File: _decomposed.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1206 lines) | stat: -rw-r--r-- 42,017 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import math
from typing import Optional, Tuple

import torch
from torch._refs import _unsqueeze_multiple
from torch.ao.quantization.utils import determine_qparams, validate_qmin_qmax
from torch.library import impl, Library


# Note: decomposed means decomposed quantized tensor, using decomposed so that the
# name is not too long
quantized_decomposed_lib = Library("quantized_decomposed", "DEF")

_INTEGER_DTYPES = [torch.uint8, torch.int8, torch.uint16, torch.int16, torch.int32]
_FLOAT_DTYPES = [torch.float8_e5m2, torch.float8_e4m3fn]

_DTYPE_TO_QVALUE_BOUNDS = {
    k: (torch.iinfo(k).min, torch.iinfo(k).max) for k in _INTEGER_DTYPES
}
_DTYPE_TO_QVALUE_BOUNDS.update(
    {k: (int(torch.finfo(k).min), int(torch.finfo(k).max)) for k in _FLOAT_DTYPES}
)


# Helper to check the passed in quant min and max are valid for the dtype
def _quant_min_max_bounds_check(quant_min, quant_max, dtype):
    if dtype not in _DTYPE_TO_QVALUE_BOUNDS:
        raise ValueError(f"Unsupported dtype: {dtype}")
    quant_min_lower_bound, quant_max_upper_bound = _DTYPE_TO_QVALUE_BOUNDS[dtype]

    assert quant_min >= quant_min_lower_bound, (
        "quant_min out of bound for dtype, "
        f"quant_min_lower_bound: {quant_min_lower_bound} quant_min: {quant_min}"
    )

    assert quant_max <= quant_max_upper_bound, (
        "quant_max out of bound for dtype, "
        f"quant_max_upper_bound: {quant_max_upper_bound} quant_max: {quant_max}"
    )


quantized_decomposed_lib.define(
    "quantize_per_tensor(Tensor input, float scale, int zero_point, "
    "int quant_min, int quant_max, ScalarType dtype) -> Tensor"
)


@impl(quantized_decomposed_lib, "quantize_per_tensor", "CompositeExplicitAutograd")
def quantize_per_tensor(
    input: torch.Tensor,
    scale: float,
    zero_point: int,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
) -> torch.Tensor:
    """Affine quantization for the Tensor using the same quantization parameters to map
    from floating point to quantized values

    Args:
       input (torch.Tensor): original float32 or bfloat16 Tensor
       scale (float): quantization parameter for affine quantization
       zero_point (int): quantization parameter for affine quantization
       quant_min (int): minimum quantized value for output Tensor
       quant_max (int): maximum quantized value for output Tensor
       dtype (torch.dtype): requested dtype (e.g. torch.uint8) for output Tensor

    Returns:
       Tensor with requested dtype (e.g. torch.uint8), note the quantization parameters
       are not stored in the Tensor, we are storing them in function arguments instead
    """
    if input.dtype in [torch.float16, torch.bfloat16]:
        input = input.to(torch.float32)
    assert (
        input.dtype == torch.float32
    ), f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
    _quant_min_max_bounds_check(quant_min, quant_max, dtype)

    inv_scale = 1.0 / scale
    return torch.clamp(
        torch.round(input * inv_scale) + zero_point, quant_min, quant_max
    ).to(dtype)


@impl(quantized_decomposed_lib, "quantize_per_tensor", "Meta")
def quantize_per_tensor_meta(
    input: torch.Tensor,
    scale: float,
    zero_point: int,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
) -> torch.Tensor:
    if input.dtype in [torch.float16, torch.bfloat16]:
        input = input.to(torch.float32)
    assert (
        input.dtype == torch.float32
    ), f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
    return torch.empty_like(input, dtype=dtype)


quantized_decomposed_lib.define(
    "quantize_per_tensor.tensor(Tensor input, Tensor scale, Tensor zero_point, "
    "int quant_min, int quant_max, ScalarType dtype) -> Tensor"
)


@impl(
    quantized_decomposed_lib, "quantize_per_tensor.tensor", "CompositeExplicitAutograd"
)
def quantize_per_tensor_tensor(
    input: torch.Tensor,
    scale: torch.Tensor,
    zero_point: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
) -> torch.Tensor:
    """Affine quantization for the Tensor using the same quantization parameters to map
    from floating point to quantized values
    Same as `quantize_per_tensor` but scale and zero_point are Scalar Tensor instead of
    scalar values
    """
    assert (
        zero_point.numel() == 1
    ), f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
    assert (
        scale.numel() == 1
    ), f"Expecting scale tensor to be one element, but received : {scale.numel()}"
    return quantize_per_tensor(
        input, scale.item(), zero_point.item(), quant_min, quant_max, dtype
    )


