1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
# mypy: allow-untyped-defs
import contextlib
from typing import Union
from typing_extensions import deprecated
import torch
__all__ = [
"is_built",
"cuFFTPlanCacheAttrContextProp",
"cuFFTPlanCache",
"cuFFTPlanCacheManager",
"cuBLASModule",
"preferred_linalg_library",
"preferred_blas_library",
"cufft_plan_cache",
"matmul",
"SDPAParams",
"enable_cudnn_sdp",
"cudnn_sdp_enabled",
"enable_flash_sdp",
"flash_sdp_enabled",
"enable_mem_efficient_sdp",
"mem_efficient_sdp_enabled",
"math_sdp_enabled",
"enable_math_sdp",
"allow_fp16_bf16_reduction_math_sdp",
"fp16_bf16_reduction_math_sdp_allowed",
"is_flash_attention_available",
"can_use_flash_attention",
"can_use_efficient_attention",
"can_use_cudnn_attention",
"sdp_kernel",
]
def is_built():
r"""
Return whether PyTorch is built with CUDA support.
Note that this doesn't necessarily mean CUDA is available; just that if this PyTorch
binary were run on a machine with working CUDA drivers and devices, we would be able to use it.
"""
return torch._C._has_cuda
class cuFFTPlanCacheAttrContextProp:
# Like regular ContextProp, but uses the `.device_index` attribute from the
# calling object as the first argument to the getter and setter.
def __init__(self, getter, setter):
self.getter = getter
self.setter = setter
def __get__(self, obj, objtype):
return self.getter(obj.device_index)
def __set__(self, obj, val):
if isinstance(self.setter, str):
raise RuntimeError(self.setter)
self.setter(obj.device_index, val)
class cuFFTPlanCache:
r"""
Represent a specific plan cache for a specific `device_index`.
The attributes `size` and `max_size`, and method `clear`, can fetch and/ or
change properties of the C++ cuFFT plan cache.
"""
def __init__(self, device_index):
self.device_index = device_index
size = cuFFTPlanCacheAttrContextProp(
torch._cufft_get_plan_cache_size,
".size is a read-only property showing the number of plans currently in the "
"cache. To change the cache capacity, set cufft_plan_cache.max_size.",
)
max_size = cuFFTPlanCacheAttrContextProp(
torch._cufft_get_plan_cache_max_size, torch._cufft_set_plan_cache_max_size
)
def clear(self):
return torch._cufft_clear_plan_cache(self.device_index)
class cuFFTPlanCacheManager:
r"""
Represent all cuFFT plan caches, return the cuFFTPlanCache for a given device when indexed.
Finally, this object, when used directly as a `cuFFTPlanCache` object (e.g.,
setting the `.max_size`) attribute, the current device's cuFFT plan cache is
used.
