1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
# mypy: allow-untyped-defs
import torch
from torch import nn
from torch.nn.utils.parametrize import is_parametrized
def module_contains_param(module, parametrization):
if is_parametrized(module):
# see if any of the module tensors have a parametriztion attached that matches the one passed in
return any(
any(isinstance(param, parametrization) for param in param_list)
for key, param_list in module.parametrizations.items()
)
return False
# Structured Pruning Parameterizations
class FakeStructuredSparsity(nn.Module):
r"""
Parametrization for Structured Pruning. Like FakeSparsity, this should be attached to
the 'weight' or any other parameter that requires a mask.
Instead of an element-wise bool mask, this parameterization uses a row-wise bool mask.
"""
def __init__(self, mask):
super().__init__()
self.register_buffer("mask", mask)
def forward(self, x):
assert isinstance(self.mask, torch.Tensor)
assert self.mask.shape[0] == x.shape[0]
shape = [1] * len(x.shape)
shape[0] = -1
return self.mask.reshape(shape) * x
def state_dict(self, *args, **kwargs):
# avoid double saving masks
return {}
class BiasHook:
def __init__(self, parametrization, prune_bias):
self.param = parametrization
self.prune_bias = prune_bias
def __call__(self, module, input, output):
if getattr(module, "_bias", None) is not None:
bias = module._bias.data
if self.prune_bias:
bias[~self.param.mask] = 0
# reshape bias to broadcast over output dimensions
idx = [1] * len(output.shape)
idx[1] = -1
bias = bias.reshape(idx)
output += bias
return output
|