@impl(quantized_decomposed_lib, "quantize_per_tensor.tensor", "Meta")
def quantize_per_tensor_tensor_meta(
    input: torch.Tensor,
    scale: torch.Tensor,
    zero_point: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
) -> torch.Tensor:
    if input.dtype in [torch.float16, torch.bfloat16]:
        input = input.to(torch.float32)
    assert (
        zero_point.numel() == 1
    ), f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
    assert (
        scale.numel() == 1
    ), f"Expecting scale tensor to be one element, but received : {scale.numel()}"
    assert (
        input.dtype == torch.float32
    ), f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
    return torch.empty_like(input, dtype=dtype)


# TODO: remove other variants and keep this one
quantized_decomposed_lib.define(
    "quantize_per_tensor.tensor2(Tensor input, Tensor scale, Tensor zero_point, "
    "Tensor quant_min, Tensor quant_max, ScalarType dtype) -> Tensor"
)


@impl(
    quantized_decomposed_lib, "quantize_per_tensor.tensor2", "CompositeExplicitAutograd"
)
def quantize_per_tensor_tensor2(
    input: torch.Tensor,
    scale: torch.Tensor,
    zero_point: torch.Tensor,
    quant_min: torch.Tensor,
    quant_max: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    """Affine quantization for the Tensor using the same quantization parameters to map
    from floating point to quantized values
    Same as `quantize_per_tensor` but scale and zero_point are Scalar Tensor instead of
    scalar values
    """
    assert (
        zero_point.numel() == 1
    ), f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
    assert (
        scale.numel() == 1
    ), f"Expecting scale tensor to be one element, but received : {scale.numel()}"
    return quantize_per_tensor(
        input,
        scale.item(),
        zero_point.item(),
        quant_min.item(),
        quant_max.item(),
        dtype,
    )


@impl(quantized_decomposed_lib, "quantize_per_tensor.tensor2", "Meta")
def quantize_per_tensor_tensor2_meta(
    input: torch.Tensor,
    scale: torch.Tensor,
    zero_point: torch.Tensor,
    quant_min: torch.Tensor,
    quant_max: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    return quantize_per_tensor_tensor_meta(
        input, scale, zero_point, quant_min, quant_max, dtype
    )


# Note: quant_min/quant_max/dtype are not used in the operator, but for now it's kept in
# the signature as metadata for the input Tensor, this might be useful for pattern
# matching in the future
# We will revisit this later if we found there are no use cases for it
quantized_decomposed_lib.define(
    "dequantize_per_tensor(Tensor input, float scale, int zero_point, "
    "int quant_min, int quant_max, ScalarType dtype, *, ScalarType? out_dtype=None) -> Tensor"
)


@impl(quantized_decomposed_lib, "dequantize_per_tensor", "CompositeExplicitAutograd")
def dequantize_per_tensor(
    input: torch.Tensor,
    scale: float,
    zero_point: int,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    *,
    out_dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
    """Affine dequantization for the Tensor using the same quantization parameters to map
    from quantized values to floating point values

    Args:
       input (torch.Tensor): Tensor with dtype matching `dtype` argument,
       e.g. (`torch.uint8`), it is a per tensor quantized Tensor if combined with
       quantization parameters in the argument of this function (scale/zero_point)

       scale (float): quantization parameter for affine quantization

       zero_point (int): quantization parameter for affine quantization

       quant_min (int): minimum quantized value for input Tensor (not used in computation,
       reserved for pattern matching)

       quant_max (int): maximum quantized value for input Tensor (not used in computation,
       reserved for pattern matching)

       dtype (torch.dtype): dtype for input Tensor (not used in computation,
       reserved for pattern matching)

       out_dtype (torch.dtype?): optional dtype for output Tensor

    Returns:
       dequantized float32 Tensor
    """
    assert (
        input.dtype == dtype
    ), f"Expecting input to have dtype: {dtype}, but got {input.dtype}"
    if out_dtype is None:
        out_dtype = torch.float32
    if dtype in _DTYPE_TO_QVALUE_BOUNDS:
        # TODO: investigate why
        # (input - zero_point).to(torch.float32) * scale
        # failed the test
        return (input.to(out_dtype) - zero_point) * scale
    else:
        raise ValueError(f"Unsupported dtype in dequantize_per_tensor: {dtype}")


@impl(quantized_decomposed_lib, "dequantize_per_tensor", "Meta")
def dequantize_per_tensor_meta(
    input: torch.Tensor,
    scale: torch.Tensor,
    zero_point: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    *,
    out_dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
    if out_dtype is None:
        out_dtype = torch.float32
    return torch.empty_like(input, dtype=out_dtype)


quantized_decomposed_lib.define(
    "dequantize_per_tensor.tensor(Tensor input, Tensor scale, Tensor zero_point, "
    "int quant_min, int quant_max, ScalarType dtype, *, ScalarType? out_dtype=None) -> Tensor"
)


