File: prune_functions.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (478 lines) | stat: -rw-r--r-- 19,107 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# mypy: allow-untyped-defs
"""
Collection of conversion functions for linear / conv2d structured pruning
Also contains utilities for bias propagation
"""
from typing import Callable, cast, List, Optional, Tuple

import torch
from torch import nn, Tensor
from torch.nn.utils import parametrize
from torch.nn.utils.parametrize import ParametrizationList

from .parametrization import BiasHook, FakeStructuredSparsity


# BIAS PROPAGATION
def _remove_bias_handles(module: nn.Module) -> None:
    if hasattr(module, "_forward_hooks"):
        bias_hooks: List[int] = []
        for key, hook in module._forward_hooks.items():
            if isinstance(hook, BiasHook):
                bias_hooks.append(key)

        for key in bias_hooks:
            del module._forward_hooks[key]


def _get_adjusted_next_layer_bias(
    next_layer: nn.Module, pruned_biases: Tensor, mask: Tensor
) -> nn.Parameter:
    r"""Returns new adjusted bias for the second supported module"""
    if parametrize.is_parametrized(next_layer):
        # need to access original weight
        parametrization_dict = cast(nn.ModuleDict, next_layer.parametrizations)
        weight_parameterizations = cast(
            ParametrizationList, parametrization_dict.weight
        )
        next_weight = weight_parameterizations.original
    else:
        next_weight = cast(Tensor, next_layer.weight)

    scaling_weight = next_weight[:, ~mask]
    if isinstance(next_layer, nn.Conv2d):  # checking for Conv2d
        # Propagating first layer pruned biases and calculating the new second layer bias
        # involves more steps since the Conv2d scaling weight has extra dimensions,
        # so adding bias involves broadcasting, logically:
        # for each channel k in range(oC):
        #     scaled_biases = sum(first_bias[pruned_idx] @ next_weight[k, pruned_idx, :, :].T)
        #     new_next_bias[k] = old_next_bias[k] + scaled_biases
        scaling_product = torch.matmul(
            pruned_biases.reshape(1, -1), torch.transpose(scaling_weight, 1, 2)
        )
        sum_range = list(range(len(scaling_product.shape)))[
            1:
        ]  # all but the first dimension
        scaled_biases = torch.sum(scaling_product, sum_range)
    elif isinstance(next_layer, nn.Linear):  # Linear
        scaled_biases = torch.matmul(
            pruned_biases, torch.transpose(scaling_weight, 0, 1)
        )  # recall b2_new = b1 @ w2.T + b2
    else:
        raise NotImplementedError(f"Type {type(next_layer)} not supported yet.")

    if (
        parametrize.is_parametrized(next_layer)
        and getattr(next_layer, "_bias", None) is not None
    ):  # next_layer is parametrized & has original bias ._bias
        adjusted_bias = nn.Parameter(scaled_biases + next_layer._bias)  # type: ignore[operator]
    elif (
        not parametrize.is_parametrized(next_layer) and next_layer.bias is not None
    ):  # next_layer not parametrized & has .bias
        adjusted_bias = nn.Parameter(scaled_biases + next_layer.bias)  # type: ignore[operator]
    else:  # next_layer has no bias
        adjusted_bias = nn.Parameter(scaled_biases)
    return adjusted_bias


def _prune_module_bias(module: nn.Module, mask: Tensor) -> None:
    r"""Applies mask to given modules bias"""
    # prune bias along with weights, discard pruned indices of bias
    original_bias = cast(Tensor, getattr(module, "_bias", module.bias))
    if original_bias is not None:
        module.bias = nn.Parameter(original_bias[mask])

