1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
|
# mypy: allow-untyped-defs
import functools
import itertools
import operator
import warnings
from dataclasses import dataclass
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Sequence,
Set,
Tuple,
TYPE_CHECKING,
Union,
)
from typing_extensions import TypeAlias
import torch
import torch.nn.functional as F
from torch.ao.quantization.fake_quantize import (
FakeQuantize,
FusedMovingAvgObsFakeQuantize,
)
from torch.ao.quantization.observer import (
HistogramObserver,
MovingAverageMinMaxObserver,
MovingAveragePerChannelMinMaxObserver,
PerChannelMinMaxObserver,
PlaceholderObserver,
)
from torch.ao.quantization.pt2e.graph_utils import find_sequential_partitions
from torch.ao.quantization.quantizer.quantizer import (
QuantizationAnnotation,
QuantizationSpec,
Quantizer,
SharedQuantizationSpec,
)
from torch.ao.quantization.quantizer.utils import _get_module_name_filter
from torch.ao.quantization.quantizer.xnnpack_quantizer_utils import (
get_bias_qspec,
get_input_act_qspec,
get_output_act_qspec,
get_weight_qspec,
QuantizationConfig,
)
from torch.fx import Node
from torch.fx.passes.utils.source_matcher_utils import (
get_source_partitions,
SourcePartition,
)
FilterFn: TypeAlias = Callable[[List[Node]], bool]
if TYPE_CHECKING:
from torch.ao.quantization.qconfig import _ObserverOrFakeQuantizeConstructor
__all__ = [
"X86InductorQuantizer",
"get_default_x86_inductor_quantization_config",
"get_x86_inductor_linear_dynamic_fp16_config",
]
@dataclass
class _X86InductorQuantizationAnnotation(QuantizationAnnotation):
# _is_output_of_quantized_pattern:
# * Node as output node of a fusion pattern.
# * The fusion pattern supports int8 data type.
# * The fusion pattern has inputs annotated to insert observer.
# * The quantization_config is not `None`.
_is_output_of_quantized_pattern: bool = False
# Operators that:
# 1. Operators are optimized to run with int8 when int8 input provided.
# 2. Operators do not support int8 input and produce fp32 output.
int8_in_int8_out_ops: Set = {
torch.ops.aten.max_pool2d.default,
torch.ops.aten.cat.default,
torch.ops.aten.avg_pool2d.default,
torch.ops.aten.adaptive_avg_pool2d.default,
torch.ops.aten.flatten.using_ints,
}
# Operators that support the int8 data type for quantization config propagation.
# A superset of int8_in_int8_out_ops incorporating additional operators.
propagation_quantizable_ops = int8_in_int8_out_ops
# Operators support the int8 data type
# and recipe is configured by default in X86InductorQuantizer.
default_quantizable_ops = propagation_quantizable_ops | {
torch.ops.aten.conv2d.default,
torch.ops.aten.linear.default,
}
# A superset of default_quantizable_ops includes operators support the int8 data type
# but not enabled by default recipe of X86InductorQuantizer.
quantizable_ops = default_quantizable_ops | {
torch.ops.aten.matmul.default,
}
QUANT_ANNOTATION_KEY = "quantization_annotation"
def _skip_annotate(nodes: List[Node], filter_fn: Optional[FilterFn] = None) -> bool:
"""Determine whether to skip annotation for a list of nodes."""
# 1) Skip annotate if any node is already annotated
if _is_any_annotated(nodes):
return True
# 2) Proceed annotate if a) a filter function is provided
# and b) the given nodes list passes the filter function check.
if filter_fn and filter_fn(nodes):
return False
return True
def _create_module_name_filter(module_name: str) -> FilterFn:
"""Create a filter function for a given module name.
The filter function takes a list of nodes (as determined by the annotate function)
and return True if *all* nodes come from the specified module name, False otherwise.
For example:
linear_1: "f32[3, 10]" = torch.ops.aten.linear.default(...) # comes from a module with name `sub.linear1`
relu: "f32[3, 10]" = torch.ops.aten.relu.default(linear_1); # comes from a module with name `sub.relu1`
>> module_name_filter = _create_module_name_filter_inner("sub")
>> print(module_name_filter([relu, linear_1]))
# True # These two nodes are determined by `_annotate_linear_unary` function and from "sub".
"""
filter_fn = _get_module_name_filter(module_name)
def check_all_nodes_from_module(nodes: List[Node]) -> bool:
all_nodes_from_module_name: bool = all(filter_fn(n) for n in nodes)
return all_nodes_from_module_name
return check_all_nodes_from_module
def _create_operator_type_filter(
operator_type: Callable,
) -> FilterFn:
"""Create a filter function for a given operator type.
The filter function takes a list of nodes and returns True if it contains
exactly one node with the specified operator type, False otherwise.
For example:
linear_1: "f32[3, 10]" = torch.ops.aten.linear.default(...) # comes from a module with name `sub.linear1`
relu: "f32[3, 10]" = torch.ops.aten.relu.default(linear_1); # comes from a module with name `sub.relu1`
>> operator_type_filter = _create_operator_type_filter(torch.ops.aten.linear.default)
>> print(operator_type_filter([relu, linear_1]))
# True # These two nodes are determined by `_annotate_linear_unary` function and the second node is `linear`.
"""
def operator_type_filter(nodes: List[Node]):
num_nodes_with_operator_type = sum(
node.target == operator_type for node in nodes
)
if num_nodes_with_operator_type > 1:
raise NotImplementedError(
f"Several nodes within a single pattern are {operator_type}."
)
return num_nodes_with_operator_type == 1
return operator_type_filter
def _global_config_filter(nodes: List[Node]) -> bool:
"""Filter function for global configuration.
This filter function takes a list of nodes and returns True if there is exactly one node
in the list that is a default quantizable operation, False otherwise.
"""
num_nodes_in_default_quantizable_ops = sum(
node.target in default_quantizable_ops for node in nodes
)
if num_nodes_in_default_quantizable_ops > 1:
raise NotImplementedError(
"Several nodes within a single pattern are default quantizable operations."
