1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/python_headers.h>
#include <array>
#include <cstdarg>
#include <exception>
#include <utility>
#include <fmt/format.h>
#include <torch/csrc/THP.h>
#include <c10/util/StringUtil.h>
PyObject *THPException_FatalError, *THPException_LinAlgError,
*THPException_OutOfMemoryError, *THPException_DistError,
*THPException_DistBackendError, *THPException_DistNetworkError,
*THPException_DistStoreError;
#define ASSERT_TRUE(cond) \
if (!(cond)) \
return false
bool THPException_init(PyObject* module) {
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_FatalError =
PyErr_NewException("torch.FatalError", nullptr, nullptr));
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
PyModule_AddObject(module, "FatalError", THPException_FatalError) == 0);
// Set the doc string here since _add_docstr throws malloc errors if tp_doc is
// modified for an error class.
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_LinAlgError = PyErr_NewExceptionWithDoc(
"torch._C._LinAlgError",
"Error raised by torch.linalg function when the cause of error is a numerical inconsistency in the data.\n \
For example, you can the torch.linalg.inv function will raise torch.linalg.LinAlgError when it finds that \
a matrix is not invertible.\n \
\n\
Example:\n \
>>> # xdoctest: +REQUIRES(env:TORCH_DOCKTEST_LAPACK)\n \
>>> matrix = torch.eye(3, 3)\n \
>>> matrix[-1, -1] = 0\n \
>>> matrix\n \
tensor([[1., 0., 0.],\n \
[0., 1., 0.],\n \
[0., 0., 0.]])\n \
>>> torch.linalg.inv(matrix)\n \
Traceback (most recent call last):\n \
File \"<stdin>\", line 1, in <module>\n \
torch._C._LinAlgError: torch.linalg.inv: The diagonal element 3 is zero, the inversion\n \
could not be completed because the input matrix is singular.",
PyExc_RuntimeError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(module, "_LinAlgError", THPException_LinAlgError) ==
0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_OutOfMemoryError = PyErr_NewExceptionWithDoc(
"torch.OutOfMemoryError",
"Exception raised when device is out of memory",
PyExc_RuntimeError,
nullptr));
PyTypeObject* type = (PyTypeObject*)THPException_OutOfMemoryError;
type->tp_name = "torch.OutOfMemoryError";
ASSERT_TRUE(
PyModule_AddObject(
module, "OutOfMemoryError", THPException_OutOfMemoryError) == 0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_DistError = PyErr_NewExceptionWithDoc(
"torch.distributed.DistError",
"Exception raised when an error occurs in the distributed library",
PyExc_RuntimeError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(module, "_DistError", THPException_DistError) == 0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_DistBackendError = PyErr_NewExceptionWithDoc(
"torch.distributed.DistBackendError",
"Exception raised when a backend error occurs in distributed",
THPException_DistError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(
module, "_DistBackendError", THPException_DistBackendError) == 0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_DistNetworkError = PyErr_NewExceptionWithDoc(
"torch.distributed.DistNetworkError",
"Exception raised when a network error occurs in distributed",
THPException_DistError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(
module, "_DistNetworkError", THPException_DistNetworkError) == 0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_DistStoreError = PyErr_NewExceptionWithDoc(
"torch.distributed.DistStoreError",
"Exception raised when an error occurs in the distributed store",
THPException_DistError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(
module, "_DistStoreError", THPException_DistStoreError) == 0);
return true;
}
namespace torch {
static void processErrorMsgInplace(std::string& str) {
// Translate Aten types to their respective pytorch ones
constexpr std::array<std::pair<std::string_view, std::string_view>, 64>
changes{{
// TODO: remove torch.(cuda.|)sparse.*Tensor items?
