1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
|
# mypy: allow-untyped-defs
import copy
import dataclasses
import itertools
import operator
from typing import Any, Callable, Dict, List, Optional, Tuple, TYPE_CHECKING
import torch
import torch.nn.functional as F
from torch.ao.quantization.fx._decomposed import quantized_decomposed_lib # noqa: F401
from torch.ao.quantization.pt2e.export_utils import _WrapperModule
from torch.ao.quantization.quantizer import (
DerivedQuantizationSpec,
EdgeOrNode,
QuantizationSpecBase,
SharedQuantizationSpec,
)
from torch.fx import Graph, GraphModule, Node
from torch.fx.subgraph_rewriter import replace_pattern_with_filters, ReplacedPatterns
from .utils import (
_conv1d_bn_example_inputs,
_conv2d_bn_example_inputs,
_get_aten_graph_module_for_pattern,
_is_bn_node,
_is_conv_or_conv_transpose_node,
_is_conv_transpose_fn,
fold_bn_weights_into_conv_node,
)
if TYPE_CHECKING:
from torch.fx.passes.utils.matcher_with_name_node_map_utils import InternalMatch
__all__ = [] # type: ignore[var-annotated]
# Example inputs for quantized and folded conv-bn1d patterns used in convert
_quantized_conv1d_bn_example_inputs = (
torch.randn(1, 1, 3), # x
torch.randn(1, 1, 1), # conv_weight
torch.randn(1), # bn_weight
torch.randn(1), # bn_bias
torch.randn(1), # bn_running_mean
torch.randn(1), # bn_running_var
)
# Example inputs for quantized and folded conv-bn2d patterns used in convert
_quantized_conv2d_bn_example_inputs = (
torch.randn(1, 1, 3, 3), # x
torch.randn(1, 1, 1, 1), # conv_weight
torch.randn(1), # bn_weight
torch.randn(1), # bn_bias
torch.randn(1), # bn_running_mean
torch.randn(1), # bn_running_var
)
def _get_quantized_conv_bn_example_inputs_kwargs(
is_per_channel: bool,
has_bias: bool,
bias_is_quantized: bool,
is_cuda: bool,
) -> Dict[str, Any]:
"""
Optional example inputs for quantized and folded conv-bn patterns
used in convert, expressed as kwargs.
"""
kwargs = {}
# Per tensor quantization uses literals to represent scale and zero
# point, so there is no need to include them here as kwargs
if is_per_channel:
kwargs["weight_scale"] = torch.tensor([1], dtype=torch.float)
kwargs["weight_zero_point"] = torch.tensor([0], dtype=torch.int)
if has_bias and bias_is_quantized:
kwargs["bias_scale"] = torch.tensor([1], dtype=torch.float)
kwargs["bias_zero_point"] = torch.tensor([0], dtype=torch.int)
if has_bias:
kwargs["conv_bias"] = torch.randn(1)
if is_cuda:
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
kwargs[k] = v.cuda()
return kwargs
def _get_conv_bn_pattern(conv_fn: Callable) -> Callable:
def _conv_bn_pattern(
x: torch.Tensor,
conv_weight: torch.Tensor,
conv_bias: torch.Tensor,
bn_weight: torch.Tensor,
bn_bias: torch.Tensor,
bn_running_mean: torch.Tensor,
bn_running_var: torch.Tensor,
) -> torch.Tensor:
x = conv_fn(x, conv_weight, conv_bias)
x = F.batch_norm(
x, bn_running_mean, bn_running_var, bn_weight, bn_bias, training=True
)
return x
return _WrapperModule(_conv_bn_pattern)
# TODO: merge this with the `no_conv_bias` case
def _get_qat_conv_bn_pattern(conv_fn: Callable) -> Callable:
def _qat_conv_bn_pattern(
x: torch.Tensor,
conv_weight: torch.Tensor,
conv_bias: torch.Tensor,
bn_weight: torch.Tensor,
bn_bias: torch.Tensor,
bn_running_mean: torch.Tensor,
bn_running_var: torch.Tensor,
) -> torch.Tensor:
"""
Approximated method to fuse conv and bn. It requires only one forward pass.
conv_orig = conv / scale_factor where scale_factor = bn.weight / running_std.
This is based on `nniqat.ConvBn2d._forward_approximate`.
