1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
# mypy: allow-untyped-defs
from itertools import chain
from operator import getitem
from typing import Callable, Dict, Optional, Set, Tuple, Type, Union
import torch
import torch.nn.functional as F
from torch import nn
from torch.ao.pruning.sparsifier.base_sparsifier import BaseSparsifier
from torch.fx import symbolic_trace
from torch.nn.utils import parametrize
from .match_utils import apply_match, MatchAllNode
from .parametrization import BiasHook, FakeStructuredSparsity, module_contains_param
from .prune_functions import (
prune_conv2d,
prune_conv2d_activation_conv2d,
prune_conv2d_activation_pool_conv2d,
prune_conv2d_conv2d,
prune_conv2d_pool_activation_conv2d,
prune_conv2d_pool_flatten_linear,
prune_linear,
prune_linear_activation_linear,
prune_linear_linear,
prune_lstm_output_layernorm_linear,
prune_lstm_output_linear,
)
def _get_supported_structured_pruning_modules():
SUPPORTED_STRUCTURED_PRUNING_MODULES = { # added to config if None given
nn.Linear,
nn.Conv2d,
nn.LSTM,
}
return SUPPORTED_STRUCTURED_PRUNING_MODULES
def _get_supported_activation_functions():
SUPPORTED_ACTIVATION_FUNCTIONS = {
F.relu,
F.rrelu,
F.hardtanh,
F.relu6,
F.sigmoid,
F.hardsigmoid,
F.tanh,
F.silu,
F.mish,
F.hardswish,
F.elu,
F.celu,
F.selu,
F.hardshrink,
F.leaky_relu,
F.logsigmoid,
F.softplus,
F.prelu,
F.softsign,
F.tanhshrink,
F.gelu,
}
return SUPPORTED_ACTIVATION_FUNCTIONS
def _get_supported_activation_modules():
SUPPORTED_ACTIVATION_MODULES = {
nn.ReLU,
nn.RReLU,
nn.Hardtanh,
nn.ReLU6,
nn.Sigmoid,
nn.Hardsigmoid,
nn.Tanh,
nn.SiLU,
nn.Mish,
nn.Hardswish,
nn.ELU,
nn.CELU,
nn.SELU,
nn.Hardshrink,
nn.LeakyReLU,
nn.LogSigmoid,
nn.Softplus,
nn.PReLU,
nn.Softsign,
nn.Tanhshrink,
nn.GELU,
}
return SUPPORTED_ACTIVATION_MODULES
def _get_default_structured_pruning_patterns() -> (
Dict[
Tuple[Union[Type[nn.Module], Callable, MatchAllNode, str], ...],
Callable[..., None],
]
):
"""
Returns the patterns for conv2d / linear conversion for each element in the activation functions/modules defined above.
"""
