File: fake_quantize_function.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (33 lines) | stat: -rw-r--r-- 934 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# mypy: allow-untyped-defs
import torch
from torch import Tensor
from torch.ao.quantization.experimental.quantizer import dequantize_APoT, quantize_APoT


class fake_quantize_function(torch.autograd.Function):
    @staticmethod
    def forward(  # type: ignore[override]
        ctx,
        x: Tensor,
        alpha: Tensor,
        gamma: Tensor,
        quantization_levels: Tensor,
        level_indices: Tensor,
    ) -> Tensor:
        quantized_result = quantize_APoT(
            x, alpha, gamma, quantization_levels, level_indices
        )

        # calculate mask tensor
        mask = x.detach().apply_(lambda x: (x <= alpha and x >= -alpha))

        result = dequantize_APoT(quantized_result)

        ctx.save_for_backward(mask)

        return result

    @staticmethod
    def backward(ctx, grad_output: Tensor) -> Tensor:  # type: ignore[override]
        mask = ctx.saved_tensors
        return grad_output * mask