@impl(
    quantized_decomposed_lib,
    "dequantize_per_tensor.tensor",
    "CompositeExplicitAutograd",
)
def dequantize_per_tensor_tensor(
    input: torch.Tensor,
    scale: torch.Tensor,
    zero_point: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    *,
    out_dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
    """Affine dequantization for the Tensor using the same quantization parameters to map
    from quantized values to floating point values
    Same as `dequantize_per_tensor` but scale and zero_point are Scalar Tensor instead of
    scalar values
    """
    assert (
        zero_point.numel() == 1
    ), f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
    assert (
        scale.numel() == 1
    ), f"Expecting scale tensor to be one element, but received : {scale.numel()}"
    return dequantize_per_tensor(
        input,
        scale.item(),
        zero_point.item(),
        quant_min,
        quant_max,
        dtype,
        out_dtype=out_dtype,
    )


@impl(quantized_decomposed_lib, "dequantize_per_tensor.tensor", "Meta")
def dequantize_per_tensor_tensor_meta(
    input: torch.Tensor,
    scale: torch.Tensor,
    zero_point: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    *,
    out_dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
    if out_dtype is None:
        out_dtype = torch.float32
    assert (
        zero_point.numel() == 1
    ), f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
    assert (
        scale.numel() == 1
    ), f"Expecting scale tensor to be one element, but received : {scale.numel()}"
    assert input.dtype == dtype, f"Expecting input to have dtype: {dtype}"
    if dtype in _DTYPE_TO_QVALUE_BOUNDS:
        return torch.empty_like(input, dtype=out_dtype)
    else:
        raise ValueError(f"Unsupported dtype in dequantize_per_tensor: {dtype}")


# TODO: remove other variants and keep this one
quantized_decomposed_lib.define(
    "dequantize_per_tensor.tensor2(Tensor input, Tensor scale, Tensor zero_point, "
    "Tensor quant_min, Tensor quant_max, ScalarType dtype, *, ScalarType? out_dtype=None) -> Tensor"
)


@impl(
    quantized_decomposed_lib,
    "dequantize_per_tensor.tensor2",
    "CompositeExplicitAutograd",
)
def dequantize_per_tensor_tensor2(
    input: torch.Tensor,
    scale: torch.Tensor,
    zero_point: torch.Tensor,
    quant_min: torch.Tensor,
    quant_max: torch.Tensor,
    dtype: torch.dtype,
    *,
    out_dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
    """Affine dequantization for the Tensor using the same quantization parameters to map
    from quantized values to floating point values
    Same as `dequantize_per_tensor` but scale and zero_point are Scalar Tensor instead of
    scalar values
    """
    assert (
        zero_point.numel() == 1
    ), f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
    assert (
        scale.numel() == 1
    ), f"Expecting scale tensor to be one element, but received : {scale.numel()}"
    return dequantize_per_tensor(
        input,
        scale.item(),
        zero_point.item(),
        quant_min.item(),
        quant_max.item(),
        dtype,
        out_dtype=out_dtype,
    )


@impl(quantized_decomposed_lib, "dequantize_per_tensor.tensor2", "Meta")
def dequantize_per_tensor_tensor2_meta(
    input,
    scale,
    zero_point,
    quant_min,
    quant_max,
    dtype,
    *,
    out_dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
    return dequantize_per_tensor_tensor_meta(
        input, scale, zero_point, quant_min, quant_max, dtype, out_dtype=out_dtype
    )


quantized_decomposed_lib.define(
    "choose_qparams.tensor(Tensor input, int quant_min, int quant_max, "
    "float eps, ScalarType dtype) -> (Tensor, Tensor)"
)


@impl(quantized_decomposed_lib, "choose_qparams.tensor", "CompositeExplicitAutograd")
def choose_qparams_tensor(
    input: torch.Tensor, qmin: int, qmax: int, eps: float, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Given an input Tensor, derive the per tensor affine quantization parameter
    (scale and zero_point) for target quantized Tensor from the Tensor

    Args:
       input (torch.Tensor): floating point input Tensor
       quant_min (int): minimum quantized value for target quantized Tensor
       quant_max (int): maximum quantized value for target quantized Tensor
       dtype (torch.dtype): dtype for target quantized Tensor

    Returns:
       scale (float): quantization parameter for the target quantized Tensor
       zero_point (int): quantization parameter for the target quantized Tensor
    """
    assert input.dtype in [
        torch.float32,
        torch.float16,
        torch.bfloat16,
    ], f"Expecting input to have dtype torch.float32/16/b16, but got dtype: {input.dtype}"
    assert (
        dtype in _DTYPE_TO_QVALUE_BOUNDS
    ), f"Expecting target dtype to be one of {_DTYPE_TO_QVALUE_BOUNDS.keys()}, but got: {dtype}"
    validate_qmin_qmax(qmin, qmax)

    min_val, max_val = torch.aminmax(input)

    return determine_qparams(
        min_val,
        max_val,
        qmin,
        qmax,
        dtype,
        torch.Tensor([eps]),
        has_customized_qrange=False,
    )


quantized_decomposed_lib.define(
    "choose_qparams_symmetric.tensor(Tensor input, int quant_min, int quant_max, "
    "float eps, ScalarType dtype) -> (Tensor, Tensor)"
)


