File: native.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (231 lines) | stat: -rw-r--r-- 8,242 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# mypy: allow-untyped-defs
import torch

from ._common_operator_config_utils import (
    _get_binary_op_configs,
    _get_bn_configs,
    _get_cat_config,
    _get_conv_configs,
    _get_default_op_configs,
    _get_embedding_op_configs,
    _get_fixed_qparams_op_configs,
    _get_linear_configs,
    _get_ln_configs,
    _get_rnn_op_configs,
    _get_share_qparams_op_configs,
    _get_tensor_info_op_configs,
)
from .backend_config import BackendConfig, DTypeConfig


__all__ = [
    "get_test_only_legacy_native_backend_config",
    "default_op_quint8_dtype_config",
    "default_op_fp16_dtype_config",
    "default_dynamic_int8_dtype_config",
    "default_dynamic_float16_dtype_config",
    "input_output_only_quint8_dtype_config",
    "weight_only_quint8_dtype_config",
    "weight_only_quint4x2_dtype_config",
    "get_native_backend_config",
    "get_native_backend_config_dict",
    "get_test_only_legacy_native_backend_config_dict",
]

# ===================
# |  DTYPE CONFIGS  |
# ===================

# weighted op int8 dtype config
# this is config for ops that has quantized weights, like linear, conv
weighted_op_quint8_dtype_config = DTypeConfig(
    input_dtype=torch.quint8,
    output_dtype=torch.quint8,
    weight_dtype=torch.qint8,
    bias_dtype=torch.float,
)

default_op_quint8_dtype_config = DTypeConfig(
    input_dtype=torch.quint8,
    output_dtype=torch.quint8,
)

default_op_fp16_dtype_config = DTypeConfig(
    input_dtype=torch.float16,
    output_dtype=torch.float16,
    weight_dtype=torch.float16,
    bias_dtype=torch.float16,
)

default_dynamic_int8_dtype_config = DTypeConfig(
    input_dtype=torch.quint8,
    output_dtype=torch.float,
    weight_dtype=torch.qint8,
    bias_dtype=torch.float,
    # currently the dtype check is not yet enabled, so we provided the dtype_configs but
    # it is not really used yet,
    # we will enable it a bit later after we moved everything to backend_config_dict
    is_dynamic=True,
)

default_dynamic_float16_dtype_config = DTypeConfig(
    input_dtype=torch.float16,
    output_dtype=torch.float,
    weight_dtype=torch.float16,
    bias_dtype=torch.float,
    # currently the dtype check is not yet enabled, so we provided the dtype_configs but
    # it is not really used yet,
    # we will enable it a bit later after we moved everything to backend_config_dict
    is_dynamic=True,
)

# Needed for LayerNorm and f.layer_norm, since currently the kernel only supports float weights
input_output_only_quint8_dtype_config = DTypeConfig(
    input_dtype=torch.quint8,
    output_dtype=torch.quint8,
    weight_dtype=torch.float,
    bias_dtype=torch.float,
)

weight_only_quint8_dtype_config = DTypeConfig(
    input_dtype=torch.float,
    output_dtype=torch.float,
    weight_dtype=torch.quint8,
)

weight_only_quint4x2_dtype_config = DTypeConfig(
    input_dtype=torch.float,
    output_dtype=torch.float,
    weight_dtype=torch.quint4x2,
)


# =====================
# |  BACKEND CONFIGS  |
# =====================


def get_test_only_legacy_native_backend_config() -> BackendConfig:
    """
    Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional fp16 ops.
    """
    conv_dtype_configs = [weighted_op_quint8_dtype_config]
    linear_dtype_configs = [
        weighted_op_quint8_dtype_config,
        default_dynamic_int8_dtype_config,
        default_dynamic_float16_dtype_config,
        default_op_fp16_dtype_config,
    ]
    binary_op_dtype_configs = [
        default_op_quint8_dtype_config,
        default_op_fp16_dtype_config,
    ]
    default_op_dtype_configs = [default_op_quint8_dtype_config]
    fixed_qparams_op_dtype_configs = [
        default_op_quint8_dtype_config,
        default_op_fp16_dtype_config,
    ]
    share_qparams_op_dtype_configs = [
        default_op_quint8_dtype_config,
        default_op_fp16_dtype_config,
    ]
    tensor_info_op_dtype_configs = [
        default_op_quint8_dtype_config,
    ]
    rnn_op_dtype_configs = [
        default_dynamic_int8_dtype_config,
        default_dynamic_float16_dtype_config,
    ]
    embedding_op_dtype_configs = [
        weight_only_quint8_dtype_config,
        weight_only_quint4x2_dtype_config,
    ]
    layer_norm_op_dtype_configs = [input_output_only_quint8_dtype_config]
    return (
        BackendConfig("_native_and_fp16")
        .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs))
        .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs))
        .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs))
        .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs))
        .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs))
        .set_backend_pattern_configs(
            _get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)
        )
        .set_backend_pattern_configs(
            _get_share_qparams_op_configs(share_qparams_op_dtype_configs)
        )
        .set_backend_pattern_configs(
            _get_tensor_info_op_configs(tensor_info_op_dtype_configs)
        )
        .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs))
        .set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs))
        .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs))
        .set_backend_pattern_configs(
            _get_embedding_op_configs(embedding_op_dtype_configs)
        )
    )


def get_native_backend_config() -> BackendConfig:
    """
    Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack).
    """
    # TODO: express this BackendConfig as a union of the FBGEMM and QNNPACK BackendConfigs
    conv_dtype_configs = [weighted_op_quint8_dtype_config]
    linear_dtype_configs = [
        weighted_op_quint8_dtype_config,
        default_dynamic_int8_dtype_config,
        default_dynamic_float16_dtype_config,
    ]
    binary_op_dtype_configs = [default_op_quint8_dtype_config]
    default_op_dtype_configs = [default_op_quint8_dtype_config]
    fixed_qparams_op_dtype_configs = [default_op_quint8_dtype_config]
    share_qparams_op_dtype_configs = [default_op_quint8_dtype_config]
    tensor_info_op_dtype_configs = [default_op_quint8_dtype_config]
    rnn_op_dtype_configs = [
        default_dynamic_int8_dtype_config,
        default_dynamic_float16_dtype_config,
    ]
    embedding_op_dtype_configs = [
        weight_only_quint8_dtype_config,
        weight_only_quint4x2_dtype_config,
    ]
    layer_norm_op_dtype_configs = [input_output_only_quint8_dtype_config]
    return (
        BackendConfig("native")
        .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs))
        .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs))
        .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs))
        .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs))
        .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs))
        .set_backend_pattern_configs(
            _get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)
        )
        .set_backend_pattern_configs(
            _get_share_qparams_op_configs(share_qparams_op_dtype_configs)
        )
        .set_backend_pattern_configs(
            _get_tensor_info_op_configs(tensor_info_op_dtype_configs)
        )
        .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs))
        .set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs))
        .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs))
        .set_backend_pattern_configs(
            _get_embedding_op_configs(embedding_op_dtype_configs)
        )
    )


def get_native_backend_config_dict():
    """
    Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) in dictionary form.
    """
    return get_native_backend_config().to_dict()


def get_test_only_legacy_native_backend_config_dict():
    """
    Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional
    fp16 ops in dictionary form.
    """
    return get_test_only_legacy_native_backend_config().to_dict()