)
return num_nodes_in_default_quantizable_ops == 1
def _map_module_function_to_aten_operator_type():
module_function_to_aten_operator: Dict[Callable, torch._ops.OpOverloadPacket] = {}
map_list = (
([torch.nn.Conv2d, F.conv2d], torch.ops.aten.conv2d.default),
([torch.nn.Linear, F.linear], torch.ops.aten.linear.default),
([torch.nn.MaxPool2d, F.max_pool2d], torch.ops.aten.max_pool2d.default),
(
[
torch.cat,
],
torch.ops.aten.cat.default,
),
([torch.nn.AvgPool2d, F.avg_pool2d], torch.ops.aten.avg_pool2d.default),
(
[torch.nn.AdaptiveAvgPool2d, F.adaptive_avg_pool2d],
torch.ops.aten.adaptive_avg_pool2d.default,
),
(
[
torch.flatten,
],
torch.ops.aten.flatten.using_ints,
),
(
[
torch.matmul,
],
torch.ops.aten.matmul.default,
),
)
for map_item in map_list:
module_function_to_aten_operator.update(dict.fromkeys(map_item[0], map_item[1])) # type: ignore[arg-type, call-overload]
return module_function_to_aten_operator
def _mark_nodes_as_annotated(nodes: List[Node]):
for node in nodes:
if node is not None:
if QUANT_ANNOTATION_KEY not in node.meta:
node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation()
node.meta[QUANT_ANNOTATION_KEY]._annotated = True
def _is_node_annotated(_node):
"""
return True if the node is annotated, otherwise return False
"""
return (
QUANT_ANNOTATION_KEY in _node.meta
and _node.meta[QUANT_ANNOTATION_KEY]._annotated
)
def _is_any_annotated(nodes: List[Node]):
"""
Given a list of nodes (that represents an operator pattern),
check if any of the node is annotated, return True if any of the node
is annotated, otherwise return False.
"""
return any(_is_node_annotated(node) for node in nodes)
def _is_all_annotated(nodes: List[Node]):
"""
Given a list of nodes (that represents an operator pattern),
return True if all of the node is annotated, otherwise return False.
"""
return all(_is_node_annotated(node) for node in nodes)
def _is_quantized_op_pt2e(node: torch.fx.Node):
"""
Used for pt2e flow to check if the node is a quantized node:
Case1: the node has been annotated as output node of a fusion pattern.
Case2: the node has been annotated as single quantized node.
"""
if not _is_any_annotated([node]):
# The node has not been annotated, directly return False
return False
quantization_annotation = node.meta.get(QUANT_ANNOTATION_KEY, None)
assert isinstance(quantization_annotation, _X86InductorQuantizationAnnotation)
return quantization_annotation._is_output_of_quantized_pattern
@functools.lru_cache
def get_default_x86_inductor_quantization_config(
is_qat: bool = False,
is_dynamic: bool = False,
reduce_range: bool = False,
):
"""
reduce_range is False by default. Set it to True on earlier CPUs without VNNI to avoid accuracy issue.
"""
extra_args: Dict[str, Any] = {"eps": 2**-12}
if is_qat:
if is_dynamic:
act_observer_or_fake_quant_ctr = FakeQuantize
dynamic_quant_observer = MovingAverageMinMaxObserver.with_args(
averaging_constant=1
)
extra_args["observer"] = dynamic_quant_observer
else:
act_observer_or_fake_quant_ctr = FusedMovingAvgObsFakeQuantize # type: ignore[assignment]
else:
if is_dynamic:
act_observer_or_fake_quant_ctr = PlaceholderObserver # type: ignore[assignment]
else:
act_observer_or_fake_quant_ctr = HistogramObserver # type: ignore[assignment]
# Copy from x86 default qconfig from torch/ao/quantization/qconfig.py
act_quantization_spec = QuantizationSpec(
dtype=torch.uint8,
quant_min=0,
quant_max=127 if reduce_range else 255,
qscheme=torch.per_tensor_affine,
is_dynamic=is_dynamic,
observer_or_fake_quant_ctr=act_observer_or_fake_quant_ctr.with_args(
**extra_args
),
)
weight_observer_or_fake_quant_ctr: _ObserverOrFakeQuantizeConstructor = (
FusedMovingAvgObsFakeQuantize if is_qat else PerChannelMinMaxObserver
)
if is_qat:
# Only support per channel quant for now
extra_args["observer"] = MovingAveragePerChannelMinMaxObserver # type: ignore[dict-item]
weight_quantization_spec = QuantizationSpec(
dtype=torch.int8,
quant_min=-128,
quant_max=127,
qscheme=torch.per_channel_symmetric,
ch_axis=0, # 0 corresponding to weight shape = (oc, ic, kh, kw) of conv
is_dynamic=False,
observer_or_fake_quant_ctr=weight_observer_or_fake_quant_ctr.with_args(
**extra_args
),
)
bias_quantization_spec = None # will use placeholder observer by default
quantization_config = QuantizationConfig(
act_quantization_spec,
act_quantization_spec,
weight_quantization_spec,
bias_quantization_spec,
is_qat,
)
return quantization_config
@functools.lru_cache
def get_x86_inductor_linear_dynamic_fp16_config():
"""
For linear_dynamic_fp16. The name may be confusing.
The op's behavior is fp32_input * (fp16_weight -> to_fp32) -> fp32_output.
"""
weight_quantization_spec = QuantizationSpec(
dtype=torch.float16,
observer_or_fake_quant_ctr=PlaceholderObserver,
)
quantization_config = QuantizationConfig(
None, # input_quantization_spec
None, # output_quantization_spec
weight_quantization_spec,
None, # bias_quantization_spec
)
return quantization_config
def _annotate_nodes_not_quantize(nodes: Union[Node, List[Node]]) -> None:
"""Annotate nodes to exclude them from quantization (their `quantization_config` is `None`)."""
if not isinstance(nodes, list):
nodes = [nodes]
for node in nodes:
node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
_annotated=True
)
def _config_checker(method: Callable) -> Callable:
@functools.wraps(method)
def wrapper(
quantizer: "X86InductorQuantizer",
name: Any,
quantization_config: Optional["QuantizationConfig"],
) -> "X86InductorQuantizer":
if quantizer._need_skip_config(quantization_config):
warnings.warn(
f"Skip the quantization config for {name}.",
)
return quantizer
return method(quantizer, name, quantization_config)
return wrapper
@dataclass
class _CurrentQuantizationMode:
r"""Configuration defining the current quantization mode for the quantizer.