    #  remove _bias parameter
    if hasattr(module, "_bias"):
        delattr(module, "_bias")


def _propagate_module_bias(module: nn.Module, mask: Tensor) -> Optional[Tensor]:
    r"""
    In the case that we need to propagate biases, this function will return the biases we need
    """
    # set current module bias
    if module.bias is not None:
        module.bias = nn.Parameter(cast(Tensor, module.bias)[mask])
    elif getattr(module, "_bias", None) is not None:
        module.bias = nn.Parameter(cast(Tensor, module._bias)[mask])

    # get pruned biases to propagate to subsequent layer
    if getattr(module, "_bias", None) is not None:
        pruned_biases = cast(Tensor, module._bias)[~mask]
    else:
        pruned_biases = None

    if hasattr(module, "_bias"):
        delattr(module, "_bias")

    return pruned_biases


# LINEAR
def _prune_linear_helper(linear: nn.Linear) -> Tensor:
    # expects linear to be a parameterized linear module
    parametrization_dict = cast(nn.ModuleDict, linear.parametrizations)
    weight_parameterizations = cast(ParametrizationList, parametrization_dict.weight)
    for p in weight_parameterizations:
        if isinstance(p, FakeStructuredSparsity):
            mask = cast(Tensor, p.mask)

    with torch.no_grad():
        parametrize.remove_parametrizations(linear, "weight", leave_parametrized=True)
        linear.weight = nn.Parameter(linear.weight[mask])  # type: ignore[possibly-undefined]
    linear.out_features = linear.weight.shape[0]
    _remove_bias_handles(linear)

    return mask


def prune_linear(linear: nn.Linear) -> None:
    mask = _prune_linear_helper(linear)
    if getattr(linear, "prune_bias", False):
        _prune_module_bias(linear, mask)


def prune_linear_linear(linear1: nn.Linear, linear2: nn.Linear) -> None:
    prune_linear_activation_linear(linear1, None, linear2)


def prune_linear_activation_linear(
    linear1: nn.Linear,
    activation: Optional[Callable[[Tensor], Tensor]],
    linear2: nn.Linear,
):
    mask = _prune_linear_helper(linear1)
    if getattr(linear1, "prune_bias", False):
        _prune_module_bias(linear1, mask)
    else:
        pruned_biases = _propagate_module_bias(linear1, mask)
        if pruned_biases is not None:
            if activation:
                pruned_biases = activation(pruned_biases)
            linear2.bias = _get_adjusted_next_layer_bias(linear2, pruned_biases, mask)

    with torch.no_grad():
        if parametrize.is_parametrized(linear2):
            parametrization_dict = cast(nn.ModuleDict, linear2.parametrizations)
            weight_parameterizations = cast(
                ParametrizationList, parametrization_dict.weight
            )

            weight_parameterizations.original = nn.Parameter(
                weight_parameterizations.original[:, mask]
            )
            linear2.in_features = weight_parameterizations.original.shape[1]
        else:
            linear2.weight = nn.Parameter(linear2.weight[:, mask])
            linear2.in_features = linear2.weight.shape[1]


# CONV2D
def _prune_conv2d_helper(conv2d: nn.Conv2d) -> Tensor:
    parametrization_dict = cast(nn.ModuleDict, conv2d.parametrizations)
    weight_parameterizations = cast(ParametrizationList, parametrization_dict.weight)
    for p in weight_parameterizations:
        if isinstance(p, FakeStructuredSparsity):
            mask = cast(Tensor, p.mask)

    with torch.no_grad():
        parametrize.remove_parametrizations(conv2d, "weight", leave_parametrized=True)
        conv2d.weight = nn.Parameter(conv2d.weight[mask])  # type: ignore[possibly-undefined]
    conv2d.out_channels = conv2d.weight.shape[0]