"""
# TODO: allow setting eps
bn_eps = 1e-5
running_std = torch.sqrt(bn_running_var + bn_eps)
scale_factor = bn_weight / running_std
weight_shape = [1] * len(conv_weight.shape)
weight_in_channel_axis = 1 if _is_conv_transpose_fn(conv_fn) else 0
weight_shape[weight_in_channel_axis] = -1
bias_shape = [1] * len(conv_weight.shape)
bias_shape[1] = -1
scaled_weight = conv_weight * scale_factor.reshape(weight_shape)
zero_bias = torch.zeros_like(conv_bias, dtype=x.dtype)
x = conv_fn(x, scaled_weight, zero_bias)
x = x / scale_factor.reshape(bias_shape)
x = x + conv_bias.reshape(bias_shape)
x = F.batch_norm(
x,
bn_running_mean,
bn_running_var,
bn_weight,
bn_bias,
training=True,
eps=bn_eps,
)
return x
return _WrapperModule(_qat_conv_bn_pattern)
def _get_qat_conv_bn_pattern_no_conv_bias(conv_fn: Callable) -> Callable:
def _qat_conv_bn_pattern_no_conv_bias(
x: torch.Tensor,
conv_weight: torch.Tensor,
# Not used, only for matching convenience
conv_bias: torch.Tensor,
bn_weight: torch.Tensor,
bn_bias: torch.Tensor,
bn_running_mean: torch.Tensor,
bn_running_var: torch.Tensor,
) -> torch.Tensor:
"""
Same as `_get_qat_conv_bn_pattern`, but handles the case with no conv bias.
"""
# TODO: allow setting eps
bn_eps = 1e-5
running_std = torch.sqrt(bn_running_var + bn_eps)
scale_factor = bn_weight / running_std
weight_shape = [1] * len(conv_weight.shape)
weight_in_channel_axis = 1 if _is_conv_transpose_fn(conv_fn) else 0
weight_shape[weight_in_channel_axis] = -1
bias_shape = [1] * len(conv_weight.shape)
bias_shape[1] = -1
scaled_weight = conv_weight * scale_factor.reshape(weight_shape)
x = conv_fn(x, scaled_weight, None)
x = x / scale_factor.reshape(bias_shape)
x = F.batch_norm(
x,
bn_running_mean,
bn_running_var,
bn_weight,
bn_bias,
training=True,
eps=bn_eps,
)
return x
return _WrapperModule(_qat_conv_bn_pattern_no_conv_bias)
def _append_qdq(x, is_per_channel, is_bias, kwargs):
"""
Helper function to append q-dq ops after `x`, using dummy values for the qparams
and qmin/qmax. We use dummy values here because we match with `ignore_literals=True`
and will manually replace these values after subgraph rewriting.
Return the dq node.
"""
# Dummy args to be passed into q-dq ops
per_channel_axis = 0
scale_key = "bias_scale" if is_bias else "weight_scale"
zp_key = "bias_zero_point" if is_bias else "weight_zero_point"
scale = kwargs[scale_key] if is_per_channel else 1.0
zp = kwargs[zp_key] if is_per_channel else 0
qmin = -127
qmax = 127
dtype = torch.int8
qd = torch.ops.quantized_decomposed
if is_per_channel:
x = qd.quantize_per_channel(x, scale, zp, per_channel_axis, qmin, qmax, dtype)
x = qd.dequantize_per_channel(x, scale, zp, per_channel_axis, qmin, qmax, dtype)
else:
x = qd.quantize_per_tensor(x, scale, zp, qmin, qmax, dtype)
x = qd.dequantize_per_tensor(x, scale, zp, qmin, qmax, dtype)
return x
def _get_quantized_qat_conv_bn_pattern(
is_per_channel: bool,
has_bias: bool,
bias_is_quantized: bool,
conv_fn: Callable,
bn_is_training: bool,
) -> Callable:
"""
Return the quantized version of QAT conv + BN pattern.
This is based on `nniqat.ConvBn2d._forward_approximate`,
used in QAT convert. We first match this pattern and replace
it with the normal [conv - bn] pattern, then fold the BN
weights into conv.
