File: xnnpack_quantizer_utils.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1112 lines) | stat: -rw-r--r-- 40,125 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import itertools
from dataclasses import dataclass
from typing import Callable, Dict, List, NamedTuple, Optional

import torch
import torch.nn.functional as F
from torch._subclasses import FakeTensor
from torch.ao.quantization.fx.utils import get_new_attr_name_with_prefix
from torch.ao.quantization.pt2e.export_utils import _WrapperModule
from torch.ao.quantization.pt2e.utils import (
    _conv1d_bn_example_inputs,
    _conv2d_bn_example_inputs,
    _get_aten_graph_module_for_pattern,
    _is_conv_node,
    _is_conv_transpose_node,
)
from torch.ao.quantization.quantizer import (
    QuantizationAnnotation,
    QuantizationSpec,
    QuantizationSpecBase,
    SharedQuantizationSpec,
)
from torch.ao.quantization.quantizer.utils import (
    _annotate_input_qspec_map,
    _annotate_output_qspec,
)
from torch.fx import Node
from torch.fx.passes.utils.matcher_with_name_node_map_utils import (
    SubgraphMatcherWithNameNodeMap,
)
from torch.fx.passes.utils.source_matcher_utils import get_source_partitions


__all__ = [
    "OperatorConfig",
    "OperatorPatternType",
    "QuantizationConfig",
    "get_input_act_qspec",
    "get_output_act_qspec",
    "get_weight_qspec",
    "get_bias_qspec",
    "OP_TO_ANNOTATOR",
    "propagate_annotation",
]


# In the absence of better name, just winging it with QuantizationConfig
@dataclass(eq=True, frozen=True)
class QuantizationConfig:
    input_activation: Optional[QuantizationSpec]
    output_activation: Optional[QuantizationSpec]
    weight: Optional[QuantizationSpec]
    bias: Optional[QuantizationSpec]
    # TODO: remove, since we can use observer_or_fake_quant_ctr to express this
    is_qat: bool = False


OperatorPatternType = List[Callable]
OperatorPatternType.__module__ = (
    "torch.ao.quantization.quantizer.xnnpack_quantizer_utils"
)

AnnotatorType = Callable[
    [
        torch.fx.GraphModule,
        Optional[QuantizationConfig],
        Optional[Callable[[Node], bool]],
    ],
    Optional[List[List[Node]]],
]
OP_TO_ANNOTATOR: Dict[str, AnnotatorType] = {}


def register_annotator(op: str):
    def decorator(annotator: AnnotatorType):
        OP_TO_ANNOTATOR[op] = annotator

    return decorator


class OperatorConfig(NamedTuple):
    # fix List[str] with List[List[Union[nn.Module, FunctionType, BuiltinFunctionType]]]
    # Basically we are mapping a quantization config to some list of patterns.
    # a pattern is defined as a list of nn module, function or builtin function names
    # e.g. [nn.Conv2d, torch.relu, torch.add]
    # We have not resolved whether fusion can be considered internal details of the
    # quantizer hence it does not need communication to user.
    # Note this pattern is not really informative since it does not really
    # tell us the graph structure resulting from the list of ops.
    config: QuantizationConfig
    operators: List[OperatorPatternType]


def _is_annotated(nodes: List[Node]):
    """
    Given a list of nodes (that represents an operator pattern),
    check if any of the node is annotated, return True if any of the node
    is annotated, otherwise return False
    """
    annotated = False
    for node in nodes:
        annotated = annotated or (
            "quantization_annotation" in node.meta
            and node.meta["quantization_annotation"]._annotated
        )
    return annotated


def _mark_nodes_as_annotated(nodes: List[Node]):
    for node in nodes:
        if node is not None:
            if "quantization_annotation" not in node.meta:
                node.meta["quantization_annotation"] = QuantizationAnnotation()
            node.meta["quantization_annotation"]._annotated = True


def get_input_act_qspec(quantization_config: Optional[QuantizationConfig]):
    if quantization_config is None:
        return None
    if quantization_config.input_activation is None:
        return None
    quantization_spec: QuantizationSpec = quantization_config.input_activation
    assert quantization_spec.qscheme in [
        torch.per_tensor_affine,
        torch.per_tensor_symmetric,
    ]
    return quantization_spec


