File: graph_module.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (203 lines) | stat: -rw-r--r-- 6,625 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# mypy: allow-untyped-defs
import copy
from typing import Any, Dict, Set, Union

import torch
from torch.fx import GraphModule
from torch.fx.graph import Graph


__all__ = [
    "FusedGraphModule",
    "ObservedGraphModule",
    "ObservedStandaloneGraphModule",
    "QuantizedGraphModule",
]


class FusedGraphModule(GraphModule):
    def __init__(
        self,
        root: Union[torch.nn.Module, Dict[str, Any]],
        graph: Graph,
        preserved_attr_names: Set[str],
    ):
        self.preserved_attr_names = preserved_attr_names
        preserved_attrs = {
            attr: getattr(root, attr)
            for attr in self.preserved_attr_names
            if hasattr(root, attr)
        }
        super().__init__(root, graph)
        for attr in preserved_attrs:
            setattr(self, attr, preserved_attrs[attr])

    # GraphModule does not copy attributes which are not in the __dict__
    # of vanilla nn.Module.  So, we override __deepcopy__ in order
    # to copy the quantization specific attributes correctly.
    def __deepcopy__(self, memo):
        fake_mod = torch.nn.Module()
        fake_mod.__dict__ = copy.deepcopy(self.__dict__)
        return FusedGraphModule(
            fake_mod,
            copy.deepcopy(self.graph),
            copy.deepcopy(self.preserved_attr_names),
        )


class ObservedGraphModule(GraphModule):
    def __init__(
        self,
        root: Union[torch.nn.Module, Dict[str, Any]],
        graph: Graph,
        preserved_attr_names: Set[str],
    ):
        self.preserved_attr_names = {
            "_activation_post_process_map",
            "_activation_post_process_indexes",
            "_patterns",
            "_node_name_to_qconfig",
            "_prepare_custom_config",
            "_equalization_node_name_to_qconfig",
            "_node_name_to_scope",
            "_qconfig_mapping",
            "_is_qat",
            "_observed_node_names",
        }.union(preserved_attr_names)
        preserved_attrs = {
            attr: getattr(root, attr)
            for attr in self.preserved_attr_names
            if hasattr(root, attr)
        }
        super().__init__(root, graph)
        for attr in preserved_attrs:
            setattr(self, attr, preserved_attrs[attr])

    # GraphModule does not copy attributes which are not in the __dict__
    # of vanilla nn.Module.  So, we override __deepcopy__ in order
    # to copy the quantization specific attributes correctly.
    def __deepcopy__(self, memo):
        fake_mod = torch.nn.Module()
        fake_mod.__dict__ = copy.deepcopy(self.__dict__)
        return ObservedGraphModule(
            fake_mod,
            copy.deepcopy(self.graph),
            copy.deepcopy(self.preserved_attr_names),
        )


def _is_observed_module(module: Any) -> bool:
    return hasattr(module, "meta") and "_observed_graph_module_attrs" in module.meta


def _get_observed_graph_module_attr(
    model: Union[torch.nn.Module, GraphModule], attr_name: str
) -> Any:
    if hasattr(model, "meta") and "_observed_graph_module_attrs" in model.meta:  # type: ignore[operator, index]
        return getattr(model.meta["_observed_graph_module_attrs"], attr_name)  # type: ignore[index]
    return None


class ObservedStandaloneGraphModule(ObservedGraphModule):
    def __init__(
        self,
        root: Union[torch.nn.Module, Dict[str, Any]],
        graph: Graph,
        preserved_attr_names: Set[str],
    ):
        preserved_attr_names = preserved_attr_names.union(
            {
                "_standalone_module_input_quantized_idxs",
                "_standalone_module_output_quantized_idxs",
            }
        )
        super().__init__(root, graph, preserved_attr_names)

    def __deepcopy__(self, memo):
        fake_mod = torch.nn.Module()
        fake_mod.__dict__ = copy.deepcopy(self.__dict__)
        return ObservedStandaloneGraphModule(
            fake_mod,
            copy.deepcopy(self.graph),
            copy.deepcopy(self.preserved_attr_names),
        )


def _is_observed_standalone_module(module: Any) -> bool:
    return (
        _is_observed_module(module)
        and module.meta["_observed_graph_module_attrs"].is_observed_standalone_module
    )


def _save_packed_weight(self, destination, prefix, keep_vars):
    for attr_name in dir(self):
        if "_packed_weight" in attr_name and isinstance(
            getattr(self, attr_name), torch._C.ScriptObject
        ):  # type: ignore[attr-defined]
            packed_weight = getattr(self, attr_name)
            destination[prefix + attr_name] = packed_weight


class QuantizedGraphModule(GraphModule):
    """This class is created to make sure PackedParams
    (e.g. LinearPackedParams, Conv2dPackedParams) to appear in state_dict
    so that we can serialize and deserialize quantized graph module with
    torch.save(m.state_dict()) and m.load_state_dict(state_dict)
    """

    def __init__(
        self,
        root: Union[torch.nn.Module, Dict[str, Any]],
        graph: Graph,
        preserved_attr_names: Set[str],
    ):
        self.preserved_attr_names = preserved_attr_names
        preserved_attrs = {
            attr: getattr(root, attr)
            for attr in self.preserved_attr_names
            if hasattr(root, attr)
        }
        super().__init__(root, graph)
        for attr in preserved_attrs:
            setattr(self, attr, preserved_attrs[attr])
        self._register_state_dict_hook(_save_packed_weight)

    def _load_from_state_dict(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        attrs_to_pop = []
        for attr_name in state_dict:
            if attr_name.startswith("_packed_weight") and isinstance(state_dict[attr_name], torch._C.ScriptObject):  # type: ignore[attr-defined] # noqa: B950
                setattr(self, attr_name, state_dict[attr_name])
                attrs_to_pop.append(attr_name)

        # pop the packed param attributesn
        for attr_name in attrs_to_pop:
            state_dict.pop(attr_name)

        super()._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )

    def __deepcopy__(self, memo):
        fake_mod = torch.nn.Module()
        fake_mod.__dict__ = copy.deepcopy(self.__dict__)
        return QuantizedGraphModule(
            fake_mod,
            copy.deepcopy(self.graph),
            copy.deepcopy(self.preserved_attr_names),
        )