All possible current quantization modes are listed below:
----------------------------------------------------------------------------------------------------------
| dynamic_state
qat_state |---------------------------------------------------------------------------------------------
| None | True | False
----------------------------------------------------------------------------------------------------------
None | quantizer does not receive a non-None `quantization_config` | \ | \
False | quantizer will not do QAT | dynamic | static
True | quantizer will do QAT | QAT + dynamic | QAT + static
"""
qat_state: Optional[bool]
dynamic_state: Optional[bool]
class X86InductorQuantizer(Quantizer):
module_function_to_aten_operator_type = _map_module_function_to_aten_operator_type()
def __init__(self) -> None:
super().__init__()
self.global_config: Optional[QuantizationConfig] = None
self.operator_type_qconfig: Dict[
torch._ops.OpOverloadPacket, Optional[QuantizationConfig]
] = {}
self.module_name_qconfig: Dict[str, Optional[QuantizationConfig]] = {}
def _get_current_quantization_mode(self) -> _CurrentQuantizationMode:
"""Retrieves the current quantization mode based on all configurations."""
qat_state = None
dynamic_state = None
# As we use `_need_skip_config` to skip all invalid configurations,
# we can safely assume that the all existing non-None configurations
# have the same quantization mode.
for qconfig in (
list(self.module_name_qconfig.values())
+ list(self.operator_type_qconfig.values())
+ [self.global_config]
):
if qconfig is not None:
# Query the `is_qat` state
if qat_state is None:
qat_state = qconfig.is_qat
else:
assert qat_state == qconfig.is_qat, (
f"All non-None quantization configs should have the same `is_qat`,"
f"but got {qat_state} and {qconfig.is_qat}."
)
# Query the `is_dynamic` state
input_activation_spec = qconfig.input_activation
if input_activation_spec is not None:
if dynamic_state is None:
dynamic_state = input_activation_spec.is_dynamic
else:
assert dynamic_state == input_activation_spec.is_dynamic, (
f"All non-None `input_activation_spec` should have the same `is_dynamic`,"
f"but got {dynamic_state} and {input_activation_spec.is_dynamic}."
)
return _CurrentQuantizationMode(
qat_state=qat_state, dynamic_state=dynamic_state
)
def _need_skip_config(
self, quantization_config: Optional[QuantizationConfig]
) -> bool:
"""Check if the provided quantization config is valid for X86InductorQuantizer.
Mixed static/dynamic configurations or mixed QAT/non-QAT configurations are not supported.
To avoid such a mix, we compare the incoming configuration with current configuration status.
Refer the `_CurrentQuantizationMode` definition for all possible modes.
"""
if quantization_config is None:
return False
need_skip = False
current_mode = self._get_current_quantization_mode()
if (
current_mode.qat_state is not None
and current_mode.qat_state != quantization_config.is_qat
):
warnings.warn("Mixed QAT and Non-QAT quantization config is not supported.")
need_skip = True
if current_mode.dynamic_state is not None:
input_activation_spec = quantization_config.input_activation
if (
input_activation_spec is not None
and current_mode.dynamic_state != input_activation_spec.is_dynamic
):
warnings.warn(
"Mixed dynamic and static quantization config is not supported."
)
need_skip = True
return need_skip
def set_global(self, quantization_config: QuantizationConfig):
if self._need_skip_config(quantization_config):
warnings.warn("Skip the global quantization config.")
return self
self.global_config = quantization_config
return self
def get_global_quantization_config(self):
if not isinstance(self.global_config, QuantizationConfig):
warnings.warn(
"The global_config for X86InductorQuantizer is currently invalid. \
Please ensure that you use set_global to establish the global quantization configuration."
)
return self.global_config
@_config_checker
def set_function_type_qconfig(
self,
function_type: Callable,
quantization_config: Optional[QuantizationConfig],
) -> "X86InductorQuantizer":
if function_type in X86InductorQuantizer.module_function_to_aten_operator_type:
self._set_aten_operator_qconfig(
X86InductorQuantizer.module_function_to_aten_operator_type[
function_type
],
quantization_config,
)
else:
warnings.warn(
f"function: Unable to customize quantization config for {function_type} by X86InductorQuantizer."
)
return self
@_config_checker
def set_module_type_qconfig(
self,
module_type: torch.nn.Module,
quantization_config: Optional[QuantizationConfig],
) -> "X86InductorQuantizer":
if module_type in X86InductorQuantizer.module_function_to_aten_operator_type:
self._set_aten_operator_qconfig(
X86InductorQuantizer.module_function_to_aten_operator_type[module_type],
quantization_config,
)
else:
warnings.warn(
f"Module: Unable to customize quantization config for {module_type} by X86InductorQuantizer."
)
return self
@_config_checker
def set_module_name_qconfig(
self, module_name: str, quantization_config: Optional[QuantizationConfig]
):
"""Set quantization_config for a submodule with name: `module_name`, for example:
quantizer.set_module_name_qconfig("blocks.sub"), it will quantize all supported operator/operator
patterns in the submodule with this module name with the given `quantization_config`
The supported operators include `quantizable_ops` and `propagation_quantizable_ops`.
"""
self.module_name_qconfig[module_name] = quantization_config
return self
def _set_aten_operator_qconfig(
self,
operator_type: torch._ops.OpOverloadPacket,
quantization_config: Optional[QuantizationConfig],
) -> "X86InductorQuantizer":
if operator_type in quantizable_ops:
self.operator_type_qconfig[operator_type] = quantization_config
else:
warnings.warn(
f"operator: Unable to quantize {operator} by X86InductorQuantizer."