    _remove_bias_handles(conv2d)
    return mask


def prune_conv2d_padded(conv2d_1: nn.Conv2d) -> None:
    parametrization_dict = cast(nn.ModuleDict, conv2d_1.parametrizations)
    weight_parameterizations = cast(ParametrizationList, parametrization_dict.weight)
    for p in weight_parameterizations:
        if isinstance(p, FakeStructuredSparsity):
            mask = cast(Tensor, p.mask)

    with torch.no_grad():
        parametrize.remove_parametrizations(conv2d_1, "weight", leave_parametrized=True)

    if getattr(conv2d_1, "_bias", None) is not None:
        if (
            conv2d_1.bias is not None
        ):  # conv2d_1 has original bias and bias propagated from previous layer
            new_bias = torch.zeros(conv2d_1.bias.shape)
            new_bias[mask] = conv2d_1.bias[mask]  # type: ignore[possibly-undefined]
            # adjusted bias that to keep in conv2d_1
            new_bias[~mask] = cast(Tensor, conv2d_1._bias)[~mask]
            # pruned biases that are kept instead of propagated
            conv2d_1.bias = nn.Parameter(new_bias)
        else:  # conv2d_1 has only original bias
            conv2d_1.bias = nn.Parameter(cast(Tensor, conv2d_1._bias))
    else:
        # no original bias, only propagated bias
        if (
            conv2d_1.bias is not None
        ):  # conv2d_1 has bias propagated from previous layer
            conv2d_1.bias.data[~mask] = 0  # type: ignore[possibly-undefined]

    if hasattr(conv2d_1, "_bias"):
        delattr(conv2d_1, "_bias")


def prune_conv2d(conv2d: nn.Conv2d) -> None:
    mask = _prune_conv2d_helper(conv2d)
    if getattr(conv2d, "prune_bias", False):
        _prune_module_bias(conv2d, mask)


def prune_conv2d_conv2d(conv2d_1: nn.Conv2d, conv2d_2: nn.Conv2d) -> None:
    prune_conv2d_activation_conv2d(conv2d_1, None, conv2d_2)


def prune_conv2d_activation_conv2d(
    conv2d_1: nn.Conv2d,
    activation: Optional[Callable[[Tensor], Tensor]],
    conv2d_2: nn.Conv2d,
):
    r"""
    Fusion Pattern for conv2d -> some activation module / function -> conv2d layers
    """
    parametrization_dict = cast(nn.ModuleDict, conv2d_1.parametrizations)
    weight_parameterizations = cast(ParametrizationList, parametrization_dict.weight)
    for p in weight_parameterizations:
        if isinstance(p, FakeStructuredSparsity):
            mask = cast(Tensor, p.mask)

    prune_bias = getattr(conv2d_1, "prune_bias", False)
    if (
        hasattr(conv2d_2, "padding")
        and cast(Tuple[int], conv2d_2.padding) > (0, 0)
        and (conv2d_1.bias is not None or getattr(conv2d_1, "_bias", None) is not None)
    ):
        prune_conv2d_padded(conv2d_1)
    else:
        mask = _prune_conv2d_helper(conv2d_1)
        if prune_bias:
            _prune_module_bias(conv2d_1, mask)
        else:
            pruned_biases = _propagate_module_bias(conv2d_1, mask)
            if pruned_biases is not None:
                if activation:
                    pruned_biases = activation(pruned_biases)
                conv2d_2.bias = _get_adjusted_next_layer_bias(
                    conv2d_2, pruned_biases, mask
                )

        if (
            not (
                hasattr(conv2d_2, "padding")
                and cast(Tuple[int], conv2d_2.padding) > (0, 0)
            )
            or conv2d_1.bias is None
        ):
            with torch.no_grad():
                if parametrize.is_parametrized(conv2d_2):
                    parametrization_dict = cast(
                        nn.ModuleDict, conv2d_2.parametrizations
                    )
                    weight_parameterizations = cast(
                        ParametrizationList, parametrization_dict.weight
                    )
                    weight_parameterizations.original = nn.Parameter(
                        weight_parameterizations.original[:, mask]
                    )
                    conv2d_2.in_channels = weight_parameterizations.original.shape[1]
                else:
                    conv2d_2.weight = nn.Parameter(conv2d_2.weight[:, mask])
                    conv2d_2.in_channels = conv2d_2.weight.shape[1]