def get_output_act_qspec(quantization_config: Optional[QuantizationConfig]):
    if quantization_config is None:
        return None
    if quantization_config.output_activation is None:
        return None
    quantization_spec: QuantizationSpec = quantization_config.output_activation
    assert quantization_spec.qscheme in [
        torch.per_tensor_affine,
        torch.per_tensor_symmetric,
    ]
    return quantization_spec


def get_weight_qspec(quantization_config: Optional[QuantizationConfig]):
    if quantization_config is None:
        return None
    assert quantization_config is not None
    if quantization_config.weight is None:
        return None
    quantization_spec: QuantizationSpec = quantization_config.weight
    if quantization_spec.qscheme not in [
        torch.per_tensor_symmetric,
        torch.per_channel_symmetric,
        None,
    ]:
        raise ValueError(
            f"Unsupported quantization_spec {quantization_spec} for weight"
        )
    return quantization_spec


def get_bias_qspec(quantization_config: Optional[QuantizationConfig]):
    if quantization_config is None:
        return None
    assert quantization_config is not None
    if quantization_config.bias is None:
        return None
    quantization_spec: QuantizationSpec = quantization_config.bias
    assert (
        quantization_spec.dtype == torch.float
    ), "Only float dtype for bias is supported for bias right now"
    return quantization_spec


@register_annotator("linear")
def _annotate_linear(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    annotated_partitions = []
    input_act_qspec = get_input_act_qspec(quantization_config)
    output_act_qspec = get_output_act_qspec(quantization_config)
    weight_qspec = get_weight_qspec(quantization_config)
    bias_qspec = get_bias_qspec(quantization_config)
    for node in gm.graph.nodes:
        if node.op != "call_function" or node.target != torch.ops.aten.linear.default:
            continue
        if filter_fn and not filter_fn(node):
            continue
        act_node = node.args[0]
        weight_node = node.args[1]
        bias_node = None
        if len(node.args) > 2:
            bias_node = node.args[2]

        if _is_annotated([node]) is False:  # type: ignore[list-item]
            _annotate_input_qspec_map(
                node,
                act_node,
                input_act_qspec,
            )
            _annotate_input_qspec_map(
                node,
                weight_node,
                weight_qspec,
            )
            nodes_to_mark_annotated = [node, weight_node]
            if bias_node:
                _annotate_input_qspec_map(
                    node,
                    bias_node,
                    bias_qspec,
                )
                nodes_to_mark_annotated.append(bias_node)
            _annotate_output_qspec(node, output_act_qspec)
            _mark_nodes_as_annotated(nodes_to_mark_annotated)
            annotated_partitions.append(nodes_to_mark_annotated)

    return annotated_partitions


@register_annotator("linear_relu")
def _annotate_linear_relu(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    annotated_partitions = []
    input_act_qspec = get_input_act_qspec(quantization_config)
    output_act_qspec = get_output_act_qspec(quantization_config)
    weight_qspec = get_weight_qspec(quantization_config)
    bias_qspec = get_bias_qspec(quantization_config)
    for node in gm.graph.nodes:
        if node.op != "call_function" or node.target not in [
            torch.ops.aten.relu.default,
            torch.ops.aten.relu_.default,
        ]:
            continue
        relu_node = node
        maybe_linear_node = node.args[0]
        if (
            not isinstance(maybe_linear_node, Node)
            or maybe_linear_node.op != "call_function"
            or maybe_linear_node.target != torch.ops.aten.linear.default
        ):
            continue

        linear_node = maybe_linear_node
        if len(linear_node.users) > 1:
            # if linear node has multiple users, then it can't be fused with relu
            continue

        input_qspec_map = {}
        input_act = linear_node.args[0]
        assert isinstance(input_act, Node)
        input_qspec_map[input_act] = input_act_qspec

        weight = linear_node.args[1]
        assert isinstance(weight, Node)
        input_qspec_map[weight] = weight_qspec

        # adding weight node to the partition as well
        partition = [relu_node, linear_node, weight]
        bias = linear_node.args[2] if len(linear_node.args) > 2 else None
        if isinstance(bias, Node):
            input_qspec_map[bias] = bias_qspec
            partition.append(bias)

        if _is_annotated(partition):
            continue

        if filter_fn and any(not filter_fn(n) for n in partition):
            continue

        linear_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map=input_qspec_map,
            _annotated=True,
        )
        relu_node.meta["quantization_annotation"] = QuantizationAnnotation(
            output_qspec=output_act_qspec,
            _annotated=True,
        )
        _mark_nodes_as_annotated(partition)
        annotated_partitions.append(partition)
    return annotated_partitions