)
return self
def _annotate_conv_node_helper(
self,
conv_node: torch.fx.Node,
annotate_output: bool,
quantization_config: Optional[QuantizationConfig],
) -> None:
"""Helper function to annotate the conv node"""
if quantization_config is None:
_annotate_nodes_not_quantize(conv_node)
return
input_qspec_map = {}
input_node = conv_node.args[0]
assert isinstance(input_node, Node)
input_qspec_map[input_node] = get_input_act_qspec(quantization_config)
weight_node = conv_node.args[1]
assert isinstance(weight_node, Node)
input_qspec_map[weight_node] = get_weight_qspec(quantization_config)
bias_node = None if len(conv_node.args) == 2 else conv_node.args[2]
if isinstance(bias_node, Node):
input_qspec_map[bias_node] = get_bias_qspec(quantization_config)
if annotate_output:
conv_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=input_qspec_map,
_annotated=True,
_is_output_of_quantized_pattern=True,
)
else:
conv_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=input_qspec_map,
_annotated=True,
)
def _annotate_linear_node_helper(
self,
linear_node: torch.fx.Node,
annotate_output: bool,
quantization_config: Optional[QuantizationConfig],
) -> None:
"""Helper function to annotate the linear node"""
if quantization_config is None:
_annotate_nodes_not_quantize(linear_node)
return
input_qspec_map = {}
assert linear_node.target in (torch.ops.aten.linear.default,)
has_bias = len(linear_node.args) == 3
input_index = 0
weight_index = 1
bias_index = 2
input_node = linear_node.args[input_index]
assert isinstance(input_node, Node)
input_qspec_map[input_node] = get_input_act_qspec(quantization_config)
weight_node = linear_node.args[weight_index]
assert isinstance(weight_node, Node)
input_qspec_map[weight_node] = get_weight_qspec(quantization_config)
bias_node = linear_node.args[bias_index] if has_bias else None
if isinstance(bias_node, Node):
input_qspec_map[bias_node] = get_bias_qspec(quantization_config)
if annotate_output:
linear_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=input_qspec_map,
_annotated=True,
_is_output_of_quantized_pattern=True,
)
else:
linear_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=input_qspec_map, _annotated=True
)
def _get_output_nodes_of_partitions(
self,
partition_list: List[SourcePartition],
) -> List[torch.fx.Node]:
"""Helper function to get the output node list from partition list"""
output_node_list = []
for partition in partition_list:
if len(partition.output_nodes) > 1:
raise ValueError("Input partition has more than one output node")
output_node = partition.output_nodes[0]
assert isinstance(output_node, Node)
output_node_list.append(output_node)
if len(output_node_list) != len(partition_list):
raise ValueError(
"length of output_node_list should equal to length of partition_list"
)
return output_node_list
def _get_input_idx_for_binary_node(
self,
conv_gemm_node: torch.fx.Node,
binary_node: torch.fx.Node,
):
"""Helper function to check conv_gemm and extra input node index
for binary node fused with conv_gemm.
"""
conv_gemm_node_idx = None
extra_input_node_idx = None
if (binary_node.args[0].op == "call_function") and ( # type: ignore[union-attr]
binary_node.args[0] == conv_gemm_node
):
conv_gemm_node_idx = 0
extra_input_node_idx = 1
elif (binary_node.args[1].op == "call_function") and ( # type: ignore[union-attr]
binary_node.args[1] == conv_gemm_node
):
conv_gemm_node_idx = 1
extra_input_node_idx = 0
extra_input_node = binary_node.args[extra_input_node_idx] # type: ignore[index]
assert isinstance(extra_input_node, Node)
return conv_gemm_node_idx, extra_input_node_idx
def annotate(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule:
"""Annotate the given model with quantization configurations.
Annotation contracts:
1. Annotate each node according to the user's qconfig in the following order:
`module_name_qconfig`, `operator_type_qconfig`, and `global_config`.
2. Avoid re-annotating nodes already annotated in prior stages. For example,
if `linear1` has been annotated by `module_name_qconfig`, it won't be annotated again
during the processing of the 'operator_type_qconfig' or 'global_config'.
3. For config is `None`, the node will be annotated with `_X86InductorQuantizationAnnotation(_annotated=True)`.
For each pair of (module_name_or_operator_type_or_global, qconfig), a filter function is created.
This filter function checks if the node is marked by current stage and not annotated by the previous stage.
"""
for module_name, quantization_config in self.module_name_qconfig.items():
self._annotate_with_config(
model, quantization_config, _create_module_name_filter(module_name)
)
for operator_type, quantization_config in self.operator_type_qconfig.items():
self._annotate_with_config(
model, quantization_config, _create_operator_type_filter(operator_type)
)
if self.global_config:
self._annotate_with_config(
model,
self.global_config,
_global_config_filter,
)
# Once we've annotated the model with quantization configurations, we also need to annotate
# the output of quantizable operations. For example, if we annotated `maxpool2d` to quantize its inputs,
# we will quantize its output accordingly. This enables us to fuse the dq-operator-q into a quantized op.
# Refer to https://github.com/intel/intel-extension-for-pytorch/blob/
# 90d19323d96afc53fcc22ba5a7bb3fb07fdd6c1c/intel_extension_for_pytorch/quantization/_recipe.py#L487
self._annotate_output_for_int8_in_int8_out_pattern_entry(model)
return model
def _annotate_with_config(
self,
model: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: FilterFn,
) -> None:
"""Annotate the model with the given quantization configuration.
High-level description of quantization recipe for X86 Inductor Backend:
Step 1: Apply quantization recipe for fusion patterns of conv/linear to enable int8 data type actively.
Step 2: Propagate quantization annotation for patterns besides conv/linear. Go through the pattern in model
from start to the end. If a pattern supports computation with int8 data type and inputs connected to
quantized patterns, annotate its inputs as quantized pattern.
"""
# Step1: Recipe of fusion patterns like conv/linear.
self._annotate_conv2d_fusion_pattern(model, quantization_config, filter_fn)
self._annotate_linear_fusion_pattern(model, quantization_config, filter_fn)
self._annotate_matmul(model, quantization_config, filter_fn)