patterns: Dict[
Tuple[Union[Type[nn.Module], Callable, MatchAllNode, str], ...],
Callable[..., None],
] = {
# linear -> linear
(nn.Linear, "output"): prune_linear,
(nn.Linear, nn.Linear): prune_linear_linear,
# conv2d -> conv2d
(nn.Conv2d, "output"): prune_conv2d,
(nn.Conv2d, nn.Conv2d): prune_conv2d_conv2d,
# TODO LSTM Structured pruning does not support returned state currently.
# Should find a way to explicitly match getitem(0) instead of getitem.
# This will also require changing the pruning function.
# lstm -> getitem(0) -> linear
(nn.LSTM, getitem, nn.Linear): prune_lstm_output_linear,
# lstm -> getitem(0) -> layernorm -> linear
(nn.LSTM, getitem, nn.LayerNorm, nn.Linear): prune_lstm_output_layernorm_linear,
}
for activation in chain(
_get_supported_activation_functions(), _get_supported_activation_modules()
):
patterns.update(
{
# linear -> activation -> linear
(nn.Linear, activation, nn.Linear): prune_linear_activation_linear,
# conv2d -> activation -> conv2d
(nn.Conv2d, activation, nn.Conv2d): prune_conv2d_activation_conv2d,
# conv2d -> activation -> pool -> conv2d
(
nn.Conv2d,
activation,
nn.AvgPool2d,
nn.Conv2d,
): prune_conv2d_activation_pool_conv2d,
(
nn.Conv2d,
activation,
F.avg_pool2d,
nn.Conv2d,
): prune_conv2d_activation_pool_conv2d,
(
nn.Conv2d,
activation,
nn.MaxPool2d,
nn.Conv2d,
): prune_conv2d_activation_pool_conv2d,
(
nn.Conv2d,
activation,
F.max_pool2d,
nn.Conv2d,
): prune_conv2d_activation_pool_conv2d,
# conv2d -> pool -> activation -> conv2d
(
nn.Conv2d,
nn.AvgPool2d,
activation,
nn.Conv2d,
): prune_conv2d_pool_activation_conv2d,
(
nn.Conv2d,
F.avg_pool2d,
activation,
nn.Conv2d,
): prune_conv2d_pool_activation_conv2d,
(
nn.Conv2d,
nn.MaxPool2d,
activation,
nn.Conv2d,
): prune_conv2d_pool_activation_conv2d,
(
nn.Conv2d,
F.max_pool2d,
activation,
nn.Conv2d,
): prune_conv2d_pool_activation_conv2d,
# conv2d -> adaptive pool -> flatten -> linear
(
nn.Conv2d,
nn.AdaptiveAvgPool2d,
nn.Flatten,
nn.Linear,
): prune_conv2d_pool_flatten_linear,
(
nn.Conv2d,
nn.AdaptiveAvgPool2d,
torch.flatten,
nn.Linear,
): prune_conv2d_pool_flatten_linear,
(
nn.Conv2d,
nn.AdaptiveMaxPool2d,
nn.Flatten,
nn.Linear,
): prune_conv2d_pool_flatten_linear,
(
nn.Conv2d,
nn.AdaptiveMaxPool2d,
torch.flatten,
nn.Linear,
): prune_conv2d_pool_flatten_linear,
}
)
return patterns
class BaseStructuredSparsifier(BaseSparsifier):
r"""Base class for structured pruning.
Abstract methods that need to be implemented:
- update_mask: Function to compute a new mask for all keys in the
`groups` attribute.
Args:
- defaults [dict]: default configurations will be attached to the
configuration. Only the keys that don't exist in the `config` will
be updated.
"""
def __init__(self, defaults, patterns=None):
super().__init__(defaults)
if patterns is None:
patterns = _get_default_structured_pruning_patterns()
self.patterns = patterns
def make_config_from_model(
self,
model: nn.Module,
SUPPORTED_MODULES: Optional[Set[Type]] = None,
) -> None:
if SUPPORTED_MODULES is None:
SUPPORTED_MODULES = _get_supported_structured_pruning_modules()
super().make_config_from_model(model, SUPPORTED_MODULES=SUPPORTED_MODULES)
def _prepare(self, *args, **kwargs) -> None:
r"""This function will attach the FakeStructuredSparsity parameterizations
and BiasHooks at the appropriate points in the model.
"""
for config in self.groups:
module = config["module"]
tensor_name = config["tensor_name"]
parametrization = config.get("parametrization", FakeStructuredSparsity)
tensor = getattr(module, tensor_name)
mask = config.get(
"mask",
torch.ones(tensor.shape[0], dtype=torch.bool, device=tensor.device),
)
self.state[config["tensor_fqn"]]["mask"] = mask
parametrize.register_parametrization(
module, tensor_name, parametrization(mask)
)
# if linear / conv, we add in bias hooks
if isinstance(module, (nn.Linear, nn.Conv2d)):
prune_bias = config.get("prune_bias", True)
if module.bias is not None:
module.register_parameter(
"_bias", nn.Parameter(module.bias.detach())
)
module.bias = None
module.prune_bias = prune_bias
module.register_forward_hook(
BiasHook(module.parametrizations.weight[0], prune_bias)
)
def prune(self) -> None:
r"""
This function will FX symbolically trace the model and then find instances of the patterns
defined in self.patterns (by default SUPPORTED_STRUCTURED_PRUNING_PATTERNS ).
For each pattern, it will apply to corresponding conversion function, which will modify the output
and input size expected by the modules within the pattern
"""
self.traced = symbolic_trace(self.model)
modules = dict(self.traced.named_modules())
# Right now we check for matches simply by iterating across all the patterns
# if this is slow we can store patterns in a trie-structure and modify this code for faster lookup
for node in self.traced.graph.nodes:
for pattern, convert_fn in self.patterns.items():
matched = apply_match(modules, pattern, node, [])
if matched is None:
continue
first_module = modules.get(node.target)
# check if first module exists and has appropriate parameterization, otherwise skip
if (
first_module is not None
and parametrize.is_parametrized(first_module)
and module_contains_param(first_module, FakeStructuredSparsity)
):
convert_block = []
for node in matched:
if node.op == "call_module":
convert_block.append(modules.get(node.target))
elif node.op == "call_function":
convert_block.append(node.target)
convert_fn(*convert_block)
for module in self.traced.modules():
if module_contains_param(module, FakeStructuredSparsity):
raise Exception( # noqa: TRY002
f"Error: {module} still contains FakeStructuredSparsity parametrizations!"
)
self.traced.graph.lint()
self.traced.recompile()
return self.traced # type: ignore[return-value]
|