@register_annotator("conv")
def _annotate_conv(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    annotated_partitions = []
    for n in gm.graph.nodes:
        if n.op != "call_function" or n.target not in [
            torch.ops.aten.conv1d.default,
            torch.ops.aten.conv2d.default,
        ]:
            continue
        conv_node = n

        input_qspec_map = {}
        input_act = conv_node.args[0]
        assert isinstance(input_act, Node)
        input_qspec_map[input_act] = get_input_act_qspec(quantization_config)

        weight = conv_node.args[1]
        assert isinstance(weight, Node)
        input_qspec_map[weight] = get_weight_qspec(quantization_config)

        # adding weight node to the partition as well
        partition = [conv_node, conv_node.args[1]]

        bias = conv_node.args[2] if len(conv_node.args) > 2 else None
        if isinstance(bias, Node):
            input_qspec_map[bias] = get_bias_qspec(quantization_config)
            partition.append(bias)

        if _is_annotated(partition):
            continue

        if filter_fn and any(not filter_fn(n) for n in partition):
            continue

        conv_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map=input_qspec_map,
            output_qspec=get_output_act_qspec(quantization_config),
            _annotated=True,
        )
        _mark_nodes_as_annotated(partition)
        annotated_partitions.append(partition)
    return annotated_partitions


def _do_annotate_conv_relu(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
    is_conv_transpose: bool = False,
):
    annotated_partitions = []
    for n in gm.graph.nodes:
        if n.op != "call_function" or n.target not in [
            torch.ops.aten.relu.default,
            torch.ops.aten.relu_.default,
        ]:
            continue
        relu_node = n
        maybe_conv_node = n.args[0]

        is_conv_node = _is_conv_transpose_node if is_conv_transpose else _is_conv_node
        if not isinstance(maybe_conv_node, Node) or not is_conv_node(maybe_conv_node):
            continue
        conv_node = maybe_conv_node

        if len(conv_node.users) > 1:
            # relu shouldn't be fuseable to conv if there are other users
            # of convolution
            continue

        input_qspec_map = {}
        input_act = conv_node.args[0]
        assert isinstance(input_act, Node)
        input_qspec_map[input_act] = get_input_act_qspec(quantization_config)

        weight = conv_node.args[1]
        assert isinstance(weight, Node)
        input_qspec_map[weight] = get_weight_qspec(quantization_config)

        # adding weight node to the partition as well
        partition = [relu_node, conv_node, conv_node.args[1]]
        bias = conv_node.args[2] if len(conv_node.args) > 2 else None
        if isinstance(bias, Node):
            input_qspec_map[bias] = get_bias_qspec(quantization_config)
            partition.append(bias)

        if _is_annotated(partition):
            continue

        if filter_fn and any(not filter_fn(n) for n in partition):
            continue

        conv_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map=input_qspec_map, _annotated=True
        )
        relu_node.meta["quantization_annotation"] = QuantizationAnnotation(
            output_qspec=get_output_act_qspec(quantization_config),  # type: ignore[arg-type]
            _annotated=True,
        )
        _mark_nodes_as_annotated(partition)
        annotated_partitions.append(partition)
    return annotated_partitions


@register_annotator("conv_relu")
def _annotate_conv_relu(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    return _do_annotate_conv_relu(
        gm, quantization_config, filter_fn, is_conv_transpose=False
    )


@register_annotator("conv_transpose_relu")
def _annotate_conv_transpose_relu(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    return _do_annotate_conv_relu(
        gm, quantization_config, filter_fn, is_conv_transpose=True
    )


@register_annotator("conv_bn")
def _annotate_conv_bn(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    """
    Find conv + batchnorm parititions
    Note: This is only used for QAT. In PTQ, batchnorm should already be fused into the conv.
    """
    return _do_annotate_conv_bn(gm, quantization_config, filter_fn, has_relu=False)