def prune_conv2d_pool_activation_conv2d(
    c1: nn.Conv2d,
    pool: nn.Module,
    activation: Optional[Callable[[Tensor], Tensor]],
    c2: nn.Conv2d,
) -> None:
    prune_conv2d_activation_conv2d(c1, activation, c2)


def prune_conv2d_activation_pool_conv2d(
    c1: nn.Conv2d,
    activation: Optional[Callable[[Tensor], Tensor]],
    pool: nn.Module,
    c2: nn.Conv2d,
) -> None:
    prune_conv2d_activation_conv2d(c1, activation, c2)


def prune_conv2d_pool_flatten_linear(
    conv2d: nn.Conv2d,
    pool: nn.Module,
    flatten: Optional[Callable[[Tensor], Tensor]],
    linear: nn.Linear,
) -> None:
    mask = _prune_conv2d_helper(conv2d)

    # We map the pruned indices of the Conv2d output to the flattened indices of the Linear following the Flatten layer.
    # we determine the flattening scale (h * w), and readjust `first_pruned_indices`
    # (each idx maps to range idx * h * w to (idx+1) * h * w), `first_valid_indices`,
    # and `pruned_biases` (repeat each bias by h * w).
    if parametrize.is_parametrized(linear):
        parametrization_dict = cast(nn.ModuleDict, linear.parametrizations)
        weight_parameterizations = cast(
            ParametrizationList, parametrization_dict.weight
        )
        linear_ic = weight_parameterizations.original.shape[1]
    else:
        linear_ic = linear.weight.shape[1]

    conv2d_oc = len(mask)
    assert (
        linear_ic % conv2d_oc == 0
    ), f"Flattening from dimensions {conv2d_oc} to {linear_ic} not supported"

    flatten_scale = linear_ic // conv2d_oc
    flattened_mask = torch.tensor(
        [[val] * flatten_scale for val in mask], dtype=torch.bool, device=mask.device
    ).flatten()

    if getattr(conv2d, "prune_bias", False):
        _prune_module_bias(conv2d, mask)
    else:
        pruned_biases = cast(Tensor, _propagate_module_bias(conv2d, mask))
        flattened_pruned_biases = torch.tensor(
            [[bias] * flatten_scale for bias in pruned_biases], device=mask.device
        ).flatten()
        linear.bias = _get_adjusted_next_layer_bias(
            linear, flattened_pruned_biases, flattened_mask
        )

    with torch.no_grad():
        if parametrize.is_parametrized(linear):
            parametrization_dict = cast(nn.ModuleDict, linear.parametrizations)
            weight_parameterizations = cast(
                ParametrizationList, parametrization_dict.weight
            )
            weight_parameterizations.original = nn.Parameter(
                weight_parameterizations.original[:, flattened_mask]
            )
            linear.in_features = weight_parameterizations.original.shape[1]
        else:
            linear.weight = nn.Parameter(linear.weight[:, flattened_mask])
            linear.in_features = linear.weight.shape[1]


def prune_lstm_output_linear(
    lstm: nn.LSTM, getitem: Callable, linear: nn.Linear
) -> None:
    prune_lstm_output_layernorm_linear(lstm, getitem, None, linear)


def prune_lstm_output_layernorm_linear(
    lstm: nn.LSTM,
    getitem: Callable,
    layernorm: Optional[nn.LayerNorm],
    linear: nn.Linear,
) -> None:
    for i in range(lstm.num_layers):
        if parametrize.is_parametrized(lstm, f"weight_ih_l{i}"):
            parametrization_dict = cast(nn.ModuleDict, lstm.parametrizations)
            weight_parameterizations = cast(
                ParametrizationList, parametrization_dict[f"weight_ih_l{i}"]
            )
            mask = weight_parameterizations[0].mask