"""
# TODO: allow setting eps
bn_eps = 1e-5
def _quantized_qat_conv_bn_pattern(
x: torch.Tensor,
conv_weight: torch.Tensor,
bn_weight: torch.Tensor,
bn_bias: torch.Tensor,
bn_running_mean: torch.Tensor,
bn_running_var: torch.Tensor,
**kwargs,
) -> torch.Tensor:
running_std = torch.sqrt(bn_running_var + bn_eps)
scale_factor = bn_weight / running_std
weight_shape = [1] * len(conv_weight.shape)
weight_shape[0] = -1
bias_shape = [1] * len(conv_weight.shape)
bias_shape[1] = -1
scaled_weight = conv_weight * scale_factor.reshape(weight_shape)
scaled_weight = _append_qdq(
scaled_weight,
is_per_channel,
is_bias=False,
kwargs=kwargs,
)
if has_bias:
zero_bias = torch.zeros_like(kwargs["conv_bias"], dtype=x.dtype)
if bias_is_quantized:
zero_bias = _append_qdq(
zero_bias,
is_per_channel,
is_bias=True,
kwargs=kwargs,
)
x = conv_fn(x, scaled_weight, zero_bias)
else:
x = conv_fn(x, scaled_weight, None)
x = x / scale_factor.reshape(bias_shape)
if has_bias:
x = x + kwargs["conv_bias"].reshape(bias_shape)
x = F.batch_norm(
x,
bn_running_mean,
bn_running_var,
bn_weight,
bn_bias,
training=bn_is_training,
eps=bn_eps,
)
return x
return _WrapperModule(_quantized_qat_conv_bn_pattern)
def _get_folded_quantized_qat_conv_bn_pattern(
is_per_channel: bool,
has_bias: bool,
bias_is_quantized: bool,
conv_fn: Callable,
bn_is_training: bool,
) -> Callable:
"""
Quantized QAT conv - bn pattern with bn weights being folded into conv.
"""
# TODO: allow setting eps
bn_eps = 1e-5
def _folded_quantized_qat_conv_bn_pattern(
x: torch.Tensor,
conv_weight: torch.Tensor,
bn_weight: torch.Tensor,
bn_bias: torch.Tensor,
bn_running_mean: torch.Tensor,
bn_running_var: torch.Tensor,
**kwargs,
) -> torch.Tensor:
conv_weight = _append_qdq(
conv_weight,
is_per_channel,
is_bias=False,
kwargs=kwargs,
)
if has_bias:
bias = kwargs["conv_bias"]
if bias_is_quantized:
bias = _append_qdq(
bias,
is_per_channel,
is_bias=True,
kwargs=kwargs,
)
else:
bias = None
x = conv_fn(x, conv_weight, bias)
x = F.batch_norm(
x,
bn_running_mean,
bn_running_var,
bn_weight,
bn_bias,
training=bn_is_training,
eps=bn_eps,
)
return x
return _WrapperModule(_folded_quantized_qat_conv_bn_pattern)
def _has_conv_bias_filter(
match: "InternalMatch",
original_graph: Graph,
pattern_graph: Graph,
) -> bool:
"""
Match filter for the subgraph rewriter that returns True if the conv node in
the original graph has bias.
"""
for n in match.nodes_map.values():
if _is_conv_or_conv_transpose_node(n):
return len(n.args) > 2 and n.args[2] is not None
raise ValueError("Could not find conv node in matched conv + bn pattern")
def _no_conv_bias_filter(
match: "InternalMatch",
original_graph: Graph,
pattern_graph: Graph,
) -> bool:
"""
Match filter for the subgraph rewriter that returns True if the conv node in
the original graph does NOT have bias.
"""
return not _has_conv_bias_filter(match, original_graph, pattern_graph)
def _is_quantize(n: Node) -> bool:
return n.target in [
torch.ops.quantized_decomposed.quantize_per_tensor.default,
torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
torch.ops.quantized_decomposed.quantize_per_channel.default,
]
def _is_dequantize(n: Node) -> bool:
return n.target in [
torch.ops.quantized_decomposed.dequantize_per_tensor.default,
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
torch.ops.quantized_decomposed.dequantize_per_channel.default,
]
def _get_conv_bn_pattern_nodes(r: ReplacedPatterns) -> Dict[str, Tuple[Node, Node]]:
"""
Helper function to extract the nodes in the conv-bn fusion pattern after
subgraph rewriting, in the form of a map:
{name: (original_node, replacement_node)}
The following names must exist in the map:
"conv", "conv_weight", "conv_input", "bn", "getitem"
The following names may exist in the map:
"conv_weight_q", "conv_weight_dq", "conv_bias",
"conv_bias_q", "conv_bias_dq"
"""
def _get_nodes(nodes: List[Node]) -> Tuple[Node, Node, Optional[Node]]:
"""
Return a 3-tuple of (conv_node, bn_node, getitem_node).
This asserts that the match contains exactly one of each node.