@register_annotator("conv_bn_relu")
def _annotate_conv_bn_relu(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    """
    Find conv + batchnorm + relu parititions
    Note: This is only used for QAT. In PTQ, batchnorm should already be fused into the conv.
    """
    return _do_annotate_conv_bn(gm, quantization_config, filter_fn, has_relu=True)


@register_annotator("conv_transpose_bn")
def _annotate_conv_transpose_bn(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    """
    Find conv_transpose + batchnorm parititions
    Note: This is only used for QAT. In PTQ, batchnorm should already be fused into the conv.
    """
    return _do_annotate_conv_bn(
        gm, quantization_config, filter_fn, has_relu=False, is_conv_transpose=True
    )


@register_annotator("conv_transpose_bn_relu")
def _annotate_conv_transpose_bn_relu(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    """
    Find conv_transpose + batchnorm + relu parititions
    Note: This is only used for QAT. In PTQ, batchnorm should already be fused into the conv.
    """
    return _do_annotate_conv_bn(
        gm, quantization_config, filter_fn, has_relu=True, is_conv_transpose=True
    )


def _do_annotate_conv_bn(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]],
    has_relu: bool,
    is_conv_transpose: bool = False,
) -> List[List[Node]]:
    """
    Given a function that takes in a `conv_fn` and returns a conv-bn[-relu] pattern,
    return a list of annotated partitions.

    The output of the pattern must include a dictionary from string name to node
    for the following names: "input", "conv", "weight", "bias", and "output".
    """

    def get_pattern(conv_fn: Callable, relu_is_inplace: bool):
        def _conv_bn(x, conv_weight, conv_bias, bn_weight, bn_bias, bn_rm, bn_rv):
            conv = conv_fn(x, conv_weight, conv_bias)
            bn = F.batch_norm(conv, bn_rm, bn_rv, bn_weight, bn_bias, training=True)
            if has_relu:
                output = F.relu_(bn) if relu_is_inplace else F.relu(bn)
            else:
                output = bn
            return output, {
                "input": x,
                "conv": conv,
                "weight": conv_weight,
                "bias": conv_bias,
                "output": output,
            }

        return _WrapperModule(_conv_bn)

    # Needed for matching, otherwise the matches gets filtered out due to unused
    # nodes returned by batch norm
    gm.graph.eliminate_dead_code()
    gm.recompile()

    from torch._export import gm_using_training_ir

    using_training_ir = gm_using_training_ir(gm)

    matches = []
    if is_conv_transpose:
        combinations = [
            (F.conv_transpose1d, _conv1d_bn_example_inputs),
            (F.conv_transpose2d, _conv2d_bn_example_inputs),
        ]
    else:
        combinations = [
            (F.conv1d, _conv1d_bn_example_inputs),  # type: ignore[list-item]
            (F.conv2d, _conv2d_bn_example_inputs),  # type: ignore[list-item]
        ]

    # Add `is_cuda` and `relu_is_inplace` dimensions
    combinations = itertools.product(  # type: ignore[assignment]
        combinations,
        [True, False] if torch.cuda.is_available() else [False],  # is_cuda
        [True, False] if has_relu else [False],  # relu_is_inplace
    )

    # Match against all conv dimensions and cuda variants
    for (conv_fn, example_inputs), is_cuda, relu_is_inplace in combinations:  # type: ignore[misc]
        pattern = get_pattern(conv_fn, relu_is_inplace)  # type: ignore[has-type]
        pattern = _get_aten_graph_module_for_pattern(pattern, example_inputs, is_cuda, using_training_ir=using_training_ir)  # type: ignore[has-type]
        pattern.graph.eliminate_dead_code()
        pattern.recompile()
        matcher = SubgraphMatcherWithNameNodeMap(pattern, ignore_literals=True)
        matches.extend(matcher.match(gm.graph))

    # Annotate nodes returned in the matches
    annotated_partitions = []
    for match in matches:
        name_node_map = match.name_node_map
        input_node = name_node_map["input"]
        conv_node = name_node_map["conv"]
        weight_node = name_node_map["weight"]
        bias_node = name_node_map["bias"]
        output_node = name_node_map["output"]

        # TODO: annotate the uses of input, weight, and bias separately instead
        # of assuming they come from a single conv node. This is not possible today
        # because input may have multiple users, and we can't rely on the conv node
        # always being the first user. This was the case in models with skip
        # connections like resnet18

