1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
# mypy: allow-untyped-defs
import copy
from typing import Any, Callable, List, Optional, Tuple, Type, Union
import torch
from torch.ao.quantization.experimental.adaround_fake_quantize import (
AdaroundFakeQuantizer,
)
from torch.ao.quantization.experimental.adaround_loss import AdaptiveRoundingLoss
from torch.ao.quantization.observer import MinMaxObserver
from torch.nn import functional as F
from torch.nn.parallel import DataParallel
from torch.utils.data import DataLoader, TensorDataset
class AdaptiveRoundingOptimizer:
def __init__(
self,
model: Union[torch.nn.Module, torch.nn.DataParallel],
callback: Callable[
[
Union[torch.nn.Module, torch.nn.DataParallel],
Any,
Optional[torch.nn.Module],
],
None,
],
forward_hook_wrapper: Callable[[List[torch.Tensor]], Callable],
data: Any,
observer: Type[torch.ao.quantization.observer.ObserverBase] = MinMaxObserver,
max_iter=10000,
dtype: torch.dtype = torch.qint8,
quant_min=-128,
quant_max=127,
qscheme: torch.qscheme = torch.per_tensor_symmetric,
batch_size: int = 256,
feed_forward_wrapper: Optional[torch.nn.Module] = None,
):
if torch.cuda.is_available():
self.model = model.cuda()
if torch.cuda.device_count() > 1:
self.model = torch.nn.DataParallel(model)
else:
self.model = model
self.q_model = copy.deepcopy(self.model)
self.device = torch.device("cuda") if torch.cuda.is_available() else None
self.callback = callback
self.forward_hook_wrapper = forward_hook_wrapper
# TODO rather than having a data as list type or, we better pass *iterator* instead of list
self.data = data
self.batch_size = min(batch_size, len(data))
self.max_iter = max_iter
self.adaptive_round_loss_fn = AdaptiveRoundingLoss(
max_iter=self.max_iter, warm_start=0.2
)
self.dtype = dtype
self.observer = observer
self.quant_min = quant_min
self.quant_max = quant_max
self.qscheme = qscheme
self.feed_forward_wrapper = feed_forward_wrapper
def run_adaround(self) -> torch.nn.Module:
layer_list: List[Tuple[str, torch.nn.Module, torch.nn.Module]] = []
for (name, module), q_module in zip(
self.model.named_modules(), self.q_model.modules()
):
if isinstance(module, torch.nn.ReLU):
# Disable all inplace operations
module.inplace = False
if isinstance(q_module, torch.nn.ReLU):
# Disable all inplace operations
q_module.inplace = False
if isinstance(module, (torch.nn.Conv1d, torch.nn.Linear)):
# Knowing activation ahead-of-time would be helpful for asymmetric formulation
# But this is challenging in eager mode, but graph module.
layer_list.append((name, module, q_module))
print(f"Total number of layers : {len(layer_list)}") # noqa: G004
for name, module, q_module in layer_list:
print(
f"Kick start adaptive rounding on {name} module {module}" # noqa: G004
)
self.optimize_adaptive_rounding(
module,
q_module,
None,
)
return (
self.q_model.module
if isinstance(self.q_model, DataParallel)
else self.q_model
)
def get_data_inp_out(
self, module: torch.nn.Module, q_module: torch.nn.Module, data: List[Any]
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]:
fp_out: List[torch.Tensor] = []
q_input: List[torch.Tensor] = []
fp_input: List[torch.Tensor] = []
fp32_fetcher: List[torch.Tensor] = []
quant_fetcher: List[torch.Tensor] = []
handler1 = module.register_forward_hook(self.forward_hook_wrapper(fp32_fetcher))
handler2 = q_module.register_forward_hook(
self.forward_hook_wrapper(quant_fetcher)
)
if torch.cuda.is_available():
# Somehow, we need to move the model continuously
# Otherwise, the model will be lowered to CPU misteriously
self.model = self.model.cuda()
self.q_model = self.q_model.cuda()
for data_ in data:
with torch.no_grad():
self.callback(self.model, data_, self.feed_forward_wrapper)
self.callback(self.q_model, data_, self.feed_forward_wrapper)
fp32_output = fp32_fetcher[1]
quant_input = quant_fetcher[0]
fp_out.append(fp32_output)
q_input.append(quant_input)
fp_input.append(fp32_fetcher[0])
handler1.remove()
handler2.remove()
return q_input, fp_out, fp_input
@torch.no_grad()