"""
conv_node, bn_node, getitem_node = None, None, None
for n in nodes:
if n.op != "call_function":
continue
if _is_conv_or_conv_transpose_node(n):
assert conv_node is None
conv_node = n
if _is_bn_node(n):
assert bn_node is None
bn_node = n
if n.target == operator.getitem:
assert getitem_node is None
getitem_node = n
assert conv_node is not None
assert bn_node is not None
# getitem_node might be None in new training IR
return (conv_node, bn_node, getitem_node)
def _get_q_dq_nodes(n: Node) -> Tuple[Node, Node, Node]:
"""
Return a 3-tuple of (orig_node, q_node, dq_node).
"""
assert _is_dequantize(n)
q_node = n.args[0]
assert isinstance(q_node, Node)
assert _is_quantize(q_node)
orig_node = q_node.args[0]
assert isinstance(orig_node, Node)
return (orig_node, q_node, n)
original_nodes = list(_filter_nodes_map(r.nodes_map).values())
o_conv, o_bn, o_getitem = _get_nodes(original_nodes)
r_conv, r_bn, r_getitem = _get_nodes(r.replacements)
# Create the mapping from original node to replacement node
if o_getitem is None:
# getitem is None is new training IR
assert r_getitem is None
mapping = {
"conv": (o_conv, r_conv),
"bn": (o_bn, r_bn),
}
else:
# TODO: This branch is going through a deprecated branch and should be deleted soon,
# after capture_pre_autograd_graph fully migrate to training IR
# T199018392
assert r_getitem is not None
assert o_getitem is not None
mapping = {
"conv": (o_conv, r_conv),
"bn": (o_bn, r_bn),
"getitem": (o_getitem, r_getitem),
}
# Extract conv input and weight
# Note: here we extract the original nodes indirectly through the pattern nodes
# because the args of the original nodes are no longer available after replacement
(p_conv, _, _) = _get_nodes(list(r.nodes_map.keys()))
(p_conv_input, p_conv_weight, *_) = p_conv.args
(r_conv_input, r_conv_weight, *_) = r_conv.args
assert isinstance(p_conv_input, Node)
assert isinstance(p_conv_weight, Node)
assert isinstance(r_conv_input, Node)
assert isinstance(r_conv_weight, Node)
o_conv_input = r.nodes_map[p_conv_input]
o_conv_weight = r.nodes_map[p_conv_weight]
# If conv weight is quantized, extract the q - dq nodes
if _is_dequantize(p_conv_weight):
p_conv_weight, p_conv_weight_q, p_conv_weight_dq = _get_q_dq_nodes(
p_conv_weight
)
r_conv_weight, r_conv_weight_q, r_conv_weight_dq = _get_q_dq_nodes(
r_conv_weight
)
o_conv_weight = r.nodes_map[p_conv_weight]
o_conv_weight_q = r.nodes_map[p_conv_weight_q]
o_conv_weight_dq = r.nodes_map[p_conv_weight_dq]
mapping["conv_weight_q"] = (o_conv_weight_q, r_conv_weight_q)
mapping["conv_weight_dq"] = (o_conv_weight_dq, r_conv_weight_dq)
mapping["conv_input"] = (o_conv_input, r_conv_input)
mapping["conv_weight"] = (o_conv_weight, r_conv_weight)
# Extract conv bias
if len(p_conv.args) > 2 and len(r_conv.args) > 2:
p_conv_bias = p_conv.args[2]
r_conv_bias = r_conv.args[2]
assert isinstance(p_conv_bias, Node)
assert isinstance(r_conv_bias, Node)
o_conv_bias = r.nodes_map[p_conv_bias]
# If conv bias is quantized, extract the q - dq nodes
if _is_dequantize(p_conv_bias):
p_conv_bias, p_conv_bias_q, p_conv_bias_dq = _get_q_dq_nodes(p_conv_bias)
r_conv_bias, r_conv_bias_q, r_conv_bias_dq = _get_q_dq_nodes(r_conv_bias)
o_conv_bias = r.nodes_map[p_conv_bias]
o_conv_bias_q = r.nodes_map[p_conv_bias_q]
o_conv_bias_dq = r.nodes_map[p_conv_bias_dq]
mapping["conv_bias_q"] = (o_conv_bias_q, r_conv_bias_q)
mapping["conv_bias_dq"] = (o_conv_bias_dq, r_conv_bias_dq)
mapping["conv_bias"] = (o_conv_bias, r_conv_bias)
return mapping
def _filter_nodes_map(nodes_map: Dict[Node, Node]) -> Dict[Node, Node]:
"""
Return a filtered `nodes_map` returned from the subgraph rewriter.