# Step2: Recipe to propagate annotation for patterns beside conv/linear.
# Go through all the nodes from start to end.
# Recipe refer to https://github.com/intel/intel-extension-for-pytorch/blob/
# 90d19323d96afc53fcc22ba5a7bb3fb07fdd6c1c/intel_extension_for_pytorch/quantization/_recipe.py#L538
self._annotate_propagation_quantizable_pattern_entry(
model, quantization_config, filter_fn
)
def _annotate_qat_conv2d_fusion_pattern(
self,
model: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
):
# Annotate QAT Specific patterns
self._annotate_qat_conv2d_bn_binary_unary(model, quantization_config, filter_fn)
self._annotate_qat_conv2d_bn_binary(model, quantization_config, filter_fn)
self._annotate_qat_conv2d_bn_unary(model, quantization_config, filter_fn)
self._annotate_qat_conv2d_bn(model, quantization_config, filter_fn)
def _annotate_qat_conv2d_bn_binary_unary(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
fused_partitions = find_sequential_partitions(
gm, [torch.nn.Conv2d, torch.nn.BatchNorm2d, operator.add, torch.nn.ReLU]
)
for fused_partition in fused_partitions:
(
conv_partition,
bn_partition,
binary_partition,
unary_partition,
) = fused_partition
(
conv_node,
bn_output_node,
binary_node,
unary_node,
) = self._get_output_nodes_of_partitions(
[conv_partition, bn_partition, binary_partition, unary_partition]
)
if len(bn_output_node.users) != 1:
# Conv BN pattern should only has 1 user.
continue
(
bn_output_node_idx,
extra_input_node_idx,
) = self._get_input_idx_for_binary_node(bn_output_node, binary_node)
if (bn_output_node_idx is None) or (extra_input_node_idx is None):
continue
if bn_output_node != binary_node.args[bn_output_node_idx]:
raise ValueError(f"{bn_output_node} doesn't match input of binary node")
extra_input_node = binary_node.args[extra_input_node_idx]
if (
conv_node.op != "call_function"
or conv_node.target != torch.ops.aten.conv2d.default
):
continue
if _skip_annotate(
[unary_node, binary_node, bn_output_node, conv_node], filter_fn
):
continue
self._annotate_conv_node_helper(conv_node, False, quantization_config)
if quantization_config is not None:
binary_node_input_qspec_map = {}
binary_node_input_qspec_map[extra_input_node] = get_input_act_qspec(
quantization_config
)
binary_node.meta[
QUANT_ANNOTATION_KEY
] = _X86InductorQuantizationAnnotation(
input_qspec_map=binary_node_input_qspec_map,
_annotated=True,
)
unary_node.meta[
QUANT_ANNOTATION_KEY
] = _X86InductorQuantizationAnnotation(
# TODO<leslie> Remove the annotate of output in QAT when qat util support pattern matcher.
output_qspec=get_output_act_qspec(quantization_config), # type: ignore[arg-type]
_annotated=True,
_is_output_of_quantized_pattern=True,
)
else:
_annotate_nodes_not_quantize([binary_node, unary_node])
nodes_to_mark_annotated = list(conv_partition.nodes)
nodes_to_mark_annotated.extend(list(bn_partition.nodes))
nodes_to_mark_annotated.extend(list(binary_partition.nodes))
nodes_to_mark_annotated.extend(list(unary_partition.nodes))
_mark_nodes_as_annotated(nodes_to_mark_annotated)
def _annotate_qat_conv2d_bn_binary(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
fused_partitions = find_sequential_partitions(
gm, [torch.nn.Conv2d, torch.nn.BatchNorm2d, operator.add]
)
for fused_partition in fused_partitions:
conv_partition, bn_partition, binary_partition = fused_partition
(
conv_node,
bn_output_node,
binary_node,
) = self._get_output_nodes_of_partitions(
[conv_partition, bn_partition, binary_partition]
)
if len(bn_output_node.users) != 1:
# Conv BN pattern should only has 1 user.
continue
(
bn_output_node_idx,
extra_input_node_idx,
) = self._get_input_idx_for_binary_node(bn_output_node, binary_node)
if (bn_output_node_idx is None) or (extra_input_node_idx is None):
continue
if bn_output_node != binary_node.args[bn_output_node_idx]:
raise ValueError(f"{bn_output_node} doesn't match input of binary node")
extra_input_node = binary_node.args[extra_input_node_idx]
if (
conv_node.op != "call_function"
or conv_node.target != torch.ops.aten.conv2d.default
):
continue
if _skip_annotate([binary_node, bn_output_node, conv_node], filter_fn):
continue
self._annotate_conv_node_helper(conv_node, False, quantization_config)
if quantization_config is not None:
binary_node_input_qspec_map = {}
binary_node_input_qspec_map[extra_input_node] = get_input_act_qspec(
quantization_config
)
binary_node.meta[
QUANT_ANNOTATION_KEY
] = _X86InductorQuantizationAnnotation(
input_qspec_map=binary_node_input_qspec_map,
# TODO<leslie> Remove the annotate of output in QAT when qat util support pattern matcher.
output_qspec=get_output_act_qspec(quantization_config), # type: ignore[arg-type]
_annotated=True,
_is_output_of_quantized_pattern=True,
)
else:
_annotate_nodes_not_quantize(binary_node)
nodes_to_mark_annotated = list(conv_partition.nodes)
nodes_to_mark_annotated.extend(list(bn_partition.nodes))
nodes_to_mark_annotated.extend(list(binary_partition.nodes))
_mark_nodes_as_annotated(nodes_to_mark_annotated)
def _annotate_qat_conv2d_bn_unary(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
fused_partitions = []
unary_patterns = [
[torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.ReLU],
[torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.Hardtanh],
[torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.Hardswish],
[torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.ReLU6],
[torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.SiLU],
]
for unary_pattern in unary_patterns:
partitions = find_sequential_partitions(gm, unary_pattern)
if partitions:
# Extend the fused_partitions if partitions is not empty
fused_partitions.extend(partitions)
for fused_partition in fused_partitions:
conv_partition, bn_partition, unary_partition = fused_partition
(
conv_node,
bn_output_node,
unary_node,
) = self._get_output_nodes_of_partitions(
[conv_partition, bn_partition, unary_partition]
)
if (
conv_node.op != "call_function"
or conv_node.target != torch.ops.aten.conv2d.default
):
continue
if _skip_annotate([unary_node, bn_output_node, conv_node], filter_fn):
continue
self._annotate_conv_node_helper(conv_node, False, quantization_config)
if quantization_config is not None:
