File: fbgemm.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (129 lines) | stat: -rw-r--r-- 4,208 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch

from ._common_operator_config_utils import (
    _get_binary_op_configs,
    _get_bn_configs,
    _get_cat_config,
    _get_conv_configs,
    _get_default_op_configs,
    _get_embedding_op_configs,
    _get_fixed_qparams_op_configs,
    _get_linear_configs,
    _get_rnn_op_configs,
    _get_share_qparams_op_configs,
    _get_tensor_info_op_configs,
)
from .backend_config import BackendConfig, DTypeConfig


__all__ = [
    "get_fbgemm_backend_config",
]

# ===================
# |  DTYPE CONFIGS  |
# ===================

# TODO: For now, these DTypeConfigs are identical to the ones defined in native.py
# In the future, once we support specifying quant_min/quant_max and scale_min/scale_max,
# these will diverge. In particular, for FBGEMM, we will restrict the activation quantized
# values to within [0, 127].

fbgemm_weighted_op_quint8_dtype_config = DTypeConfig(
    input_dtype=torch.quint8,
    output_dtype=torch.quint8,
    weight_dtype=torch.qint8,
    bias_dtype=torch.float,
)

fbgemm_default_op_quint8_dtype_config = DTypeConfig(
    input_dtype=torch.quint8,
    output_dtype=torch.quint8,
)

fbgemm_default_op_fp16_dtype_config = DTypeConfig(
    input_dtype=torch.float16,
    output_dtype=torch.float16,
    weight_dtype=torch.float16,
    bias_dtype=torch.float16,
)

fbgemm_default_dynamic_int8_dtype_config = DTypeConfig(
    input_dtype=torch.quint8,
    output_dtype=torch.float,
    weight_dtype=torch.qint8,
    bias_dtype=torch.float,
    is_dynamic=True,
)

fbgemm_default_dynamic_float16_dtype_config = DTypeConfig(
    input_dtype=torch.float16,
    output_dtype=torch.float,
    weight_dtype=torch.float16,
    bias_dtype=torch.float,
    is_dynamic=True,
)

fbgemm_weight_only_quint8_dtype_config = DTypeConfig(
    input_dtype=torch.float,
    output_dtype=torch.float,
    weight_dtype=torch.quint8,
)

fbgemm_weight_only_quint4x2_dtype_config = DTypeConfig(
    input_dtype=torch.float,
    output_dtype=torch.float,
    weight_dtype=torch.quint4x2,
)


# =====================
# |  BACKEND CONFIGS  |
# =====================


def get_fbgemm_backend_config() -> BackendConfig:
    """
    Return the `BackendConfig` for PyTorch's native FBGEMM backend.
    """
    conv_dtype_configs = [fbgemm_weighted_op_quint8_dtype_config]
    linear_dtype_configs = [
        fbgemm_weighted_op_quint8_dtype_config,
        fbgemm_default_dynamic_int8_dtype_config,
        fbgemm_default_dynamic_float16_dtype_config,
    ]
    binary_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
    default_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
    fixed_qparams_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
    share_qparams_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
    tensor_info_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
    rnn_op_dtype_configs = [
        fbgemm_default_dynamic_int8_dtype_config,
        fbgemm_default_dynamic_float16_dtype_config,
    ]
    embedding_op_dtype_configs = [
        fbgemm_weight_only_quint8_dtype_config,
        fbgemm_weight_only_quint4x2_dtype_config,
    ]
    return (
        BackendConfig("fbgemm")
        .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs))
        .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs))
        .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs))
        .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs))
        .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs))
        .set_backend_pattern_configs(
            _get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)
        )
        .set_backend_pattern_configs(
            _get_share_qparams_op_configs(share_qparams_op_dtype_configs)
        )
        .set_backend_pattern_configs(
            _get_tensor_info_op_configs(tensor_info_op_dtype_configs)
        )
        .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs))
        .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs))
        .set_backend_pattern_configs(
            _get_embedding_op_configs(embedding_op_dtype_configs)
        )
    )