File: stubs.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (68 lines) | stat: -rw-r--r-- 2,040 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# mypy: allow-untyped-defs

from torch import nn


class QuantStub(nn.Module):
    r"""Quantize stub module, before calibration, this is same as an observer,
    it will be swapped as `nnq.Quantize` in `convert`.

    Args:
        qconfig: quantization configuration for the tensor,
            if qconfig is not provided, we will get qconfig from parent modules
    """

    def __init__(self, qconfig=None):
        super().__init__()
        if qconfig:
            self.qconfig = qconfig

    def forward(self, x):
        return x


class DeQuantStub(nn.Module):
    r"""Dequantize stub module, before calibration, this is same as identity,
    this will be swapped as `nnq.DeQuantize` in `convert`.

    Args:
        qconfig: quantization configuration for the tensor,
            if qconfig is not provided, we will get qconfig from parent modules
    """

    def __init__(self, qconfig=None):
        super().__init__()
        if qconfig:
            self.qconfig = qconfig

    def forward(self, x):
        return x


class QuantWrapper(nn.Module):
    r"""A wrapper class that wraps the input module, adds QuantStub and
    DeQuantStub and surround the call to module with call to quant and dequant
    modules.

    This is used by the `quantization` utility functions to add the quant and
    dequant modules, before `convert` function `QuantStub` will just be observer,
    it observes the input tensor, after `convert`, `QuantStub`
    will be swapped to `nnq.Quantize` which does actual quantization. Similarly
    for `DeQuantStub`.
    """
    quant: QuantStub
    dequant: DeQuantStub
    module: nn.Module

    def __init__(self, module):
        super().__init__()
        qconfig = getattr(module, "qconfig", None)
        self.add_module("quant", QuantStub(qconfig))
        self.add_module("dequant", DeQuantStub(qconfig))
        self.add_module("module", module)
        self.train(module.training)

    def forward(self, X):
        X = self.quant(X)
        X = self.module(X)
        return self.dequant(X)