The filtered `nodes_map` will contain only nodes that are actually
matched in the pattern, excluding None or placeholder nodes.
"""
new_nodes_map: Dict[Node, Node] = {}
for pattern_node, graph_node in nodes_map.items():
# bias can be None
if graph_node is None:
continue
# skip pattern placeholder nodes
if pattern_node.op == "placeholder":
continue
new_nodes_map[pattern_node] = graph_node
return new_nodes_map
# TODO: this is error prone, use the replace_literals_with_placeholders hack instead
def _copy_over_literal_conv_args(original_node: Node, new_node: Node):
"""
Copy over literal args in conv, such as stride and padding, from the matched node
in the original graph to its replacement in the new graph.
This is needed due to the following limitation in the subgraph rewriter when used
with dynamo export: literal (non-tensor) args are not supported in the match and
replacement patterns. This is because dynamo export automatically inlines these
literal args, making them dead placeholder nodes. In the future, we should check
if dynamo export can optionally disable this inlining, or if subgraph rewriter
can do the copying for us. See https://github.com/pytorch/pytorch/issues/100419.
Note: Unlike other tensor args like conv weights and biases, literal args are
preserved in the original nodes after replacement, so we can access them here.
"""
assert _is_conv_or_conv_transpose_node(original_node)
assert _is_conv_or_conv_transpose_node(new_node)
# x, weight, bias, [stride, padding, dilation, transposed, output_padding, groups]
new_args = list(new_node.args)
if len(new_args) < 3:
# bias is optional, when it is not present, it means it is None
new_args.append(None)
new_node.args = tuple(new_args[:3]) + original_node.args[3:]
def _update_conv_input_qspec_map_after_replacement(
original_node: Node, replacement_node: Node
):
"""
Update the `input_qspec_map` in the annotation after subgraph rewriting.
The original annotation referred to the nodes in the original graph,
so the keys in the `input_qspec_map` will need to be updated to reflect
the corresponding nodes in the replacement graph.
"""
assert _is_conv_or_conv_transpose_node(original_node)
assert _is_conv_or_conv_transpose_node(replacement_node)
if "quantization_annotation" not in original_node.meta:
return
original_input_qspec_map = original_node.meta[
"quantization_annotation"
].input_qspec_map
input_qspec_map = {}
# get the list of configs, it should be ordered as input, weight, bias
# note: this is really hacky, we need a better solution, hopefully
# in subgraph_rewriter, issue tracking the problem: https://github.com/pytorch/pytorch/issues/101820
all_configs = list(original_input_qspec_map.items())
# input activation
input_qspec_map[replacement_node.args[0]] = all_configs[0][1]
# weight
input_qspec_map[replacement_node.args[1]] = all_configs[1][1]
# bias
if len(replacement_node.args) > 2 and len(all_configs) > 2:
input_qspec_map[replacement_node.args[2]] = all_configs[2][1]
replacement_node.meta["quantization_annotation"].input_qspec_map = input_qspec_map
def _update_special_qspecs_after_replacement(
node: Node,
original_to_replacement_node: Dict[Node, Node],
):
"""
Update the `SharedQuantizationSpec`s and `DerivedQuantizationSpec`s
used in `node`'s quantization annotation after subgraph rewriting.
The original annotation referred to the nodes in the original graph,
so the nodes used in these special quantization specs will need to
be updated to the corresponding nodes in the replacement graph.