            with torch.no_grad():
                parametrize.remove_parametrizations(
                    lstm, f"weight_ih_l{i}", leave_parametrized=True
                )
                setattr(
                    lstm,
                    f"weight_ih_l{i}",
                    nn.Parameter(getattr(lstm, f"weight_ih_l{i}")[mask]),
                )
                setattr(
                    lstm,
                    f"bias_ih_l{i}",
                    nn.Parameter(getattr(lstm, f"bias_ih_l{i}")[mask]),
                )

        if parametrize.is_parametrized(lstm, f"weight_hh_l{i}"):
            parametrization_dict = cast(nn.ModuleDict, lstm.parametrizations)
            weight_parameterizations = cast(
                ParametrizationList, parametrization_dict[f"weight_hh_l{i}"]
            )
            mask = weight_parameterizations[0].mask

            with torch.no_grad():
                parametrize.remove_parametrizations(
                    lstm, f"weight_hh_l{i}", leave_parametrized=True
                )
                # splitting out hidden-hidden masks
                W_hi, W_hf, W_hg, W_ho = torch.split(
                    getattr(lstm, f"weight_hh_l{i}"), lstm.hidden_size
                )
                M_hi, M_hf, M_hg, M_ho = torch.split(mask, lstm.hidden_size)  # type: ignore[arg-type]

                # resize each individual weight separately
                W_hi = W_hi[M_hi][:, M_hi]
                W_hf = W_hf[M_hf][:, M_hf]
                W_hg = W_hg[M_hg][:, M_hg]
                W_ho = W_ho[M_ho][:, M_ho]

                # concat, use this as new weight
                new_weight = torch.cat((W_hi, W_hf, W_hg, W_ho))
                setattr(lstm, f"weight_hh_l{i}", nn.Parameter(new_weight))
                setattr(
                    lstm,
                    f"bias_hh_l{i}",
                    nn.Parameter(getattr(lstm, f"bias_hh_l{i}")[mask]),
                )

            # If this is the final layer, then we need to prune linear layer columns
            if i + 1 == lstm.num_layers:
                lstm.hidden_size = int(M_hi.sum())
                with torch.no_grad():
                    if parametrize.is_parametrized(linear):
                        parametrization_dict = cast(
                            nn.ModuleDict, linear.parametrizations
                        )
                        weight_parameterizations = cast(
                            ParametrizationList, parametrization_dict.weight
                        )

                        weight_parameterizations.original = nn.Parameter(
                            weight_parameterizations.original[:, M_ho]
                        )
                        linear.in_features = weight_parameterizations.original.shape[1]
                    else:
                        linear.weight = nn.Parameter(linear.weight[:, M_ho])
                        linear.in_features = linear.weight.shape[1]

                    # if layernorm module, prune weight and bias
                    if layernorm is not None:
                        layernorm.normalized_shape = (linear.in_features,)
                        layernorm.weight = nn.Parameter(layernorm.weight[M_ho])
                        layernorm.bias = nn.Parameter(layernorm.bias[M_ho])

            # otherwise need to prune the columns of the input of the next LSTM layer
            else:
                with torch.no_grad():
                    if parametrize.is_parametrized(lstm, f"weight_ih_l{i + 1}"):
                        parametrization_dict = cast(
                            nn.ModuleDict, lstm.parametrizations
                        )
                        weight_parameterizations = cast(
                            ParametrizationList,
                            getattr(parametrization_dict, f"weight_ih_l{i + 1}"),
                        )

                        weight_parameterizations.original = nn.Parameter(
                            weight_parameterizations.original[:, M_ho]
                        )
                    else:
                        next_layer_weight = getattr(lstm, f"weight_ih_l{i + 1}")
                        setattr(
                            lstm,
                            f"weight_ih_l{i + 1}",
                            nn.Parameter(next_layer_weight[:, M_ho]),
                        )