"""
__initialized = False
def __init__(self):
self.caches = []
self.__initialized = True
def __getitem__(self, device):
index = torch.cuda._utils._get_device_index(device)
if index < 0 or index >= torch.cuda.device_count():
raise RuntimeError(
f"cufft_plan_cache: expected 0 <= device index < {torch.cuda.device_count()}, but got "
f"device with index {index}"
)
if len(self.caches) == 0:
self.caches.extend(
cuFFTPlanCache(index) for index in range(torch.cuda.device_count())
)
return self.caches[index]
def __getattr__(self, name):
return getattr(self[torch.cuda.current_device()], name)
def __setattr__(self, name, value):
if self.__initialized:
return setattr(self[torch.cuda.current_device()], name, value)
else:
return super().__setattr__(name, value)
class cuBLASModule:
def __getattr__(self, name):
if name == "allow_tf32":
return torch._C._get_cublas_allow_tf32()
elif name == "allow_fp16_reduced_precision_reduction":
return torch._C._get_cublas_allow_fp16_reduced_precision_reduction()
elif name == "allow_bf16_reduced_precision_reduction":
return torch._C._get_cublas_allow_bf16_reduced_precision_reduction()
raise AttributeError("Unknown attribute " + name)
def __setattr__(self, name, value):
if name == "allow_tf32":
return torch._C._set_cublas_allow_tf32(value)
elif name == "allow_fp16_reduced_precision_reduction":
return torch._C._set_cublas_allow_fp16_reduced_precision_reduction(value)
elif name == "allow_bf16_reduced_precision_reduction":
return torch._C._set_cublas_allow_bf16_reduced_precision_reduction(value)
raise AttributeError("Unknown attribute " + name)
_LinalgBackends = {
"default": torch._C._LinalgBackend.Default,
"cusolver": torch._C._LinalgBackend.Cusolver,
"magma": torch._C._LinalgBackend.Magma,
}
_LinalgBackends_str = ", ".join(_LinalgBackends.keys())
def preferred_linalg_library(
backend: Union[None, str, torch._C._LinalgBackend] = None
) -> torch._C._LinalgBackend:
r"""
Override the heuristic PyTorch uses to choose between cuSOLVER and MAGMA for CUDA linear algebra operations.
.. warning:: This flag is experimental and subject to change.
When PyTorch runs a CUDA linear algebra operation it often uses the cuSOLVER or MAGMA libraries,
and if both are available it decides which to use with a heuristic.
This flag (a :class:`str`) allows overriding those heuristics.
* If `"cusolver"` is set then cuSOLVER will be used wherever possible.
* If `"magma"` is set then MAGMA will be used wherever possible.
* If `"default"` (the default) is set then heuristics will be used to pick between
cuSOLVER and MAGMA if both are available.
* When no input is given, this function returns the currently preferred library.
* User may use the environment variable TORCH_LINALG_PREFER_CUSOLVER=1 to set the preferred library to cuSOLVER
globally.
This flag only sets the initial value of the preferred library and the preferred library
may still be overridden by this function call later in your script.
Note: When a library is preferred other libraries may still be used if the preferred library
doesn't implement the operation(s) called.
This flag may achieve better performance if PyTorch's heuristic library selection is incorrect
for your application's inputs.
Currently supported linalg operators:
* :func:`torch.linalg.inv`
* :func:`torch.linalg.inv_ex`
* :func:`torch.linalg.cholesky`
* :func:`torch.linalg.cholesky_ex`
* :func:`torch.cholesky_solve`
* :func:`torch.cholesky_inverse`
* :func:`torch.linalg.lu_factor`
* :func:`torch.linalg.lu`
* :func:`torch.linalg.lu_solve`
* :func:`torch.linalg.qr`
* :func:`torch.linalg.eigh`
* :func:`torch.linalg.eighvals`
* :func:`torch.linalg.svd`
* :func:`torch.linalg.svdvals`
"""
if backend is None:
pass
elif isinstance(backend, str):
if backend not in _LinalgBackends:
raise RuntimeError(
"Unknown input value. " f"Choose from: {_LinalgBackends_str}."
)
torch._C._set_linalg_preferred_backend(_LinalgBackends[backend])
elif isinstance(backend, torch._C._LinalgBackend):
torch._C._set_linalg_preferred_backend(backend)
else:
raise RuntimeError("Unknown input value type.")
return torch._C._get_linalg_preferred_backend()
_BlasBackends = {
"cublas": torch._C._BlasBackend.Cublas,
"cublaslt": torch._C._BlasBackend.Cublaslt,
"hipblaslt": torch._C._BlasBackend.Cublaslt, # alias
"ck": torch._C._BlasBackend.Ck,
}
_BlasBackends_str = ", ".join(_BlasBackends.keys())
def preferred_blas_library(
backend: Union[None, str, torch._C._BlasBackend] = None
) -> torch._C._BlasBackend:
r"""
Override the library PyTorch uses for BLAS operations. Choose between cuBLAS, cuBLASLt, and CK [ROCm-only].