"""
def _get_new_edge_or_node(edge_or_node: EdgeOrNode):
if isinstance(edge_or_node, Node):
_node = edge_or_node
return original_to_replacement_node.get(_node, _node)
elif (
isinstance(edge_or_node, tuple)
and len(edge_or_node) == 2
and all(isinstance(x, Node) for x in edge_or_node)
):
src, dest = edge_or_node
return (
original_to_replacement_node.get(src, src),
original_to_replacement_node.get(dest, dest),
)
else:
raise ValueError("unexpected type for edge_or_node: ", type(edge_or_node))
def _get_new_qspec(qspec: QuantizationSpecBase):
if isinstance(qspec, SharedQuantizationSpec):
new_edge_or_node = _get_new_edge_or_node(qspec.edge_or_node)
return SharedQuantizationSpec(new_edge_or_node)
elif isinstance(qspec, DerivedQuantizationSpec):
new_derived_from = [_get_new_edge_or_node(x) for x in qspec.derived_from]
return dataclasses.replace(qspec, derived_from=new_derived_from)
else:
return qspec
if "quantization_annotation" not in node.meta:
return
annotation = node.meta["quantization_annotation"]
for input_node, qspec in annotation.input_qspec_map.items():
annotation.input_qspec_map[input_node] = _get_new_qspec(qspec)
annotation.output_qspec = _get_new_qspec(annotation.output_qspec)
def _fuse_conv_bn_qat(m: GraphModule) -> GraphModule:
has_bn = any(_is_bn_node(n) for n in m.graph.nodes)
if not has_bn:
return m
is_cuda_options = [True, False] if torch.cuda.is_available() else [False]
for is_cuda in is_cuda_options:
m = _fuse_conv_bn_qat_helper(
m, F.conv1d, _conv1d_bn_example_inputs, is_cuda=is_cuda
)
m = _fuse_conv_bn_qat_helper(
m, F.conv2d, _conv2d_bn_example_inputs, is_cuda=is_cuda
)
m = _fuse_conv_bn_qat_helper(
m, F.conv_transpose1d, _conv1d_bn_example_inputs, is_cuda=is_cuda
)
m = _fuse_conv_bn_qat_helper(
m, F.conv_transpose2d, _conv2d_bn_example_inputs, is_cuda=is_cuda
)
return m
def _fuse_conv_bn_qat_helper(
m: GraphModule,
conv_fn: Callable,
example_inputs: Tuple[Any, ...],
is_cuda: bool,
) -> GraphModule:
"""
Given a graph of decomposed aten ops, replace the (conv + bn) pattern with
the fused QAT subgraph equivalent. The input graph should already be annotated.
The annotations in the original nodes will be preserved in the corresponding
nodes in the new subgraph.
Note: This also handles the (conv + bn + relu) pattern.
"""
m.graph.eliminate_dead_code()
m.recompile()
from torch._export import gm_using_training_ir
using_training_ir = gm_using_training_ir(m)
conv_bn_pattern = _get_conv_bn_pattern(conv_fn)
match_pattern = _get_aten_graph_module_for_pattern(
conv_bn_pattern,
example_inputs,
is_cuda,
using_training_ir=using_training_ir,
)
# Step (1): Replace patterns with conv bias
#
# Here we do replacement separately for cases with and without conv bias, since
# the replacement patterns for these two cases are substantially different.
# TODO: use the public replace_pattern API once it also returns replacement nodes
qat_conv_bn_pattern = _get_qat_conv_bn_pattern(conv_fn)
replacement_pattern_with_conv_bias = _get_aten_graph_module_for_pattern(
qat_conv_bn_pattern,
example_inputs,
is_cuda,
using_training_ir=using_training_ir,
)
replacements_with_conv_bias = replace_pattern_with_filters(
m,
match_pattern,
replacement_pattern_with_conv_bias,
match_filters=[_has_conv_bias_filter],
ignore_literals=True,
)
m.recompile()
# Step (2): Replace patterns without conv bias
qat_conv_bn_pattern_no_conv_bias = _get_qat_conv_bn_pattern_no_conv_bias(conv_fn)
replacement_pattern_no_conv_bias = _get_aten_graph_module_for_pattern(
qat_conv_bn_pattern_no_conv_bias,
example_inputs,
is_cuda,
using_training_ir=using_training_ir,
)
replacements_no_conv_bias = replace_pattern_with_filters(
m,
match_pattern,
replacement_pattern_no_conv_bias,
match_filters=[_no_conv_bias_filter],
ignore_literals=True,
)
m.recompile()
# Step (3): Post processing
#
# Due to limited functionality in the subgraph rewriter, here we manually
# update the replacement graph as follows:
#
# (a) Copy over metadata from original subgraph. This ensures the stack traces
# and annotations are preserved in the new subgraph
#
# (b) Copy over literal args for conv from the original subgraph
# TODO: do this for literal args for batchnorm as well
#
# (c) Update all references of the old nodes in the original subgraph to refer
# to the corresponding nodes in the new subgraph in the annotations
#
# In the future, we should try to push as much of this functionality into the
# subgraph rewriter as possible, so we don't have to manually copy anything over.
# For more detail, see https://github.com/pytorch/pytorch/issues/100419.
all_original_to_replacement_nodes = {}
for r in replacements_with_conv_bias + replacements_no_conv_bias:
replacement_dict = _get_conv_bn_pattern_nodes(r)
# The original conv node's "nn_module_stack"
conv_nn_module = replacement_dict["conv"][0].meta.get("nn_module_stack", None)
for k, node_tuple in replacement_dict.items():