unary_node.meta[
QUANT_ANNOTATION_KEY
] = _X86InductorQuantizationAnnotation(
# TODO<leslie> Remove the annotate of output in QAT when qat util support pattern matcher.
output_qspec=get_output_act_qspec(quantization_config), # type: ignore[arg-type]
_annotated=True,
_is_output_of_quantized_pattern=True,
)
else:
_annotate_nodes_not_quantize(unary_node)
nodes_to_mark_annotated = list(conv_partition.nodes)
nodes_to_mark_annotated.extend(list(bn_partition.nodes))
nodes_to_mark_annotated.extend(list(unary_partition.nodes))
_mark_nodes_as_annotated(nodes_to_mark_annotated)
def _annotate_qat_conv2d_bn(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
fused_partitions = find_sequential_partitions(
gm, [torch.nn.Conv2d, torch.nn.BatchNorm2d]
)
for fused_partition in fused_partitions:
conv_partition, bn_partition = fused_partition
conv_node, bn_output_node = self._get_output_nodes_of_partitions(
[conv_partition, bn_partition]
)
if (
conv_node.op != "call_function"
or conv_node.target != torch.ops.aten.conv2d.default
):
continue
if _skip_annotate([bn_output_node, conv_node], filter_fn):
continue
self._annotate_conv_node_helper(conv_node, False, quantization_config)
if quantization_config is not None:
bn_output_node.meta[
QUANT_ANNOTATION_KEY
] = _X86InductorQuantizationAnnotation(
# TODO<leslie> Remove the annotate of output in QAT when qat util support pattern matcher.
output_qspec=get_output_act_qspec(quantization_config), # type: ignore[arg-type]
_annotated=True,
_is_output_of_quantized_pattern=True,
)
else:
_annotate_nodes_not_quantize(bn_output_node)
nodes_to_mark_annotated = list(conv_partition.nodes)
nodes_to_mark_annotated.extend(list(bn_partition.nodes))
_mark_nodes_as_annotated(nodes_to_mark_annotated)
def _annotate_conv2d_fusion_pattern(
self,
model: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
):
if (quantization_config is None) or (quantization_config.is_qat):
# Annotate QAT specific pattern: mainly due to BN not folded in prepare_qat
self._annotate_qat_conv2d_fusion_pattern(
model, quantization_config, filter_fn
)
self._annotate_conv2d_binary_unary(model, quantization_config, filter_fn)
self._annotate_conv2d_binary(model, quantization_config, filter_fn)
self._annotate_conv2d_unary(model, quantization_config, filter_fn)
self._annotate_conv2d(model, quantization_config, filter_fn)
def _annotate_linear_fusion_pattern(
self,
model: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
):
self._annotate_linear_binary_unary(model, quantization_config, filter_fn)
self._annotate_linear_unary(model, quantization_config, filter_fn)
self._annotate_linear(model, quantization_config, filter_fn)
def _annotate_matmul(
self,
model: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
):
for node in model.graph.nodes:
if node.target != torch.ops.aten.matmul.default:
continue
if _skip_annotate([node], filter_fn):
continue
if quantization_config is None:
_annotate_nodes_not_quantize(node)
continue
input_qspec_map = {}
matmul_node = node
for input_node in matmul_node.args:
input_qspec_map[input_node] = get_input_act_qspec(quantization_config)
matmul_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=input_qspec_map,
_annotated=True,
_is_output_of_quantized_pattern=True,
)
def _annotate_conv2d_binary_unary(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
# Conv2d + add + unary op
fused_partitions = find_sequential_partitions(
gm, [torch.nn.Conv2d, operator.add, torch.nn.ReLU]
)
for fused_partition in fused_partitions:
conv_partition, binary_partition, unary_partition = fused_partition
conv_node, binary_node, unary_node = self._get_output_nodes_of_partitions(
[conv_partition, binary_partition, unary_partition]
)
if len(conv_node.users) != 1:
# Conv Node should only has 1 user node
continue
conv_node_idx, extra_input_node_idx = self._get_input_idx_for_binary_node(
conv_node, binary_node
)
if (conv_node_idx is None) or (extra_input_node_idx is None):
continue
if conv_node != binary_node.args[conv_node_idx]:
raise ValueError(f"{conv_node} doesn't match input of binary node")
extra_input_node = binary_node.args[extra_input_node_idx]
if (
conv_node.op != "call_function"
or conv_node.target != torch.ops.aten.conv2d.default
):
# No conv node found to be fused with add
continue
if _skip_annotate([unary_node, binary_node, conv_node], filter_fn):
continue
if quantization_config is None:
_annotate_nodes_not_quantize([conv_node, binary_node, unary_node])
continue
self._annotate_conv_node_helper(conv_node, False, quantization_config)
binary_node_input_qspec_map = {}
binary_node_input_qspec_map[extra_input_node] = get_input_act_qspec(
quantization_config
)
binary_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=binary_node_input_qspec_map,
_annotated=True,
)
unary_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
_annotated=True,
_is_output_of_quantized_pattern=True,
)
def _annotate_conv2d_binary(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
# Conv2d + add
fused_partitions = find_sequential_partitions(
gm, [torch.nn.Conv2d, operator.add]
)
for fused_partition in fused_partitions:
conv_partition, binary_partition = fused_partition
conv_node, binary_node = self._get_output_nodes_of_partitions(
[conv_partition, binary_partition]
)
if len(conv_node.users) != 1:
# Conv Node should only has 1 user node
continue
conv_node_idx, extra_input_node_idx = self._get_input_idx_for_binary_node(
conv_node, binary_node
)
if (conv_node_idx is None) or (extra_input_node_idx is None):
continue
if conv_node != binary_node.args[conv_node_idx]:
raise ValueError(f"{conv_node} doesn't match input of binary node")
extra_input_node = binary_node.args[extra_input_node_idx]
assert isinstance(conv_node, Node)
if (
conv_node.op != "call_function"
or conv_node.target != torch.ops.aten.conv2d.default
):
# No conv node found to be fused with add
continue
if _skip_annotate([binary_node, conv_node], filter_fn):
continue
if quantization_config is None:
_annotate_nodes_not_quantize([conv_node, binary_node])
continue
self._annotate_conv_node_helper(conv_node, False, quantization_config)
binary_node_input_qspec_map = {}
binary_node_input_qspec_map[extra_input_node] = get_input_act_qspec(
quantization_config
)
binary_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=binary_node_input_qspec_map,
_annotated=True,
_is_output_of_quantized_pattern=True,
)
def _annotate_conv2d_unary(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
