File: fake_quantize.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (46 lines) | stat: -rw-r--r-- 1,684 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# mypy: allow-untyped-defs
import torch
from torch import Tensor
from torch.ao.quantization.experimental.fake_quantize_function import (
    fake_quantize_function,
)
from torch.ao.quantization.experimental.observer import APoTObserver
from torch.ao.quantization.fake_quantize import FakeQuantizeBase


class APoTFakeQuantize(FakeQuantizeBase):
    alpha: Tensor
    gamma: Tensor
    quantization_levels: Tensor
    level_indices: Tensor

    def __init__(self, observer=APoTObserver, **observer_kwargs):
        super().__init__()
        self.activation_post_process = observer(**observer_kwargs)
        self.dtype = self.activation_post_process.dtype

    def calculate_qparams(self, signed=False):  # type: ignore[override]
        return self.activation_post_process.calculate_qparams(signed=signed)

    def forward(self, X: torch.Tensor):  # type: ignore[override]
        if self.observer_enabled[0] == 1:
            self.activation_post_process.forward(X)
            result = self.activation_post_process.calculate_qparams(signed=False)
            self.alpha = result[0]
            self.gamma = result[1]
            self.quantization_levels = result[2]
            self.level_indices = result[3]

        if self.fake_quant_enabled[0] == 1:
            assert (
                self.alpha is not None
                and self.gamma is not None
                and self.quantization_levels is not None
                and self.level_indices is not None
            ), "Must set qparams for fake quant"

            X = fake_quantize_function.apply(
                X, self.alpha, self.gamma, self.quantization_levels, self.level_indices
            )

        return X