@impl(
    quantized_decomposed_lib,
    "choose_qparams_symmetric.tensor",
    "CompositeExplicitAutograd",
)
def choose_qparams_symmetric_tensor(
    input: torch.Tensor, qmin: int, qmax: int, eps: float, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Given an input Tensor, derive the per tensor affine quantization parameter
    (scale and zero_point) for target quantized Tensor from the Tensor

    Args:
       input (torch.Tensor): floating point input Tensor
       quant_min (int): minimum quantized value for target quantized Tensor
       quant_max (int): maximum quantized value for target quantized Tensor
       dtype (torch.dtype): dtype for target quantized Tensor

    Returns:
       scale (float): quantization parameter for the target quantized Tensor
       zero_point (int): quantization parameter for the target quantized Tensor
    """
    assert input.dtype in [
        torch.float32,
        torch.float16,
        torch.bfloat16,
    ], f"Expecting input to have dtype torch.float32/16/b16, but got dtype: {input.dtype}"
    assert (
        dtype in _DTYPE_TO_QVALUE_BOUNDS
    ), f"Expecting target dtype to be one of {_DTYPE_TO_QVALUE_BOUNDS.keys()}, but got: {dtype}"
    validate_qmin_qmax(qmin, qmax)

    min_val, max_val = torch.aminmax(input)
    return determine_qparams(
        min_val,
        max_val,
        qmin,
        qmax,
        dtype,
        torch.Tensor([eps]),
        has_customized_qrange=False,
        qscheme=torch.per_tensor_symmetric,
    )


@impl(quantized_decomposed_lib, "choose_qparams.tensor", "Meta")
def choose_qparams_tensor_meta(
    input: torch.Tensor, quant_min: int, quant_max: int, eps: float, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
    assert input.dtype in [
        torch.float32,
        torch.float16,
        torch.bfloat16,
    ], f"Expecting input to have dtype torch.float32/16/b16, but got dtype: {input.dtype}"
    assert (
        quant_min < quant_max
    ), f"Expecting quant_min to be smaller than quant_max but received min: \
        {quant_min} max: {quant_max}"
    return torch.empty(1, dtype=torch.double, device=input.device), torch.empty(
        1, dtype=torch.int64, device=input.device
    )


@impl(quantized_decomposed_lib, "choose_qparams_symmetric.tensor", "Meta")
def choose_qparams_symmetric_tensor_meta(
    input: torch.Tensor, quant_min: int, quant_max: int, eps: float, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
    return torch.empty(1, dtype=torch.double, device=input.device), torch.empty(
        1, dtype=torch.int64, device=input.device
    )


# Helper function used to implement per-channel quantization against any axis
def _permute_to_axis_zero(x, axis):
    new_axis_list = list(range(x.dim()))
    new_axis_list[axis] = 0
    new_axis_list[0] = axis
    y = x.permute(tuple(new_axis_list))
    return y, new_axis_list


quantized_decomposed_lib.define(
    "quantize_per_channel(Tensor input, Tensor scales, Tensor zero_points, int axis, "
    "int quant_min, int quant_max, ScalarType dtype) -> Tensor"
)


@impl(quantized_decomposed_lib, "quantize_per_channel", "CompositeExplicitAutograd")
def quantize_per_channel(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    axis: int,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
) -> torch.Tensor:
    """Affine per channel quantization for the Tensor using the same quantization
    parameters for each channel/axis to map from floating point to quantized values

    Args:
       input (torch.Tensor): original float32 or bfloat16 Tensor
       scales (torch.Tensor): a list of scale quantization parameter for
       affine quantization, one per channel
       zero_point (torch.Tensor): a list of zero_point quantization parameter for
       affine quantization, one per channel
       quant_min (int): minimum quantized value for output Tensor
       quant_max (int): maximum quantized value for output Tensor
       dtype (torch.dtype): requested dtype (e.g. torch.uint8) for output Tensor

    Returns:
       Tensor with requested dtype (e.g. torch.uint8), note the quantization parameters
       are not stored in the Tensor, we are storing them in function arguments instead
    """
    if input.dtype in [torch.float16, torch.bfloat16]:
        input = input.to(torch.float32)
    assert (
        input.dtype == torch.float32
    ), f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
    assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
    _quant_min_max_bounds_check(quant_min, quant_max, dtype)
    input, permute_axis_list = _permute_to_axis_zero(input, axis)

    new_shape = [1] * input.dim()
    new_shape[0] = scales.shape[0]
    scales = scales.view(new_shape)
    zero_points = zero_points.view(new_shape)

    res = torch.clamp(
        torch.round(input * (1.0 / scales)) + zero_points, quant_min, quant_max
    )
    out = res.permute(tuple(permute_axis_list))
    return out.to(dtype)