        # Validate conv args
        if conv_node.args[0] is not input_node:
            raise ValueError("Conv arg did not contain input node ", input_node)
        if conv_node.args[1] is not weight_node:
            raise ValueError("Conv arg did not contain weight node ", weight_node)
        if len(conv_node.args) > 2 and conv_node.args[2] is not bias_node:
            raise ValueError("Conv arg did not contain bias node ", bias_node)

        # Skip if the partition is already annotated or is filtered out by the user
        partition = [conv_node, weight_node]
        if bias_node is not None:
            partition.append(bias_node)
        if _is_annotated(partition):
            continue
        if filter_fn and any(not filter_fn(n) for n in partition):
            continue

        # Annotate conv inputs and pattern output
        input_qspec_map = {}
        input_qspec_map[input_node] = get_input_act_qspec(quantization_config)
        input_qspec_map[weight_node] = get_weight_qspec(quantization_config)
        if bias_node is not None:
            input_qspec_map[bias_node] = get_bias_qspec(quantization_config)
        conv_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map=input_qspec_map,
            _annotated=True,
        )
        output_node.meta["quantization_annotation"] = QuantizationAnnotation(
            output_qspec=get_output_act_qspec(quantization_config),  # type: ignore[arg-type]
            _annotated=True,
        )
        _mark_nodes_as_annotated(partition)
        annotated_partitions.append(partition)
    return annotated_partitions


@register_annotator("gru_io_only")
def _annotate_gru_io_only(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    gru_partitions = get_source_partitions(gm.graph, [torch.nn.GRU], filter_fn)
    gru_partitions = list(itertools.chain.from_iterable(gru_partitions.values()))
    annotated_partitions = []
    for gru_partition in gru_partitions:
        annotated_partitions.append(gru_partition.nodes)
        output_nodes = gru_partition.output_nodes
        input_nodes = gru_partition.input_nodes
        # skip annotation if it is already annotated
        if _is_annotated(input_nodes + output_nodes):
            continue
        # inside each GRU partition, we should be able to annotate each linear
        # subgraph
        input_qspec_map: Dict[Node, QuantizationSpecBase] = {}
        input_act = input_nodes[0]
        input_act_user = next(iter(input_act.users.keys()))
        assert isinstance(input_act, Node)
        assert isinstance(input_act_user, Node)
        input_act_user.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map={
                input_act: get_input_act_qspec(quantization_config),
            },
            _annotated=True,
        )

        hidden_state = input_nodes[1]
        hidden_state_user = next(iter(hidden_state.users.keys()))
        assert isinstance(hidden_state, Node)
        assert isinstance(hidden_state_user, Node)
        hidden_state_user.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map={
                hidden_state: get_input_act_qspec(quantization_config),
            },
            _annotated=True,
        )

        assert len(output_nodes) == 2, "expecting GRU to have two outputs"
        for output in output_nodes:
            output.meta["quantization_annotation"] = QuantizationAnnotation(
                output_qspec=get_output_act_qspec(quantization_config),
                _annotated=True,
            )
        nodes_to_mark_annotated = list(gru_partition.nodes)
        _mark_nodes_as_annotated(nodes_to_mark_annotated)
    return annotated_partitions


@register_annotator("adaptive_avg_pool2d")
def _annotate_adaptive_avg_pool2d(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    """Always annotate adaptive_avg_pool2d op"""
    module_partitions = get_source_partitions(
        gm.graph, [torch.nn.AdaptiveAvgPool2d, F.adaptive_avg_pool2d], filter_fn
    )
    partitions = list(itertools.chain.from_iterable(module_partitions.values()))
    annotated_partitions = []
    for partition in partitions:
        pool_node = partition.output_nodes[0]
        if (
            pool_node.op != "call_function"
            or pool_node.target != torch.ops.aten.adaptive_avg_pool2d.default
        ):
            raise ValueError(f"{pool_node} is not an aten adaptive_avg_pool2d operator")

        if _is_annotated([pool_node]):
            continue

        annotated_partitions.append(partition.nodes)
        input_act = pool_node.args[0]
        assert isinstance(input_act, Node)

        # only annotate input output sharing operator
        # when the output of the input node is annotated
        if (
            "quantization_annotation" not in input_act.meta
            or not input_act.meta["quantization_annotation"]._annotated
            or input_act.meta["quantization_annotation"].output_qspec is None
        ):
            input_act_qspec = get_input_act_qspec(quantization_config)
        else:
            input_act_qspec = SharedQuantizationSpec(input_act)