original_node, replacement_node = node_tuple
# Step (3a): Copy over metadata for all nodes in [conv - bn - getitem]
replacement_node.meta = original_node.meta
# If original_node is a get_attr node, it doesn't have nn_module_stack.
# In this case, we copy nn_module_stack from the original conv node.
if (
k in ["conv_input", "conv_weight"]
and conv_nn_module
and "nn_module_stack" not in replacement_node.meta
):
replacement_node.meta["nn_module_stack"] = copy.deepcopy(conv_nn_module)
if _is_conv_or_conv_transpose_node(original_node):
# Step (3b): Copy over conv literal args
_copy_over_literal_conv_args(original_node, replacement_node)
# Step (3c): Update old references in the conv node's input_qspec_map
_update_conv_input_qspec_map_after_replacement(
original_node, replacement_node
)
all_original_to_replacement_nodes[original_node] = replacement_node
# Step (3c): Update old references in the special qspecs for all nodes in the graph
for n in m.graph.nodes:
_update_special_qspecs_after_replacement(n, all_original_to_replacement_nodes)
return m
def _duplicate_dequantize_node(m: GraphModule):
"""
Helper function to duplicate all dequantize nodes in the graph if the
node has more than one user. For example:
Before:
quantize -> dequantize -> a
\\--> b
\\--> c
After:
quantize -> dequantize_1 -> a
\\--> dequantize_2 -> b
\\--> dequantize_3 -> c
This is useful for subgraph rewriting. E.g. if we wish to match the
pattern [dequantize - a] above, subgraph matching would fail because
the dequantize node has users outside the matched portion of the graph.
Instead, we match [dequantize_1 - a], which is safe.
"""
dq_op = torch.ops.quantized_decomposed.dequantize_per_tensor
for n in m.graph.nodes:
if n.op != "call_function" or n.target != dq_op or len(n.users) == 1:
continue
for user in list(n.users):
with m.graph.inserting_before(n):
new_node = m.graph.create_node("call_function", dq_op, n.args, n.kwargs)
user.replace_input_with(n, new_node)
m.graph.erase_node(n)
m.recompile()
def _remove_extra_dequantize(m: GraphModule):
"""
Removes duplicate dequant nodes in the graph, for an operator that has
multiple dequant nodes as a user, replace them with a single dequant node
that can be shared across all the uses. This should be seen as the "reverse"
of `_duplicate_dequantize_node`.
"""
dq_op = torch.ops.quantized_decomposed.dequantize_per_tensor
for n in m.graph.nodes:
dq_users = [
user
for user in n.users
if user.op == "call_function" and user.target == dq_op
]
if len(dq_users) > 1:
with m.graph.inserting_after(dq_users[0]):
new_node = m.graph.create_node(
"call_function", dq_op, dq_users[0].args, {}
)
for dq_user in dq_users:
dq_user.replace_all_uses_with(new_node)
m.graph.erase_node(dq_user)
m.recompile()
def _copy_over_q_dq_args(original_node: Node, replacement_node: Node):
"""
Given a pair of quantize or dequantize nodes, copy over all literal args
from the original node to the replacement node.