@impl(quantized_decomposed_lib, "quantize_per_channel", "Meta")
def quantize_per_channel_meta(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    axis: int,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
) -> torch.Tensor:
    if input.dtype in [torch.float16, torch.bfloat16]:
        input = input.to(torch.float32)
    assert (
        input.dtype == torch.float32
    ), f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
    assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
    _quant_min_max_bounds_check(quant_min, quant_max, dtype)
    return torch.empty_like(input, dtype=dtype)


# Note: quant_min/quant_max/dtype are not used in the operator, but for now it's kept in
# the signature as metadata for the input Tensor, this might be useful for pattern
# matching in the future
# We will revisit this later if we found there are no use cases for it
quantized_decomposed_lib.define(
    "dequantize_per_channel(Tensor input, Tensor scales, Tensor? zero_points, int axis, "
    "int quant_min, int quant_max, ScalarType dtype, *, ScalarType? out_dtype=None) -> Tensor"
)


@impl(quantized_decomposed_lib, "dequantize_per_channel", "CompositeExplicitAutograd")
def dequantize_per_channel(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: Optional[torch.Tensor],
    axis: int,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    *,
    out_dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
    """Affine per channel dequantization for the Tensor using the same quantization
    parameters for each channel/axis to map from quantized values to floating point values

    Args:
       input (torch.Tensor): Tensor with dtype matching `dtype` argument,
       e.g. (`torch.uint8`), it is a per channel quantized Tensor if combined with
       quantization parameter in the argument of this function (scales/zero_points/axis)

       scales (torch.Tensor): a list of scale quantization parameter for
       affine quantization, one per channel

       zero_points (torch.Tensor): a list of zero_point quantization parameter for
       affine quantization, one per channel

       quant_min (int): minimum quantized value for output Tensor (not used in computation,
       reserved for pattern matching)

       quant_max (int): maximum quantized value for output Tensor (not used in computation,
       reserved for pattern matching)

       dtype (torch.dtype): requested dtype for output Tensor (not used in computation,
       reserved for pattern matching)

       out_dtype (torch.dtype?): optional dtype for output Tensor

    Returns:
       dequantized float32 Tensor
    """
    assert (
        input.dtype == dtype
    ), f"Expecting input to have dtype {dtype}, but got dtype: {input.dtype}"
    if out_dtype is None:
        out_dtype = torch.float32
    assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
    _quant_min_max_bounds_check(quant_min, quant_max, dtype)
    input, permute_axis_list = _permute_to_axis_zero(input, axis)

    new_shape = [1] * input.dim()
    new_shape[0] = scales.shape[0]
    scales = scales.view(new_shape)
    if zero_points is not None:
        res = (input - zero_points.view(new_shape)) * scales
    else:
        res = input * scales

    res = res.to(out_dtype)

    out = res.permute(tuple(permute_axis_list))
    return out


@impl(quantized_decomposed_lib, "dequantize_per_channel", "Meta")
def dequantize_per_channel_meta(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: Optional[torch.Tensor],
    axis: int,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    *,
    out_dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
    assert (
        input.dtype == dtype
    ), f"Expecting input to have dtype {dtype}, but got dtype: {input.dtype}"
    if out_dtype is None:
        out_dtype = torch.float32
    assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
    _quant_min_max_bounds_check(quant_min, quant_max, dtype)
    return torch.empty_like(input, dtype=out_dtype)


quantized_decomposed_lib.define(
    "choose_qparams_per_token(Tensor input, ScalarType dtype) -> (Tensor, Tensor)"
)


@impl(
    quantized_decomposed_lib,
    "choose_qparams_per_token",
    "CompositeExplicitAutograd",
)
def choose_qparams_per_token(
    input: torch.Tensor,
    dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Choose quantization parameters for per token quantization. This means for a N dimension Tensor
    (M1, M2, ...Mn, N), we calculate scales/zero_points for each N elements and quantize
    every N elements with the same quantization parameter. The dimension for scales/zero_points
    will be (M1 * M2 ... * Mn)

    Args:
       input (torch.Tensor): original float32/float16 Tensor
       dtype (torch.dtype): dtype (e.g. torch.uint8) for input Tensor

    Returns:
        scales and zero_points, both float32 Tensors
    """

    scales = input.abs().amax(dim=-1, keepdim=True)
    if scales.dtype == torch.float16:
        scales = (
            scales.float()
        )  # want float scales to avoid overflows for fp16, (bf16 has wide enough range)
    if dtype == torch.int8:
        n_bits = 8
        quant_max = 2 ** (n_bits - 1) - 1
    else:
        raise Exception(  # noqa: TRY002
            f"unsupported dtype in choose_qparams_per_token: {dtype}"
        )

    scales = scales.clamp(min=1e-5).div(quant_max)
    zero_points = torch.zeros_like(scales)
    return scales, zero_points


