File: Dtype.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (196 lines) | stat: -rw-r--r-- 6,122 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#include <torch/csrc/Dtype.h>

#include <c10/core/ScalarType.h>
#include <structmember.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/pythoncapi_compat.h>
#include <torch/csrc/utils/tensor_dtypes.h>
#include <torch/csrc/utils/tensor_types.h>
#include <cstring>

PyObject* THPDtype_New(at::ScalarType scalar_type, const std::string& name) {
  HANDLE_TH_ERRORS
  AT_ASSERT(name.length() < DTYPE_NAME_LEN);
  auto type = (PyTypeObject*)&THPDtypeType;
  auto self = THPObjectPtr{type->tp_alloc(type, 0)};
  if (!self)
    throw python_error();
  auto self_ = reinterpret_cast<THPDtype*>(self.get());
  self_->scalar_type = scalar_type;
  std::strncpy(self_->name, name.c_str(), DTYPE_NAME_LEN);
  return self.release();
  END_HANDLE_TH_ERRORS
}

static PyObject* THPDtype_is_floating_point(THPDtype* self, PyObject* noargs) {
  HANDLE_TH_ERRORS
  if (at::isFloatingType(self->scalar_type)) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
  END_HANDLE_TH_ERRORS
}

static PyObject* THPDtype_itemsize(THPDtype* self, PyObject* noargs) {
  HANDLE_TH_ERRORS
  return THPUtils_packUInt64(
      scalarTypeToTypeMeta(self->scalar_type).itemsize());
  END_HANDLE_TH_ERRORS
}

static PyObject* THPDtype_is_complex(THPDtype* self, PyObject* noargs) {
  HANDLE_TH_ERRORS
  if (at::isComplexType(self->scalar_type)) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
  END_HANDLE_TH_ERRORS
}

static PyObject* THPDtype_is_signed(THPDtype* self, PyObject* noargs) {
  HANDLE_TH_ERRORS
  if (at::isSignedType(self->scalar_type)) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
  END_HANDLE_TH_ERRORS
}

static PyObject* THPDtype_reduce(PyObject* _self, PyObject* noargs) {
  HANDLE_TH_ERRORS
  /*
   * For singletons, a string is returned. The string should be interpreted
   * as the name of a global variable.
   */
  auto self = (THPDtype*)_self;
  return THPUtils_packString(self->name);
  END_HANDLE_TH_ERRORS
}

static PyObject* THPDtype_to_real(PyObject* _self, PyObject* noargs) {
  HANDLE_TH_ERRORS
  auto* self = (THPDtype*)_self;
  auto scalar_type = self->scalar_type;
  if (!at::isFloatingType(self->scalar_type)) {
    scalar_type = at::toRealValueType(self->scalar_type);
  }
  return Py_NewRef(torch::getTHPDtype(scalar_type));
  END_HANDLE_TH_ERRORS
}

static PyObject* THPDtype_to_complex(PyObject* _self, PyObject* noargs) {
  HANDLE_TH_ERRORS
  auto* self = (THPDtype*)_self;
  auto scalar_type = self->scalar_type;
  if (!at::isComplexType(self->scalar_type)) {
    scalar_type = at::toComplexType(self->scalar_type);
  }
  return Py_NewRef(torch::getTHPDtype(scalar_type));
  END_HANDLE_TH_ERRORS
}

typedef PyObject* (*getter)(PyObject*, void*);

static const std::initializer_list<PyGetSetDef> THPDtype_properties = {
    {"is_floating_point",
     (getter)THPDtype_is_floating_point,
     nullptr,
     nullptr,
     nullptr},
    {"is_complex", (getter)THPDtype_is_complex, nullptr, nullptr, nullptr},
    {"is_signed", (getter)THPDtype_is_signed, nullptr, nullptr, nullptr},
    {"itemsize", (getter)THPDtype_itemsize, nullptr, nullptr, nullptr},
    {nullptr}};

static const std::initializer_list<PyMethodDef> THPDtype_methods = {
    {"__reduce__", THPDtype_reduce, METH_NOARGS, nullptr},
    {"to_real", THPDtype_to_real, METH_NOARGS, nullptr},
    {"to_complex", THPDtype_to_complex, METH_NOARGS, nullptr},
    {nullptr} /* Sentinel */
};

static PyObject* THPDtype_repr(THPDtype* self) {
  return THPUtils_packString(std::string("torch.") + self->name);
}

PyTypeObject THPDtypeType = {
    PyVarObject_HEAD_INIT(nullptr, 0)
    "torch.dtype", /* tp_name */
    sizeof(THPDtype), /* tp_basicsize */
    0, /* tp_itemsize */
    nullptr, /* tp_dealloc */
    0, /* tp_vectorcall_offset */
    nullptr, /* tp_getattr */
    nullptr, /* tp_setattr */
    nullptr, /* tp_reserved */
    (reprfunc)THPDtype_repr, /* tp_repr */
    nullptr, /* tp_as_number */
    nullptr, /* tp_as_sequence */
    nullptr, /* tp_as_mapping */
    nullptr, /* tp_hash  */
    nullptr, /* tp_call */
    nullptr, /* tp_str */
    nullptr, /* tp_getattro */
    nullptr, /* tp_setattro */
    nullptr, /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT, /* tp_flags */
    nullptr, /* tp_doc */
    nullptr, /* tp_traverse */
    nullptr, /* tp_clear */
    nullptr, /* tp_richcompare */
    0, /* tp_weaklistoffset */
    nullptr, /* tp_iter */
    nullptr, /* tp_iternext */
    // NOLINTNEXTLINE(*const-cast)
    const_cast<PyMethodDef*>(std::data(THPDtype_methods)), /* tp_methods */
    nullptr, /* tp_members */
    // NOLINTNEXTLINE(*const-cast)
    const_cast<PyGetSetDef*>(std::data(THPDtype_properties)), /* tp_getset */
    nullptr, /* tp_base */
    nullptr, /* tp_dict */
    nullptr, /* tp_descr_get */
    nullptr, /* tp_descr_set */
    0, /* tp_dictoffset */
    nullptr, /* tp_init */
    nullptr, /* tp_alloc */
    nullptr, /* tp_new */
};

void THPDtype_init(PyObject* module) {
  // Set a __dict__ with `__module__` = `torch`. This means
  // `__module__` value will be inherited by instances
  // (i.e. `torch.float32.__module__ == "torch"`). This will prevent
  // Pickle from having to search all of sys.modules in order to find
  // the module when pickling a dtype instance.
  //
  // We have to do this in C++ because extension types are not mutable
  // from Python code.
  //
  // See https://github.com/pytorch/pytorch/issues/65077
  TORCH_INTERNAL_ASSERT(THPDtypeType.tp_dict == nullptr);
  auto dict = THPObjectPtr(PyDict_New());
  if (!dict)
    throw python_error();
  auto torch = THPUtils_packString("torch");
  if (!torch)
    throw python_error();
  if (PyDict_SetItemString(dict, "__module__", torch) < 0) {
    throw python_error();
  }
  THPDtypeType.tp_dict = dict.release();

  if (PyType_Ready(&THPDtypeType) < 0) {
    throw python_error();
  }
  Py_INCREF(&THPDtypeType);
  if (PyModule_AddObject(module, "dtype", (PyObject*)&THPDtypeType) != 0) {
    throw python_error();
  }
}