File: tracer.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (48 lines) | stat: -rw-r--r-- 1,694 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from typing import Callable, List

import torch
from torch.ao.nn.intrinsic import _FusedModule
from torch.fx._symbolic_trace import Tracer
from torch.fx.proxy import Scope


__all__ = [
    "QuantizationTracer",
]


class ScopeContextManager(torch.fx.proxy.ScopeContextManager):
    def __init__(
        self, scope: Scope, current_module: torch.nn.Module, current_module_path: str
    ):
        super().__init__(scope, Scope(current_module_path, type(current_module)))


class QuantizationTracer(Tracer):
    def __init__(
        self, skipped_module_names: List[str], skipped_module_classes: List[Callable]
    ):
        super().__init__()
        self.skipped_module_names = skipped_module_names
        self.skipped_module_classes = skipped_module_classes
        # NB: initialized the module_type of top level module to None
        # we are assuming people won't configure the model with the type of top level
        # module here, since people can use "" for global config
        # We can change this if there is a use case that configures
        # qconfig using top level module type
        self.scope = Scope("", None)
        self.record_stack_traces = True

    def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
        return (
            (
                (
                    m.__module__.startswith("torch.nn")
                    or m.__module__.startswith("torch.ao.nn")
                )
                and not isinstance(m, torch.nn.Sequential)
            )
            or module_qualified_name in self.skipped_module_names
            or type(m) in self.skipped_module_classes
            or isinstance(m, _FusedModule)
        )