@impl(
    quantized_decomposed_lib,
    "choose_qparams_per_token",
    "Meta",
)
def choose_qparams_per_token_meta(
    input: torch.Tensor,
    dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
    size = list(input.shape[:-1]) + [1]
    return torch.empty(size, dtype=torch.double, device=input.device), torch.empty(
        size, dtype=torch.int64, device=input.device
    )


quantized_decomposed_lib.define(
    "_choose_qparams_per_token_asymmetric_impl(Tensor input, ScalarType dtype) -> (Tensor, Tensor)"
)


@impl(
    quantized_decomposed_lib,
    "_choose_qparams_per_token_asymmetric_impl",
    "CompositeImplicitAutograd",
)
def _choose_qparams_per_token_asymmetric_impl(
    input: torch.Tensor,
    dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Choose quantization parameters for per token quantization. This means for a N dimension Tensor
    (M1, M2, ...Mn, N), we calculate scales/zero_points for each N elements and quantize
    every N elements with the same quantization parameter. The dimension for scales/zero_points
    will be (M1 * M2 ... * Mn)

    Args:
       input (torch.Tensor): original float32/float16 Tensor
       dtype (torch.dtype): dtype (e.g. torch.uint8) for input Tensor

    Returns:
        scales and zero_points, both float32 Tensors
    """
    # Based on https://github.com/google/XNNPACK/blob/df156f0cf3db5a4576cc711123eeb54915f82ffc/src/xnnpack/quantization.h#L18
    qmin, qmax = -128, 127
    min_val = torch.amin(input, dim=-1, keepdim=True)
    max_val = torch.amax(input, dim=-1, keepdim=True)
    min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
    max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
    eps = torch.finfo(torch.float32).eps  # use xnnpack eps?

    # scale
    scale = (max_val_pos - min_val_neg) / float(qmax - qmin)
    scale = scale.clamp(min=eps)

    # zero point
    descaled_min = min_val_neg / scale
    descaled_max = max_val_pos / scale
    zero_point_from_min_error = qmin + descaled_min
    zero_point_from_max_error = qmax + descaled_max
    zero_point = torch.where(
        zero_point_from_min_error + zero_point_from_max_error > 0,
        qmin - descaled_min,
        qmax - descaled_max,
    )
    zero_point = torch.clamp(zero_point, qmin, qmax).round()

    return scale.to(torch.float64), zero_point.to(torch.int64)


quantized_decomposed_lib.define(
    "choose_qparams_per_token_asymmetric(Tensor input, ScalarType dtype) -> (Tensor, Tensor)"
)


@impl(
    quantized_decomposed_lib,
    "choose_qparams_per_token_asymmetric",
    "CompositeExplicitAutograd",
)
def choose_qparams_per_token_asymmetric(
    input: torch.Tensor,
    dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
    return _choose_qparams_per_token_asymmetric_impl(input, dtype)


@impl(
    quantized_decomposed_lib,
    "choose_qparams_per_token_asymmetric",
    "Meta",
)
def choose_qparams_per_token_asymmetric_meta(
    input: torch.Tensor,
    dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
    size = list(input.shape[:-1]) + [1]
    return torch.empty(size, dtype=torch.double, device=input.device), torch.empty(
        size, dtype=torch.int64, device=input.device
    )


def _per_token_quant_qparam_dim_check(input, scales, zero_points):
    num_tokens = math.prod(list(input.size())[:-1])
    assert (
        num_tokens == scales.numel()
    ), f"num_tokens: {num_tokens} scales: {scales.size()}"
    assert (
        num_tokens == zero_points.numel()
    ), f"num_tokens: {num_tokens} zero_points: {zero_points.size()}"


quantized_decomposed_lib.define(
    "quantize_per_token(Tensor input, Tensor scales, Tensor zero_points, "
    "int quant_min, int quant_max, ScalarType dtype) -> Tensor"
)


@impl(quantized_decomposed_lib, "quantize_per_token", "CompositeExplicitAutograd")
def quantize_per_token(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
):
    """Per token quantization for the Tensor using the quantization parameters to map
    from floating point to quantized values. This means for a N dimension Tensor
    (M1, M2, ...Mn, N), we calculate scales/zero_points for each N elements and quantize
    every N elements with the same quantization parameter. The dimension for scales/zero_points
    will be (M1 * M2 ... * Mn)

    Args:
       input (torch.Tensor): original float32 or bfloat16 Tensor
       scales (float32 torch.Tensor): quantization parameter for per token affine quantization
       zero_points (int32 torch.Tensor): quantization parameter for per token affine quantization
       quant_min (int): minimum quantized value for output Tensor
       quant_max (int): maximum quantized value for output Tensor
       dtype (torch.dtype): requested dtype (e.g. torch.uint8) for output Tensor

    Returns:
       Tensor with requested dtype (e.g. torch.uint8), note the quantization parameters
       are not stored in the Tensor, we are storing them in function arguments instead
    """
    _quant_min_max_bounds_check(quant_min, quant_max, dtype)
    _per_token_quant_qparam_dim_check(input, scales, zero_points)
    input = (
        input.mul(1.0 / scales)
        .add(zero_points)
        .round()
        .clamp(quant_min, quant_max)
        .to(dtype)
    )
    return input