"""
# For quantize_per_tensor, scale and zp are literals and need to be copied
# For quantize_per_channel, scale and zp are get_attr nodes and should be skipped
assert original_node.target == replacement_node.target
if original_node.target in (
torch.ops.quantized_decomposed.quantize_per_tensor.default,
torch.ops.quantized_decomposed.dequantize_per_tensor.default,
):
# Args: input, [scale, zp, qmin, qmax, dtype]
start_copy_arg_index = 1
elif original_node.target in (
torch.ops.quantized_decomposed.quantize_per_channel.default,
torch.ops.quantized_decomposed.dequantize_per_channel.default,
):
# Args: input, scale, zp, [axis, qmin, qmax, dtype]
start_copy_arg_index = 3
else:
raise ValueError(
f"Expected quantize/dequantize nodes, got '{original_node.target}'"
)
replacement_node.args = (
replacement_node.args[:start_copy_arg_index]
+ original_node.args[start_copy_arg_index:]
)
def _fold_conv_bn_qat(m: GraphModule) -> GraphModule:
has_bn = any(_is_bn_node(n) for n in m.graph.nodes)
if not has_bn:
return m
is_cuda_options = [True, False] if torch.cuda.is_available() else [False]
for is_cuda in is_cuda_options:
m = _fold_conv_bn_qat_helper(
m, F.conv1d, _quantized_conv1d_bn_example_inputs, is_cuda=is_cuda
)
m = _fold_conv_bn_qat_helper(
m, F.conv2d, _quantized_conv2d_bn_example_inputs, is_cuda=is_cuda
)
m = _fold_conv_bn_qat_helper(
m, F.conv_transpose1d, _quantized_conv1d_bn_example_inputs, is_cuda=is_cuda
)
m = _fold_conv_bn_qat_helper(
m, F.conv_transpose2d, _quantized_conv2d_bn_example_inputs, is_cuda=is_cuda
)
# remove in place add from batchnorm tracking traning stats
for node in m.graph.nodes:
if (
node.target == torch.ops.aten.add_.Tensor
and node.args[0].op == "get_attr"
and node.args[1] == 1
and torch.nn.modules.batchnorm.BatchNorm2d
in [val[1] for val in node.meta["source_fn_stack"]]
):
m.graph.erase_node(node)
m.graph.eliminate_dead_code()
m.recompile()
return m
def _fold_conv_bn_qat_helper(
m: GraphModule,
conv_fn: Callable,
example_inputs: Tuple[Any, ...],
is_cuda: bool,
) -> GraphModule:
"""
Replace the quantized (conv + bn) pattern with conv with bn weights folded into the weights of conv.
"""
from torch._export import gm_using_training_ir
using_training_ir = gm_using_training_ir(m)
m.graph.eliminate_dead_code()
m.recompile()
_duplicate_dequantize_node(m)
# Step (1): Replace QAT pattern with simple [conv - bn] pattern
replacements = []
replacement_options = itertools.product(
[True, False], # is_per_channel
[True, False], # has_bias
[True, False], # bias_is_quantized
[True, False], # bn_is_training
)
for (
is_per_channel,
has_bias,
bias_is_quantized,
bn_is_training,
) in replacement_options:
# For the cases without bias, `bias_is_quantized` is irrelevant, so here we arbitrarily
# filter out one of the values for this flag to avoid having duplicate patterns
if not has_bias and bias_is_quantized:
continue
kwargs = _get_quantized_conv_bn_example_inputs_kwargs(
is_per_channel, has_bias, bias_is_quantized, is_cuda
)
match_pattern = _get_quantized_qat_conv_bn_pattern(
is_per_channel, has_bias, bias_is_quantized, conv_fn, bn_is_training
)
match_pattern = _get_aten_graph_module_for_pattern(
match_pattern,
example_inputs,
is_cuda,
using_training_ir=using_training_ir,
**kwargs,
)
replacement_pattern = _get_folded_quantized_qat_conv_bn_pattern(
is_per_channel, has_bias, bias_is_quantized, conv_fn, bn_is_training
)
replacement_pattern = _get_aten_graph_module_for_pattern(
replacement_pattern,
example_inputs,
is_cuda,
using_training_ir=using_training_ir,
**kwargs,
)
replacements.extend(
replace_pattern_with_filters(
m,
match_pattern,
replacement_pattern,
ignore_literals=True,
)
)
m.recompile()
_remove_extra_dequantize(m)
for r in replacements:
node_map = _get_conv_bn_pattern_nodes(r)
# Step (2): Copy over metadata from original subgraph
for original_node, replacement_node in node_map.values():
replacement_node.meta = original_node.meta
# Step (3): Copy over args for weight (and optionally bias) q - dq nodes
_copy_over_q_dq_args(*node_map["conv_weight_q"])
_copy_over_q_dq_args(*node_map["conv_weight_dq"])
if "conv_bias_q" in node_map:
assert "conv_bias_dq" in node_map
_copy_over_q_dq_args(*node_map["conv_bias_q"])
_copy_over_q_dq_args(*node_map["conv_bias_dq"])
# Step (4): Fold BN weights into conv
conv_bias = None
(_, conv_node) = node_map["conv"]
(_, bn_node) = node_map["bn"]
(_, conv_weight) = node_map["conv_weight"]
if "conv_bias" in node_map:
(_, conv_bias) = node_map["conv_bias"]
fold_bn_weights_into_conv_node(conv_node, conv_weight, conv_bias, bn_node, m)
# Copy over literal args for conv
for original_node in _filter_nodes_map(r.nodes_map).values():
if _is_conv_or_conv_transpose_node(original_node):
_copy_over_literal_conv_args(original_node, conv_node)
m.graph.eliminate_dead_code()
m.recompile()
return m
|