.. warning:: This flag is experimental and subject to change.
When PyTorch runs a CUDA BLAS operation it defaults to cuBLAS even if both cuBLAS and cuBLASLt are available.
For PyTorch built for ROCm, hipBLAS, hipBLASLt, and CK may offer different performance.
This flag (a :class:`str`) allows overriding which BLAS library to use.
* If `"cublas"` is set then cuBLAS will be used wherever possible.
* If `"cublaslt"` is set then cuBLASLt will be used wherever possible.
* If `"ck"` is set then CK will be used wherever possible.
* When no input is given, this function returns the currently preferred library.
* User may use the environment variable TORCH_BLAS_PREFER_CUBLASLT=1 to set the preferred library to cuBLASLt
globally.
This flag only sets the initial value of the preferred library and the preferred library
may still be overridden by this function call later in your script.
Note: When a library is preferred other libraries may still be used if the preferred library
doesn't implement the operation(s) called.
This flag may achieve better performance if PyTorch's library selection is incorrect
for your application's inputs.
"""
if backend is None:
pass
elif isinstance(backend, str):
if backend not in _BlasBackends:
raise RuntimeError(
"Unknown input value. " f"Choose from: {_BlasBackends_str}."
)
torch._C._set_blas_preferred_backend(_BlasBackends[backend])
elif isinstance(backend, torch._C._BlasBackend):
torch._C._set_blas_preferred_backend(backend)
else:
raise RuntimeError("Unknown input value type.")
return torch._C._get_blas_preferred_backend()
from torch._C import _SDPAParams as SDPAParams, _SDPBackend as SDPBackend
# Set the __module__ attribute
SDPAParams.__module__ = "torch.backends.cuda"
SDPAParams.__name__ = "SDPAParams"
def flash_sdp_enabled():
r"""
.. warning:: This flag is beta and subject to change.
Returns whether flash scaled dot product attention is enabled or not.
"""
return torch._C._get_flash_sdp_enabled()
def enable_flash_sdp(enabled: bool):
r"""
.. warning:: This flag is beta and subject to change.
Enables or disables flash scaled dot product attention.
"""
torch._C._set_sdp_use_flash(enabled)
def mem_efficient_sdp_enabled():
r"""
.. warning:: This flag is beta and subject to change.
Returns whether memory efficient scaled dot product attention is enabled or not.
"""
return torch._C._get_mem_efficient_sdp_enabled()
def enable_mem_efficient_sdp(enabled: bool):
r"""
.. warning:: This flag is beta and subject to change.
Enables or disables memory efficient scaled dot product attention.
"""
torch._C._set_sdp_use_mem_efficient(enabled)
def math_sdp_enabled():
r"""
.. warning:: This flag is beta and subject to change.
Returns whether math scaled dot product attention is enabled or not.
"""
return torch._C._get_math_sdp_enabled()
def enable_math_sdp(enabled: bool):
r"""
.. warning:: This flag is beta and subject to change.
Enables or disables math scaled dot product attention.
"""
torch._C._set_sdp_use_math(enabled)
def allow_fp16_bf16_reduction_math_sdp(enabled: bool):
r"""
.. warning:: This flag is beta and subject to change.
Enables or disables fp16/bf16 reduction in math scaled dot product attention.
"""
torch._C._set_math_sdp_allow_fp16_bf16_reduction(enabled)
def fp16_bf16_reduction_math_sdp_allowed():
r"""
.. warning:: This flag is beta and subject to change.
Returns whether fp16/bf16 reduction in math scaled dot product attention is enabled or not.
"""
return torch._C._get_math_sdp_allow_fp16_bf16_reduction()
def is_flash_attention_available() -> bool:
r"""Check if PyTorch was built with FlashAttention for scaled_dot_product_attention.
Returns:
True if FlashAttention is built and available; otherwise, False.