{"Variable[SparseCUDAByteType]", "torch.cuda.sparse.ByteTensor"},
{"Variable[SparseCUDACharType]", "torch.cuda.sparse.CharTensor"},
{"Variable[SparseCUDADoubleType]", "torch.cuda.sparse.DoubleTensor"},
{"Variable[SparseCUDAFloatType]", "torch.cuda.sparse.FloatTensor"},
{"Variable[SparseCUDAIntType]", "torch.cuda.sparse.IntTensor"},
{"Variable[SparseCUDALongType]", "torch.cuda.sparse.LongTensor"},
{"Variable[SparseCUDAShortType]", "torch.cuda.sparse.ShortTensor"},
{"Variable[SparseCUDAHalfType]", "torch.cuda.sparse.HalfTensor"},
{"Variable[SparseCPUByteType]", "torch.sparse.ByteTensor"},
{"Variable[SparseCPUCharType]", "torch.sparse.CharTensor"},
{"Variable[SparseCPUDoubleType]", "torch.sparse.DoubleTensor"},
{"Variable[SparseCPUFloatType]", "torch.sparse.FloatTensor"},
{"Variable[SparseCPUIntType]", "torch.sparse.IntTensor"},
{"Variable[SparseCPULongType]", "torch.sparse.LongTensor"},
{"Variable[SparseCPUShortType]", "torch.sparse.ShortTensor"},
{"Variable[SparseCPUHalfType]", "torch.sparse.HalfTensor"},
{"Variable[CUDAByteType]", "torch.cuda.ByteTensor"},
{"Variable[CUDACharType]", "torch.cuda.CharTensor"},
{"Variable[CUDADoubleType]", "torch.cuda.DoubleTensor"},
{"Variable[CUDAFloatType]", "torch.cuda.FloatTensor"},
{"Variable[CUDAIntType]", "torch.cuda.IntTensor"},
{"Variable[CUDALongType]", "torch.cuda.LongTensor"},
{"Variable[CUDAShortType]", "torch.cuda.ShortTensor"},
{"Variable[CUDAHalfType]", "torch.cuda.HalfTensor"},
{"Variable[CPUByteType]", "torch.ByteTensor"},
{"Variable[CPUCharType]", "torch.CharTensor"},
{"Variable[CPUDoubleType]", "torch.DoubleTensor"},
{"Variable[CPUFloatType]", "torch.FloatTensor"},
{"Variable[CPUIntType]", "torch.IntTensor"},
{"Variable[CPULongType]", "torch.LongTensor"},
{"Variable[CPUShortType]", "torch.ShortTensor"},
{"Variable[CPUHalfType]", "torch.HalfTensor"},
{"SparseCUDAByteType", "torch.cuda.sparse.ByteTensor"},
{"SparseCUDACharType", "torch.cuda.sparse.CharTensor"},
{"SparseCUDADoubleType", "torch.cuda.sparse.DoubleTensor"},
{"SparseCUDAFloatType", "torch.cuda.sparse.FloatTensor"},
{"SparseCUDAIntType", "torch.cuda.sparse.IntTensor"},
{"SparseCUDALongType", "torch.cuda.sparse.LongTensor"},
{"SparseCUDAShortType", "torch.cuda.sparse.ShortTensor"},
{"SparseCUDAHalfType", "torch.cuda.sparse.HalfTensor"},
{"SparseCPUByteType", "torch.sparse.ByteTensor"},
{"SparseCPUCharType", "torch.sparse.CharTensor"},
{"SparseCPUDoubleType", "torch.sparse.DoubleTensor"},
{"SparseCPUFloatType", "torch.sparse.FloatTensor"},
{"SparseCPUIntType", "torch.sparse.IntTensor"},
{"SparseCPULongType", "torch.sparse.LongTensor"},
{"SparseCPUShortType", "torch.sparse.ShortTensor"},
{"SparseCPUHalfType", "torch.sparse.HalfTensor"},
{"CUDAByteType", "torch.cuda.ByteTensor"},
{"CUDACharType", "torch.cuda.CharTensor"},
{"CUDADoubleType", "torch.cuda.DoubleTensor"},
{"CUDAFloatType", "torch.cuda.FloatTensor"},
{"CUDAIntType", "torch.cuda.IntTensor"},
{"CUDALongType", "torch.cuda.LongTensor"},
{"CUDAShortType", "torch.cuda.ShortTensor"},
{"CUDAHalfType", "torch.cuda.HalfTensor"},
{"CPUByteType", "torch.ByteTensor"},
{"CPUCharType", "torch.CharTensor"},
{"CPUDoubleType", "torch.DoubleTensor"},
{"CPUFloatType", "torch.FloatTensor"},
{"CPUIntType", "torch.IntTensor"},
{"CPULongType", "torch.LongTensor"},
{"CPUShortType", "torch.ShortTensor"},
{"CPUHalfType", "torch.HalfTensor"},
}};
// Avoid doing any work if no types need translated
if (str.find("Type") == str.npos) {
return;
}
for (const auto& it : changes) {
c10::ReplaceAll(str, it.first, it.second);
}
}
std::string processErrorMsg(std::string str) {
processErrorMsgInplace(str);
return str;
