1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
# mypy: allow-untyped-defs
import operator
from functools import reduce
from typing_extensions import deprecated
import torch
import torch._utils
from torch.autograd.function import Function
class Type(Function):
@staticmethod
@deprecated(
"`torch.autograd._functions.Type` is deprecated as of PyTorch 2.1, "
"please use `torch.tensor.to(dtype=dtype)` instead.",
category=FutureWarning,
)
def forward(ctx, i, dest_type):
ctx.input_type = type(i)
ctx.input_device = -1 if not i.is_cuda else i.get_device()
return i.type(dest_type)
@staticmethod
def backward(ctx, grad_output):
if ctx.input_device == -1:
return grad_output.type(ctx.input_type), None
else:
with torch.cuda.device(ctx.input_device):
return grad_output.type(ctx.input_type), None
# TODO: deprecate this
class Resize(Function):
@staticmethod
def forward(ctx, tensor, sizes):
ctx.sizes = sizes
ctx.numel = reduce(operator.mul, sizes, 1)
if tensor.numel() != ctx.numel:
raise RuntimeError(
(
"requested resize to {} ({} elements in total), "
"but the given tensor has a size of {} ({} elements). "
"autograd's resize can only change the shape of a given "
"tensor, while preserving the number of elements. "
).format(
"x".join(map(str, sizes)),
ctx.numel,
"x".join(map(str, tensor.size())),
tensor.numel(),
)
)
ctx.input_sizes = tensor.size()
if tensor.is_quantized:
tensor.copy_(tensor)
return tensor.contiguous().view(*sizes)
if tensor.is_contiguous():
result = tensor.new(tensor).contiguous().view(*sizes)
return result
else:
return tensor.contiguous().view(*sizes)
@staticmethod
def backward(ctx, grad_output):
assert grad_output.numel() == ctx.numel
return grad_output.contiguous().view(ctx.input_sizes), None
|