@impl(quantized_decomposed_lib, "quantize_per_token", "Meta")
def quantize_per_token_meta(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
):
    _quant_min_max_bounds_check(quant_min, quant_max, dtype)
    return torch.empty_like(input, dtype=dtype)


quantized_decomposed_lib.define(
    "dequantize_per_token(Tensor input, Tensor scales, Tensor zero_points, "
    "int quant_min, int quant_max, ScalarType dtype, ScalarType output_dtype) -> Tensor"
)


@impl(quantized_decomposed_lib, "dequantize_per_token", "CompositeExplicitAutograd")
def dequantize_per_token(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    output_dtype: torch.dtype = torch.float32,
):
    """Per token dequantization for the Tensor using the quantization parameters to map
    from floating point to quantized values. This means for a N dimension Tensor
    (M1, M2, ...Mn, N), we calculate scales/zero_points for each N elements and quantize
    every N elements with the same quantization parameter. The dimension for scales/zero_points
    will be (M1 * M2 ... * Mn)

    Args:
       input (torch.Tensor): quantized Tensor (uint8, int8 etc.)
       scales (float64 torch.Tensor): quantization parameter for per token affine quantization
       zero_points (int64 torch.Tensor): quantization parameter for per token affine quantization
       quant_min (int): minimum quantized value for input Tensor
       quant_max (int): maximum quantized value for input Tensor
       dtype (torch.dtype): dtype (e.g. torch.uint8) for input Tensor
       output_dtype (torch.dtype): dtype (e.g. torch.float32) for output Tensor

    Returns:
       dequantized Tensor with dtype `output_dtype`
    """
    input = input - zero_points
    input = input * scales
    # Since scales are of float64 type, we need to cast it to output dtype requested
    return input.to(output_dtype)


@impl(quantized_decomposed_lib, "dequantize_per_token", "Meta")
def dequantize_per_token_meta(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    output_dtype: torch.dtype = torch.float32,
):
    _quant_min_max_bounds_check(quant_min, quant_max, dtype)
    # TODO: support fp16
    return torch.empty_like(input, dtype=output_dtype)


quantized_decomposed_lib.define(
    "quantize_per_channel_group(Tensor input, Tensor scales, Tensor zero_points, int quant_min, "
    "int quant_max, ScalarType dtype, int group_size) -> Tensor"
)


# TODO: dtype is ignored for now
@impl(
    quantized_decomposed_lib, "quantize_per_channel_group", "CompositeExplicitAutograd"
)
def quantize_per_channel_group(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    group_size=128,
):
    assert group_size > 1
    # needed for GPTQ single column quantize
    if group_size > input.shape[-1] and scales.shape[-1] == 1:
        group_size = input.shape[-1]

    assert input.shape[-1] % group_size == 0
    assert input.dim() == 2

    # TODO: check for dtype, currently we can't express torch.int4 so it's omitted
    to_quant = input.reshape(-1, group_size)
    assert torch.isnan(to_quant).sum() == 0

    scales = scales.reshape(-1, 1)
    zero_points = zero_points.reshape(-1, 1)

    input_int8 = (
        to_quant.mul(1.0 / scales)
        .add(zero_points)
        .round()
        .clamp_(quant_min, quant_max)
        .to(dtype)
        .reshape_as(input)
    )

    return input_int8


@impl(quantized_decomposed_lib, "quantize_per_channel_group", "Meta")
def quantize_per_channel_group_meta(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    group_size=128,
):
    """Groupwise quantization within each channel for an 2-d Tensor using the quantization parameters
    to map from floating point to quantized values. This means for each row of a 2-d Tensor
    (M, N), we calculate scales/zero_points for each `group_size` elements
    and quantize every `group_size` elements with the same quantization parameter.
    The dimension for scales/zero_points will be (M * ceil(N, group_size),)

    Args:
       input (torch.Tensor): original float32 or bfloat16 Tensor
       scales (float32 torch.Tensor): quantization parameter for per channel group affine quantization
       zero_points (int32 torch.Tensor): quantization parameter for per channel group affine quantization
       quant_min (int): minimum quantized value for output Tensor
       quant_max (int): maximum quantized value for output Tensor
       dtype (torch.dtype): requested dtype (e.g. torch.uint8) for output Tensor

    Returns:
       Tensor with requested dtype (e.g. torch.uint8), note the quantization parameters
       are not stored in the Tensor, we are storing them in function arguments instead
    """
    assert group_size > 1
    # needed for GPTQ single column quantize
    if group_size > input.shape[-1] and scales.shape[-1] == 1:
        group_size = input.shape[-1]

    assert input.shape[-1] % group_size == 0
    assert input.dim() == 2
    return torch.empty_like(input, dtype=dtype)


quantized_decomposed_lib.define(
    "dequantize_per_channel_group(Tensor input, Tensor scales, Tensor? zero_points, int quant_min, "
    "int quant_max, ScalarType dtype, int group_size, ScalarType output_dtype) -> Tensor"
)


