn_name': '',
'fqn': '...',
},
'1': {
'ref_node_name': '...',
'ref_node_target_type': ...,
'values': [torch.tensor(...), ...],
'qconfig_str': '...',
'comparisons': [torch.tensor(...), ...],
'comparison_fn_name': 'sqnr',
'fqn': '...',
},
},
}
Output:
{
'subgraph_0': {
'ref_node_name': '...',
'ref_node_target_type': '...',
'fqn': '...',
'candidates': {
'1': {
'qconfig_str': ...,
'comparison_fn_name': 'sqnr',
'cmp_raw': [..., ...],
'cmp_mean': ...,
},
...,
},
},
}
"""
results_comparison = {}
for subgraph_name, subgraph_results in results_grouped.items():
candidates = {}
for subgraph_inner_name, subgraph_inner_result in subgraph_results.items():
# skip comparing baseline to baseline
if subgraph_inner_name == "0":
continue
# we expect the comparisons to be precalculated from
# calibration, so we just fetch them here
cmp_raw = subgraph_inner_result["comparisons"]
cmp_raw_tensor = torch.stack(cmp_raw)
candidates[subgraph_inner_name] = {
"qconfig_str": subgraph_inner_result["qconfig_str"],
"comparison_fn_name": subgraph_inner_result["comparison_fn_name"],
"cmp_raw": cmp_raw_tensor,
"cmp_mean": torch.mean(cmp_raw_tensor),
}
results_comparison[subgraph_name] = {
"ref_node_name": subgraph_results["0"]["ref_node_name"],
"ref_node_target_type": subgraph_results["0"]["ref_node_target_type"],
"fqn": subgraph_results["0"]["fqn"],
"candidates": candidates,
}
return results_comparison
# TODO(future PR): redesign this to make it easier to consume outputs
def print_n_shadows_summary(
results_comparison,
) -> None:
"""
Input:
{
'subgraph_0': {
'ref_node_name': 'linear1',
'ref_node_target_type': '...',
'fqn': '...',
'candidates': {
'1': {
'qconfig_str': ...,
'comparison_fn_name': ...,
'cmp_raw': [45.0, 55.0],
'cmp_mean': 50.0,
},
...,
},
},
}
Prints:
node_name | node_type | fqn | 0 | 1 | ...
linear1 | ... | ... | 45.0 | 50.0 | ...
"""
try:
from tabulate import tabulate
except ImportError:
print(
"`print_tabular` relies on the library `tabulate`, "
"which could not be found on this machine. Run `pip "
"install tabulate` to install the library."
)
return
results = []
for subgraph_data in results_comparison.values():
mean_all_candidates = [
candidate["cmp_mean"]
for candidate_name, candidate in subgraph_data["candidates"].items()
]
data_row = [
subgraph_data["ref_node_name"],
subgraph_data["ref_node_target_type"],
subgraph_data["fqn"],
*mean_all_candidates,
]
results.append(data_row)
max_candidate_idx_len = -1
for data_row in results:
max_candidate_idx_len = max(max_candidate_idx_len, len(data_row[1]))
candidate_idx_headers = [str(x) for x in range(max_candidate_idx_len)]
headers = ["node_name", "node_type", "fqn", *candidate_idx_headers]
print(tabulate(results, headers=headers))
|