        # output sharing with input
        output_act_qspec = SharedQuantizationSpec((input_act, pool_node))
        pool_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map={
                input_act: input_act_qspec,
            },
            output_qspec=output_act_qspec,
            _annotated=True,
        )
    return annotated_partitions


def _is_input_large_scalar(node: Node, gm: torch.fx.GraphModule):
    """Check if input is a large scalar value. So that we can skip quantization for the node
    since histc op (in HistogramObserver) only works for values up to certain upper bound
    """
    if node.op == "get_attr":
        qualified_name = str(node.target)
        module_path, _, name = qualified_name.rpartition(".")
        submod = gm.get_submodule(module_path)
        tensor = getattr(submod, name)
        # torch.histc works until this upper bound
        HISTC_UPPER_BOUND = 3.4028235e15
        return tensor.numel() == 1 and abs(tensor.item()) > HISTC_UPPER_BOUND
    return False


def _is_input_non_float_tensor(node: Node):
    """Check if the input is not a float tensor, so that we can skip quantization for the node
    since observers only works with float Tensors
    """
    if "val" not in node.meta or not isinstance(node.meta["val"], FakeTensor):
        return True
    return node.meta["val"].dtype != torch.float32


@register_annotator("add_relu")
def _annotate_add_relu(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    annotated_partitions = []
    for node in gm.graph.nodes:
        if node.op != "call_function" or node.target not in [
            torch.ops.aten.relu.default,
            torch.ops.aten.relu_.default,
        ]:
            continue
        relu_node = node
        maybe_add = node.args[0]
        if (
            not isinstance(maybe_add, Node)
            or maybe_add.op != "call_function"
            or maybe_add.target
            not in [
                torch.ops.aten.add.Tensor,
                torch.ops.aten.add_.Tensor,
            ]
        ):
            continue

        add_node = maybe_add

        if len(add_node.users) > 1:
            # add can't be fused with ReLU if the result of add is being used
            # else where in the graph
            continue

        partition = [relu_node, add_node]

        if _is_annotated(partition):
            continue

        if filter_fn and any(not filter_fn(n) for n in partition):
            continue

        input_act_qspec = get_input_act_qspec(quantization_config)
        output_act_qspec = get_output_act_qspec(quantization_config)

        input_qspec_map = {}
        input_act0 = add_node.args[0]
        if isinstance(input_act0, Node):
            if _is_input_large_scalar(input_act0, gm):
                continue
            if _is_input_non_float_tensor(input_act0):
                continue
            partition.append(input_act0)
            input_qspec_map[input_act0] = input_act_qspec

        input_act1 = add_node.args[1]
        if isinstance(input_act1, Node):
            if _is_input_large_scalar(input_act1, gm):
                continue
            if _is_input_non_float_tensor(input_act1):
                continue
            partition.append(input_act1)
            input_qspec_map[input_act1] = input_act_qspec

        add_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map=input_qspec_map,
            _annotated=True,
        )
        relu_node.meta["quantization_annotation"] = QuantizationAnnotation(
            output_qspec=output_act_qspec,
            _annotated=True,
        )
        annotated_partitions.append(partition)
    return annotated_partitions


@register_annotator("add")
def _annotate_add(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    annotated_partitions = []
    for node in gm.graph.nodes:
        if node.op != "call_function" or node.target not in [
            torch.ops.aten.add.Tensor,
            torch.ops.aten.add_.Tensor,
        ]:
            continue
        add_node = node
        partition = [add_node]

        if _is_annotated(partition):
            continue

        if filter_fn and any(not filter_fn(n) for n in partition):
            continue

        input_act_qspec = get_input_act_qspec(quantization_config)
        output_act_qspec = get_output_act_qspec(quantization_config)

        input_qspec_map = {}
        input_act0 = add_node.args[0]
        if isinstance(input_act0, Node):
            if _is_input_large_scalar(input_act0, gm):
                continue
            if _is_input_non_float_tensor(input_act0):
                continue
            input_qspec_map[input_act0] = input_act_qspec
            partition.append(input_act0)

        input_act1 = add_node.args[1]
        if isinstance(input_act1, Node):
            if _is_input_large_scalar(input_act1, gm):
                continue
            if _is_input_non_float_tensor(input_act1):
                continue
            input_qspec_map[input_act1] = input_act_qspec
            partition.append(input_act1)

        add_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map=input_qspec_map,
            output_qspec=output_act_qspec,
            _annotated=True,
        )
        annotated_partitions.append(partition)
    return annotated_partitions