}
static std::string formatMessage(const char* format, va_list fmt_args) {
constexpr size_t ERROR_BUF_SIZE = 1024;
std::string error_buf(ERROR_BUF_SIZE, '\0');
auto res = vsnprintf(error_buf.data(), ERROR_BUF_SIZE, format, fmt_args);
if (res < 0) {
res = 0;
}
error_buf.resize(res);
return error_buf;
}
void translate_exception_to_python(const std::exception_ptr& e_ptr) {
try {
TORCH_INTERNAL_ASSERT(
e_ptr,
"translate_exception_to_python "
"called with invalid exception pointer");
std::rethrow_exception(e_ptr);
}
CATCH_ALL_ERRORS(return)
}
TypeError::TypeError(const char* format, ...) {
va_list fmt_args{};
va_start(fmt_args, format);
msg = formatMessage(format, fmt_args);
va_end(fmt_args);
}
AttributeError::AttributeError(const char* format, ...) {
va_list fmt_args{};
va_start(fmt_args, format);
msg = formatMessage(format, fmt_args);
va_end(fmt_args);
}
void PyWarningHandler::InternalHandler::process(const c10::Warning& warning) {
warning_buffer_.push_back(warning);
}
PyWarningHandler::PyWarningHandler() noexcept(true)
: prev_handler_(c10::WarningUtils::get_warning_handler()),
in_exception_(false) {
c10::WarningUtils::set_warning_handler(&internal_handler_);
}
// Get the Python warning type for a warning
static PyObject* map_warning_to_python_type(const c10::Warning& warning) {
struct Visitor {
PyObject* operator()(const c10::UserWarning&) const {
return PyExc_UserWarning;
}
PyObject* operator()(const c10::DeprecationWarning&) const {
return PyExc_DeprecationWarning;
}
};
return std::visit(Visitor(), warning.type());
}
/// See NOTE [ Conversion Cpp Python Warning ] for noexcept justification
/// NOLINTNEXTLINE(bugprone-exception-escape)
PyWarningHandler::~PyWarningHandler() noexcept(false) {
c10::WarningUtils::set_warning_handler(prev_handler_);
auto& warning_buffer = internal_handler_.warning_buffer_;
if (!warning_buffer.empty()) {
PyObject *type = nullptr, *value = nullptr, *traceback = nullptr;
pybind11::gil_scoped_acquire gil;
auto result = 0;
if (in_exception_) {
// This (combined with PyErr_Restore below) also works when no python
// error has been set yet
PyErr_Fetch(&type, &value, &traceback);
}
for (const auto& warning : warning_buffer) {
auto source_location = warning.source_location();
auto msg = warning.msg();
processErrorMsgInplace(msg);
if (source_location.file == nullptr) {
result =
PyErr_WarnEx(map_warning_to_python_type(warning), msg.c_str(), 1);
} else if (warning.verbatim()) {
// Sets the source location from the warning
// Note: PyErr_WarnExplicit will disregard Python's warning filter
// and always appear. This is in contrast to PyErr_WarnEx,
// which respects the warning filter.
result = PyErr_WarnExplicit(
/*category=*/map_warning_to_python_type(warning),
/*message=*/msg.c_str(),
/*filename=*/source_location.file,
/*lineno=*/static_cast<int>(source_location.line),
/*module=*/nullptr,
/*registry=*/nullptr);
} else {
// Lets Python set the source location and puts the C++ warning
// location into the message.
auto buf = fmt::format(
"{} (Triggered internally at {}:{}.)",
msg,
source_location.file,
source_location.line);
result =
PyErr_WarnEx(map_warning_to_python_type(warning), buf.c_str(), 1);
}
if (result < 0) {
if (in_exception_) {
// PyErr_Print prints the traceback to sys.stderr and
// clears the error indicator
PyErr_Print();
} else {
break;
}
}
}
warning_buffer.clear();
if ((result < 0) && (!in_exception_)) {
/// A warning raised an error, we need to force the parent
/// function to return an error code.
throw python_error();
}
if (in_exception_) {
PyErr_Restore(type, value, traceback);
}
}
}
} // namespace torch
|