Note:
This function is dependent on a CUDA-enabled build of PyTorch. It will return False
in non-CUDA environments.
"""
return torch._C._is_flash_attention_available()
def can_use_flash_attention(params: SDPAParams, debug: bool = False) -> bool:
r"""Check if FlashAttention can be utilized in scaled_dot_product_attention.
Args:
params: An instance of SDPAParams containing the tensors for query,
key, value, an optional attention mask, dropout rate, and
a flag indicating if the attention is causal.
debug: Whether to logging.warn debug information as to why FlashAttention could not be run.
Defaults to False.
Returns:
True if FlashAttention can be used with the given parameters; otherwise, False.
Note:
This function is dependent on a CUDA-enabled build of PyTorch. It will return False
in non-CUDA environments.
"""
return torch._C._can_use_flash_attention(params, debug)
def can_use_efficient_attention(params: SDPAParams, debug: bool = False) -> bool:
r"""Check if efficient_attention can be utilized in scaled_dot_product_attention.
Args:
params: An instance of SDPAParams containing the tensors for query,
key, value, an optional attention mask, dropout rate, and
a flag indicating if the attention is causal.
debug: Whether to logging.warn with information as to why efficient_attention could not be run.
Defaults to False.
Returns:
True if efficient_attention can be used with the given parameters; otherwise, False.
Note:
This function is dependent on a CUDA-enabled build of PyTorch. It will return False
in non-CUDA environments.
"""
return torch._C._can_use_mem_efficient_attention(params, debug)
def can_use_cudnn_attention(params: SDPAParams, debug: bool = False) -> bool:
r"""Check if cudnn_attention can be utilized in scaled_dot_product_attention.
Args:
params: An instance of SDPAParams containing the tensors for query,
key, value, an optional attention mask, dropout rate, and
a flag indicating if the attention is causal.
debug: Whether to logging.warn with information as to why cuDNN attention could not be run.
Defaults to False.
Returns:
True if cuDNN can be used with the given parameters; otherwise, False.
Note:
This function is dependent on a CUDA-enabled build of PyTorch. It will return False
in non-CUDA environments.
"""
return torch._C._can_use_cudnn_attention(params, debug)
def cudnn_sdp_enabled():
r"""
.. warning:: This flag is beta and subject to change.
Returns whether cuDNN scaled dot product attention is enabled or not.
"""
return torch._C._get_cudnn_sdp_enabled()
def enable_cudnn_sdp(enabled: bool):
r"""
.. warning:: This flag is beta and subject to change.
Enables or disables cuDNN scaled dot product attention.
"""
torch._C._set_sdp_use_cudnn(enabled)
@contextlib.contextmanager
@deprecated(
(
"`torch.backends.cuda.sdp_kernel()` is deprecated. "
"In the future, this context manager will be removed. "
"Please see `torch.nn.attention.sdpa_kernel()` for the new context manager, "
"with updated signature."
),
category=FutureWarning,
)
def sdp_kernel(
enable_flash: bool = True,
enable_math: bool = True,
enable_mem_efficient: bool = True,
enable_cudnn: bool = True,
):
r"""
.. warning:: This flag is beta and subject to change.
This context manager can be used to temporarily enable or disable any of the three backends for scaled dot product attention.
Upon exiting the context manager, the previous state of the flags will be restored.
"""
from torch.nn.attention import sdpa_kernel
backend_list = []
if enable_flash:
backend_list.append(SDPBackend.FLASH_ATTENTION)
if enable_mem_efficient:
backend_list.append(SDPBackend.EFFICIENT_ATTENTION)
if enable_math:
backend_list.append(SDPBackend.MATH)
if enable_cudnn:
backend_list.append(SDPBackend.CUDNN_ATTENTION)
with sdpa_kernel(backend_list) as context:
try:
yield context
finally:
pass
cufft_plan_cache = cuFFTPlanCacheManager()
matmul = cuBLASModule()
|