@register_annotator("mul_relu")
def _annotate_mul_relu(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    annotated_partitions = []
    for node in gm.graph.nodes:
        if node.op != "call_function" or node.target not in [
            torch.ops.aten.relu.default,
            torch.ops.aten.relu_.default,
        ]:
            continue
        relu_node = node
        maybe_mul = node.args[0]
        if (
            not isinstance(maybe_mul, Node)
            or maybe_mul.op != "call_function"
            or maybe_mul.target
            not in [
                torch.ops.aten.mul.Tensor,
                torch.ops.aten.mul_.Tensor,
            ]
        ):
            continue

        mul_node = maybe_mul
        if len(mul_node.users) > 1:
            # mul can't be fused with ReLU if the result of mul is being used
            # else where in the graph
            continue

        partition = [relu_node, mul_node]

        if _is_annotated(partition):
            continue

        if filter_fn and any(not filter_fn(n) for n in partition):
            continue

        input_act_qspec = get_input_act_qspec(quantization_config)
        output_act_qspec = get_output_act_qspec(quantization_config)

        input_qspec_map = {}
        input_act0 = mul_node.args[0]
        if isinstance(input_act0, Node):
            if _is_input_large_scalar(input_act0, gm):
                continue
            if _is_input_non_float_tensor(input_act0):
                continue
            partition.append(input_act0)
            input_qspec_map[input_act0] = input_act_qspec

        input_act1 = mul_node.args[1]
        if isinstance(input_act1, Node):
            if _is_input_large_scalar(input_act1, gm):
                continue
            if _is_input_non_float_tensor(input_act1):
                continue
            partition.append(input_act1)
            input_qspec_map[input_act1] = input_act_qspec

        mul_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map=input_qspec_map,
            _annotated=True,
        )
        relu_node.meta["quantization_annotation"] = QuantizationAnnotation(
            output_qspec=output_act_qspec,
            _annotated=True,
        )
        annotated_partitions.append(partition)
    return annotated_partitions


@register_annotator("mul")
def _annotate_mul(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    annotated_partitions = []
    for node in gm.graph.nodes:
        if node.op != "call_function" or node.target not in [
            torch.ops.aten.mul.Tensor,
            torch.ops.aten.mul_.Tensor,
        ]:
            continue

        mul_node = node
        partition = [mul_node]
        if _is_annotated(partition):
            continue

        if filter_fn and any(not filter_fn(n) for n in partition):
            continue

        input_act_qspec = get_input_act_qspec(quantization_config)
        output_act_qspec = get_output_act_qspec(quantization_config)

        input_qspec_map = {}
        input_act0 = mul_node.args[0]
        if isinstance(input_act0, Node):
            if _is_input_large_scalar(input_act0, gm):
                continue
            if _is_input_non_float_tensor(input_act0):
                continue
            input_qspec_map[input_act0] = input_act_qspec
            partition.append(input_act0)

        input_act1 = mul_node.args[1]
        if isinstance(input_act1, Node):
            if _is_input_large_scalar(input_act1, gm):
                continue
            if _is_input_non_float_tensor(input_act1):
                continue
            input_qspec_map[input_act1] = input_act_qspec
            partition.append(input_act0)

        mul_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map=input_qspec_map,
            output_qspec=output_act_qspec,
            _annotated=True,
        )
        annotated_partitions.append(partition)
    return annotated_partitions