fused_partitions = []
unary_patterns = [
[torch.nn.Conv2d, torch.nn.ReLU],
[torch.nn.Conv2d, torch.nn.Hardtanh],
[torch.nn.Conv2d, torch.nn.Hardswish],
[torch.nn.Conv2d, torch.nn.ReLU6],
[torch.nn.Conv2d, torch.nn.SiLU],
]
for unary_pattern in unary_patterns:
partitions = find_sequential_partitions(gm, unary_pattern)
if partitions:
# Extend the fused_partitions if partitions is not empty
fused_partitions.extend(partitions)
for fused_partition in fused_partitions:
conv_partition, unary_partition = fused_partition
conv_node, unary_node = self._get_output_nodes_of_partitions(
[conv_partition, unary_partition]
)
if (
conv_node.op != "call_function"
or conv_node.target != torch.ops.aten.conv2d.default
):
continue
if _skip_annotate([unary_node, conv_node], filter_fn):
continue
if quantization_config is None:
_annotate_nodes_not_quantize([conv_node, unary_node])
continue
self._annotate_conv_node_helper(conv_node, False, quantization_config)
unary_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
_annotated=True,
_is_output_of_quantized_pattern=True,
)
def _annotate_conv2d(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
conv_partitions = get_source_partitions(
gm.graph, [torch.nn.Conv2d, torch.nn.functional.conv2d]
)
conv_partitions = list(itertools.chain.from_iterable(conv_partitions.values()))
for conv_partition in conv_partitions:
if len(conv_partition.output_nodes) > 1:
raise ValueError("conv partition has more than one output node")
conv_node = conv_partition.output_nodes[0]
if (
conv_node.op != "call_function"
or conv_node.target != torch.ops.aten.conv2d.default
):
raise ValueError(f"{conv_node} is not an aten conv2d operator")
# skip annotation if it is already annotated
if _skip_annotate([conv_node], filter_fn):
continue
self._annotate_conv_node_helper(conv_node, True, quantization_config)
def _annotate_maxpool2d(
self,
node: Node,
quantization_config: Optional[QuantizationConfig],
) -> None:
if node.target is not torch.ops.aten.max_pool2d.default:
return
if quantization_config is None:
_annotate_nodes_not_quantize(node)
return
maxpool_node = node
if _is_any_annotated(
[
maxpool_node,
]
):
return
input_node = maxpool_node.args[0]
assert isinstance(input_node, Node)
input_qspec_map = {}
input_qspec_map[input_node] = get_input_act_qspec(quantization_config)
maxpool_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=input_qspec_map,
_annotated=True,
_is_output_of_quantized_pattern=True,
)
def _annotate_cat(
self, node: Node, quantization_config: QuantizationConfig
) -> None:
if quantization_config is None:
_annotate_nodes_not_quantize(node)
return
cat_node = node
input_nodes = cat_node.args[0]
assert isinstance(input_nodes, Sequence)
first_input_node = input_nodes[0]
input_qspec_map = {}
assert isinstance(first_input_node, Node)
assert isinstance(cat_node, Node)
input_qspec_map[first_input_node] = get_input_act_qspec(quantization_config)
share_qparams_with_input_act0_qspec = SharedQuantizationSpec(
(first_input_node, cat_node)
)
for input_node in input_nodes[1:]:
if input_node not in input_qspec_map:
# There has the case of cat same nodes: torch.cat([input0, input0], 1)
assert isinstance(input_node, Node)
input_qspec_map[input_node] = share_qparams_with_input_act0_qspec
cat_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=input_qspec_map,
_annotated=True,
_is_output_of_quantized_pattern=True,
)
def _annotate_propagation_quantizable_pattern_entry(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
):
for node in gm.graph.nodes:
self._annotate_propagation_quantizable_pattern(
node, quantization_config, filter_fn
)
def _annotate_propagation_quantizable_pattern(
self, node: Node, quantization_config, filter_fn
) -> None:
# Propagate annotation to quantizable patterns.
if (
(node.target in propagation_quantizable_ops)
and (not _is_any_annotated([node]))
and (node.op == "call_function")
):
def is_all_inputs_connected_to_quantized_op(input_nodes):
# Ensure all the inputs connect to fusion pattern or quantized node
for input_node in input_nodes:
if not _is_quantized_op_pt2e(input_node):
return False
return True
if _skip_annotate([node], filter_fn):
return
if quantization_config is None:
_annotate_nodes_not_quantize(node)
return
if node.target is torch.ops.aten.max_pool2d.default:
# Recipe of maxpool2d: check input arg[0] of maxpool2d is quantized or not
input_nodes_to_check = [node.all_input_nodes[0]]
if not is_all_inputs_connected_to_quantized_op(input_nodes_to_check):
if quantization_config is not None:
warnings.warn(
f"The input of maxpool2d is not quantized, skip annotate maxpool2d with config {quantization_config}."
)
return
self._annotate_maxpool2d(node, quantization_config)
return
elif node.target is torch.ops.aten.cat.default:
input_nodes_to_check = node.all_input_nodes
if not is_all_inputs_connected_to_quantized_op(input_nodes_to_check):
return
self._annotate_cat(node, quantization_config)
elif (
node.target is torch.ops.aten.flatten.using_ints
and len(node.users) > 0
and not any(
user.target in quantizable_ops for user in node.users.keys()
)
):
# Recipe of flatten: check if any users of flatten node are quantizable ops or not
return
else:
input_node = node.all_input_nodes[0]
if not is_all_inputs_connected_to_quantized_op(
[
input_node,
]
):
return
input_qspec_map = {}
input_qspec_map[input_node] = get_input_act_qspec(quantization_config)
node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
input_qspec_map=input_qspec_map,
_annotated=True,
_is_output_of_quantized_pattern=True,
)
return
def _annotate_output_share_observer_as_input(
self, input_node: Node, source_node: Node
):
source_node_quantization_annotation = (
source_node.meta[QUANT_ANNOTATION_KEY]
if QUANT_ANNOTATION_KEY in source_node.meta
else None
)
if (
source_node_quantization_annotation
and source_node_quantization_annotation._is_output_of_quantized_pattern
):
edge_or_node = (input_node, source_node)
source_node_quantization_annotation.output_qspec = SharedQuantizationSpec(
edge_or_node
)
return
def _annotate_output_for_int8_in_int8_out_pattern_entry(
self,
model: torch.fx.GraphModule,
):
for node in model.graph.nodes:
self._annotate_output_for_int8_in_int8_out_pattern(node)
def _annotate_output_for_int8_in_int8_out_pattern(
self,
node: Node,
) -> None:
r"""
Check and insert observer at output of node in int8_in_int8_out_ops if needed.