@impl(
    quantized_decomposed_lib,
    "dequantize_per_channel_group",
    "CompositeExplicitAutograd",
)
def dequantize_per_channel_group(
    w_int8: torch.Tensor,
    scales: torch.Tensor,
    zero_points: Optional[torch.Tensor],
    quant_min: int,
    quant_max: int,
    dtype: torch.dtype,
    group_size: int = 128,
    output_dtype: torch.dtype = torch.float32,
):
    """Groupwise dequantization within each channel for an 2-d Tensor using the quantization parameters
    to map from floating point to quantized values. This means for each row of a 2-d Tensor
    (M, N), we calculate scales/zero_points for each `group_size` elements
    and quantize every `group_size` elements with the same quantization parameter.
    The dimension for scales/zero_points will be (M * ceil(N, group_size),)

    Args:
       input (torch.Tensor): quantized Tensor (uint8/int8 etc.)
       scales (float32 torch.Tensor): quantization parameter for per channel group affine quantization
       zero_points (int32 torch.Tensor): quantization parameter for per channel group affine quantization
       quant_min (int): minimum quantized value for input Tensor
       quant_max (int): maximum quantized value for input Tensor
       dtype (torch.dtype): dtype (e.g. torch.uint8) for input Tensor
       output_dtype (torch.dtype): dtype (e.g. torch.float32) for output Tensor

    Returns:
       dequantized Tensor with dtype `output_dtype`
    """

    assert group_size > 1
    # needed for GPTQ single column dequantize
    if group_size > w_int8.shape[-1] and scales.shape[-1] == 1:
        group_size = w_int8.shape[-1]
    assert w_int8.shape[-1] % group_size == 0
    assert w_int8.dim() == 2

    w_int8_grouped = w_int8.reshape(-1, group_size)
    scales = scales.reshape(-1, 1)
    if zero_points is not None:
        zp = zero_points.reshape(-1, 1)
    else:
        zp = torch.zeros([], dtype=torch.int32, device=scales.device)
    w_dq = w_int8_grouped.sub(zp).mul(scales).reshape_as(w_int8).to(output_dtype)
    return w_dq


quantized_decomposed_lib.define(
    "fake_quant_per_channel(Tensor input, Tensor scales, Tensor zero_points, int axis, "
    "int quant_min, int quant_max) -> Tensor"
)


class FakeQuantPerChannel(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, scales, zero_points, axis, quant_min, quant_max):
        if scales.dtype != torch.float32:
            scales = scales.to(torch.float32)
        if zero_points.dtype != torch.int32:
            zero_points = zero_points.to(torch.int32)
        assert (
            input.dtype == torch.float32
        ), f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
        assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
        broadcast_dims = list(range(0, axis)) + list(range(axis + 1, input.ndim))
        unsqueeze_scales = _unsqueeze_multiple(scales, broadcast_dims)
        unsqueeze_zero_points = _unsqueeze_multiple(zero_points, broadcast_dims)
        temp = torch.round(input * (1.0 / unsqueeze_scales)) + unsqueeze_zero_points
        out = (
            torch.clamp(temp, quant_min, quant_max) - unsqueeze_zero_points
        ) * unsqueeze_scales
        mask = torch.logical_and((temp >= quant_min), (temp <= quant_max))

        ctx.save_for_backward(mask)
        return out

    @staticmethod
    def backward(ctx, gy):
        (mask,) = ctx.saved_tensors
        return gy * mask, None, None, None, None, None


@impl(quantized_decomposed_lib, "fake_quant_per_channel", "Autograd")
def fake_quant_per_channel(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    axis: int,
    quant_min: int,
    quant_max: int,
) -> torch.Tensor:
    return FakeQuantPerChannel.apply(
        input, scales, zero_points, axis, quant_min, quant_max
    )


@impl(quantized_decomposed_lib, "fake_quant_per_channel", "Meta")
def fake_quant_per_channel_meta(
    input: torch.Tensor,
    scales: torch.Tensor,
    zero_points: torch.Tensor,
    axis: int,
    quant_min: int,
    quant_max: int,
) -> torch.Tensor:
    return torch.empty_like(input)


quantized_decomposed_lib.define(
    "convert_element_type.no_fuse(Tensor input, ScalarType dtype) -> Tensor"
)


@impl(
    quantized_decomposed_lib,
    "convert_element_type.no_fuse",
    "CompositeExplicitAutograd",
)
def convert_element_type(input: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
    return torch.ops.prims.convert_element_type.default(input, dtype)


@impl(quantized_decomposed_lib, "convert_element_type.no_fuse", "Meta")
def convert_element_type_meta(input: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
    return torch.empty_like(input, dtype=dtype)