# TODO: remove Optional in return type, fix annotated_partitions logic
@register_annotator("cat")
def _annotate_cat(
    gm: torch.fx.GraphModule,
    quantization_config: Optional[QuantizationConfig],
    filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Optional[List[List[Node]]]:
    cat_partitions = get_source_partitions(gm.graph, [torch.cat], filter_fn)
    cat_partitions = list(itertools.chain.from_iterable(cat_partitions.values()))
    annotated_partitions = []
    for cat_partition in cat_partitions:
        cat_node = cat_partition.output_nodes[0]
        if _is_annotated([cat_node]):
            continue

        if cat_node.target != torch.ops.aten.cat.default:
            # TODO: change this to AnnotationException
            raise Exception(  # noqa: TRY002
                f"Expected cat node: torch.ops.aten.cat.default, but found {cat_node.target}"
                " please check if you are calling the correct capture API"
            )

        annotated_partitions.append(cat_partition.nodes)

        input_act_qspec = get_input_act_qspec(quantization_config)
        inputs = cat_node.args[0]

        input_qspec_map = {}
        input_act0 = inputs[0]  # type: ignore[index]
        if isinstance(input_act0, Node):
            input_qspec_map[input_act0] = input_act_qspec

        shared_with_input0_qspec = SharedQuantizationSpec((input_act0, cat_node))  # type: ignore[arg-type]
        for input_act in inputs[1:]:  # type: ignore[index, union-attr]
            if input_act not in input_qspec_map:
                input_qspec_map[input_act] = shared_with_input0_qspec  # type: ignore[index]

        output_act_qspec = shared_with_input0_qspec

        cat_node.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map=input_qspec_map,
            output_qspec=output_act_qspec,
            _annotated=True,
        )
    return annotated_partitions


def _is_share_obs_or_fq_op(op: Callable) -> bool:
    return op in [
        torch.ops.aten.relu.default,
        torch.ops.aten.hardtanh.default,
        torch.ops.aten.hardtanh_.default,
        torch.ops.aten.max_pool2d.default,
        torch.ops.aten.mean.default,
        torch.ops.aten.mean.dim,
        torch.ops.aten.permute.default,
        torch.ops.aten.permute_copy.default,
        torch.ops.aten.squeeze.dim,
        torch.ops.aten.squeeze_copy.dim,
        # TODO: remove?
        torch.ops.aten.adaptive_avg_pool2d.default,
        torch.ops.aten.view_copy.default,
        torch.ops.aten.view.default,
        torch.ops.aten.slice_copy.Tensor,
        torch.ops.aten.flatten.using_ints,
    ]


def propagate_annotation(model: torch.fx.GraphModule) -> None:
    for n in model.graph.nodes:
        if n.op != "call_function" or not _is_share_obs_or_fq_op(n.target):
            continue

        prev_node = n.args[0]
        if not isinstance(prev_node, Node):
            continue

        quantization_annotation = prev_node.meta.get("quantization_annotation", None)
        if not quantization_annotation:
            continue

        output_qspec = quantization_annotation.output_qspec
        if not output_qspec:
            continue

        # make sure current node is not annotated
        if (
            "quantization_annotation" in n.meta
            and n.meta["quantization_annotation"]._annotated
        ):
            continue

        shared_qspec = SharedQuantizationSpec(prev_node)
        # propagate the previous output_qspec to the current node
        n.meta["quantization_annotation"] = QuantizationAnnotation(
            input_qspec_map={
                prev_node: shared_qspec,
            },
            output_qspec=shared_qspec,
            _annotated=True,
        )


# TODO: make the list of ops customizable
def _convert_scalars_to_attrs(model: torch.fx.GraphModule) -> torch.fx.GraphModule:
    for n in model.graph.nodes:
        if n.op != "call_function" or n.target not in [
            torch.ops.aten.add.Tensor,
            torch.ops.aten.mul.Tensor,
        ]:
            continue
        args = list(n.args)
        new_args = []
        for i in range(len(args)):
            if isinstance(args[i], torch.fx.Node):
                new_args.append(args[i])
                continue
            prefix = "_tensor_constant_"
            get_new_attr_name = get_new_attr_name_with_prefix(prefix)
            tensor_constant_name = get_new_attr_name(model)
            float_tensor = torch.tensor(float(args[i]))
            model.register_buffer(tensor_constant_name, float_tensor)
            fake_mode = n.meta["val"].fake_mode
            with model.graph.inserting_before(n):
                get_attr_node = model.graph.create_node(
                    "get_attr", tensor_constant_name, (), {}
                )
                get_attr_node.meta["val"] = fake_mode.from_tensor(
                    float_tensor, static_shapes=True
                )
                new_args.append(get_attr_node)
        n.args = tuple(new_args)
    model.recompile()
    return model