def feed_forward(self, x, weight, module):
if isinstance(module, torch.nn.Conv1d):
out = torch.nn.functional.conv1d(
x,
weight,
stride=module.stride,
padding=module.padding,
dilation=module.dilation,
groups=module.groups,
)
elif isinstance(module, torch.nn.Linear):
out = torch.nn.functional.linear(
x,
weight,
bias=module.bias,
)
else:
raise NotImplementedError
return out
def _compute_and_display_local_losses(
self,
ada_quantizer: AdaroundFakeQuantizer,
q_module: torch.nn.Module,
q_inp: torch.Tensor,
fp_out: torch.Tensor,
):
with torch.no_grad():
ada_quantizer.use_soft_rounding = False
q_w_hard_round = ada_quantizer(q_module.weight)
out_hard_quant = self.feed_forward(q_inp, q_w_hard_round, q_module)
ada_quantizer.use_soft_rounding = True
q_w_soft_round = ada_quantizer(q_module.weight)
out_soft_quant = self.feed_forward(q_inp, q_w_soft_round, q_module)
soft_quant_loss = F.mse_loss(out_soft_quant, fp_out)
hard_quant_loss = F.mse_loss(out_hard_quant, fp_out)
print(
f"soft quant loss: {soft_quant_loss.item()} hard quant loss: {hard_quant_loss.item()}" # noqa: G004
)
def optimize_adaptive_rounding(
self,
module: torch.nn.Module,
q_module: torch.nn.Module,
activation: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
) -> None:
ada_quantizer = AdaroundFakeQuantizer(
dtype=self.dtype,
observer=self.observer,
qscheme=self.qscheme,
quant_min=self.quant_min,
quant_max=self.quant_max,
reduce_range=False,
)
ada_quantizer.enable_observer()
ada_quantizer(q_module.weight)
ada_quantizer.disable_observer()
ada_quantizer.enable_fake_quant()
optimizer = torch.optim.Adam([ada_quantizer.V])
inp, out, fp_in = self.get_data_inp_out(module, q_module, self.data)
print("==================== Before adaround ====================")
assert (
torch.abs(out[0] - module(fp_in[0])).sum().item() == 0
), "In-placed activation is detected, please do not use activation in-placed"
# Stack the tensors in each list into a single tensor
# Assuming inp and out are your lists of tensors
inp_tensor = torch.vstack(inp)
out_tensor = torch.vstack(out)
dataset = TensorDataset(inp_tensor, out_tensor)
dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
self._compute_and_display_local_losses(ada_quantizer, q_module, inp[0], out[0])
global_idx = 0
one_iter = len(out) // self.batch_size
for iteration in range(self.max_iter // one_iter):
reconstruction_loss = regularization_loss = torch.tensor(0)
for q_inp, fp_out in dataloader:
optimizer.zero_grad()
q_weight = ada_quantizer(q_module.weight)
if isinstance(module, torch.nn.Conv1d):
q_out = torch.nn.functional.conv1d( # type: ignore[call-overload, misc]
q_inp,
q_weight,
bias=q_module.bias,
stride=q_module.stride,
padding=q_module.padding,
dilation=q_module.dilation,
groups=q_module.groups,
)
elif isinstance(q_module, torch.nn.Linear):
q_out = torch.nn.functional.linear(
q_inp,
q_weight,
bias=q_module.bias,
)
else:
raise NotImplementedError
regularization_loss, reconstruction_loss = self.adaptive_round_loss_fn(
fp_out,
q_out,
ada_quantizer.V,
curr_iter=global_idx,
)
loss = regularization_loss + reconstruction_loss
loss.backward()
optimizer.step()
global_idx += 1
if global_idx >= self.max_iter:
break
if global_idx >= self.max_iter:
break
if iteration % 30 == 0:
print(
f"glob iter {global_idx} regularization_loss {regularization_loss.item()} " # noqa: G004
f"reconstruction_loss {reconstruction_loss.item()}" # noqa: G004
)
print("==================== After adaround ====================")
self._compute_and_display_local_losses(ada_quantizer, q_module, inp[0], out[0])
ada_quantizer.use_soft_rounding = True
ada_quantizer.V.requires_grad = False
ada_quantizer = ada_quantizer.eval()
q_weight = ada_quantizer(q_module.weight)
# At the end of optimization, we need to copy the adarounded weight back to the original module
q_module.weight.data.copy_(q_weight) # type: ignore[operator]
# Eager mode requires observer to be set as "weight_fake_quant" to be parsed
q_module.weight_fake_quant = ada_quantizer.activation_post_process
|