Recipe refers to https://github.com/intel/intel-extension-for-pytorch/blob/
90d19323d96afc53fcc22ba5a7bb3fb07fdd6c1c/intel_extension_for_pytorch/quantization/_utils.py#L495
"""
edge_or_node: Tuple[Node, Node]
if (node.target in int8_in_int8_out_ops) and (_is_any_annotated([node])):
if node.target == torch.ops.aten.max_pool2d.default:
maxpool_node = node
if not _is_all_annotated(
[
maxpool_node,
]
):
return
# Get the quantization_annotation from getitem_node
maxpool_node_quantization_annotation = (
maxpool_node.meta[QUANT_ANNOTATION_KEY]
if QUANT_ANNOTATION_KEY in maxpool_node.meta
else None
)
if (
maxpool_node_quantization_annotation
and maxpool_node_quantization_annotation._is_output_of_quantized_pattern
):
# Annotate the output_qspec of getitem_node
input_act = maxpool_node.args[0]
assert isinstance(input_act, Node)
assert isinstance(maxpool_node, Node)
edge_or_node = (input_act, maxpool_node)
maxpool_node_quantization_annotation.output_qspec = (
SharedQuantizationSpec(edge_or_node)
)
else:
input_node = node.all_input_nodes[0]
self._annotate_output_share_observer_as_input(input_node, node)
return
def _annotate_linear(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
linear_partitions = get_source_partitions(
gm.graph, [torch.nn.Linear, torch.nn.functional.linear]
)
linear_partitions = list(
itertools.chain.from_iterable(linear_partitions.values())
)
for partition in linear_partitions:
if len(partition.output_nodes) > 1:
raise ValueError(
"Linear partition cannot have more than one output node"
)
linear_node = partition.output_nodes[0]
if linear_node.op != "call_function" or linear_node.target not in (
torch.ops.aten.linear.default,
):
raise ValueError(f"{linear_node} is not an aten linear operator")
# skip annotation if it is already annotated
if _skip_annotate([linear_node], filter_fn):
continue
self._annotate_linear_node_helper(linear_node, True, quantization_config)
def _annotate_linear_unary(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
postop_list = [
torch.nn.ReLU,
torch.nn.LeakyReLU,
torch.nn.Tanh,
torch.nn.GELU,
]
fused_partitions: List[tuple] = []
for postop in postop_list:
fused_partitions = fused_partitions + find_sequential_partitions(
gm, [torch.nn.Linear, postop]
)
for fused_partition in fused_partitions:
linear_partition, unary_partition = fused_partition
linear_node, unary_node = self._get_output_nodes_of_partitions(
[linear_partition, unary_partition]
)
if linear_node.op != "call_function" or linear_node.target not in (
torch.ops.aten.linear.default,
):
continue
if _skip_annotate([unary_node, linear_node], filter_fn):
continue
if quantization_config is None:
_annotate_nodes_not_quantize([linear_node, unary_node])
continue
self._annotate_linear_node_helper(linear_node, False, quantization_config)
unary_node.meta[QUANT_ANNOTATION_KEY] = _X86InductorQuantizationAnnotation(
_annotated=True,
_is_output_of_quantized_pattern=True,
)
def _annotate_linear_binary_unary(
self,
gm: torch.fx.GraphModule,
quantization_config: Optional[QuantizationConfig],
filter_fn: Optional[FilterFn] = None,
) -> None:
# linear + binary_op + (optional) unary op
binary_op_list = [operator.add]
unary_op_list = [torch.nn.ReLU, None]
combinations = itertools.product(binary_op_list, unary_op_list)
for binary_op, unary_op in combinations:
has_unary = unary_op is not None
seq_partition = [torch.nn.Linear, binary_op]
if has_unary:
seq_partition.append(unary_op)
fused_partitions = find_sequential_partitions(gm, seq_partition)
for fused_partition in fused_partitions:
unary_partition, unary_node = None, None
if has_unary:
(
linear_partition,
binary_partition,
unary_partition,
) = fused_partition
(
linear_node,
binary_node,
unary_node,
) = self._get_output_nodes_of_partitions(
[linear_partition, binary_partition, unary_partition]
)
else:
linear_partition, binary_partition = fused_partition
linear_node, binary_node = self._get_output_nodes_of_partitions(
[linear_partition, binary_partition]
)
if len(linear_node.users) != 1:
# Linear Node should only has 1 user node
continue
(
linear_node_idx,
extra_input_node_idx,
) = self._get_input_idx_for_binary_node(linear_node, binary_node)
if (linear_node_idx is None) or (extra_input_node_idx is None):
continue
if linear_node != binary_node.args[linear_node_idx]:
raise ValueError(
f"{linear_node} doesn't match input of binary node"
)
assert isinstance(linear_node, Node)
if (
linear_node.op != "call_function"
or linear_node.target != torch.ops.aten.linear.default
):
# No linear node found to be fused with add
continue
node_list = (
[binary_node, linear_node]
if unary_node is None
else [unary_node, binary_node, linear_node]
)
if _skip_annotate(node_list, filter_fn):
continue
if quantization_config is None:
_annotate_nodes_not_quantize(node_list)
continue
self._annotate_linear_node_helper(
linear_node, False, quantization_config
)
# We don't insert q-dq before the binary input node due to accuracy issues
binary_node.meta[
QUANT_ANNOTATION_KEY
] = _X86InductorQuantizationAnnotation(
input_qspec_map={},
_annotated=True,
_is_output_of_quantized_pattern=(not has_unary),
)
if unary_node is not None:
unary_node.meta[
QUANT_ANNOTATION_KEY
] = _X86InductorQuantizationAnnotation(
_annotated=True,
_is_output_of_quantized_pattern=True,
)
def validate(self, model: torch.fx.GraphModule) -> None:
pass
|