1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
#include <torch/csrc/Generator.h>
#include <ATen/ATen.h>
#include <ATen/CPUGeneratorImpl.h>
#include <structmember.h>
#include <ATen/core/GeneratorForPrivateuseone.h>
#include <ATen/detail/XPUHooksInterface.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/autograd/generated/VariableType.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/tensor_types.h>
#include <utility>
#ifdef USE_CUDA
#include <ATen/cuda/CUDAGeneratorImpl.h>
#endif
#ifdef USE_MPS
#include <ATen/mps/MPSGeneratorImpl.h>
#endif
using namespace at;
using namespace torch;
PyObject* THPGeneratorClass = nullptr;
PyObject* THPGenerator_initDefaultGenerator(const at::Generator& cdata) {
auto type = (PyTypeObject*)THPGeneratorClass;
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
if (!self)
throw python_error();
auto self_ = reinterpret_cast<THPGenerator*>(self.get());
self_->cdata = std::move(cdata);
return self.release();
}
static void THPGenerator_dealloc(PyObject* _self) {
auto self = reinterpret_cast<THPGenerator*>(_self);
if (self->cdata.defined()) {
self->cdata.set_pyobj(nullptr);
self->cdata.~Generator();
}
Py_TYPE(_self)->tp_free(_self);
}
static PyObject* THPGenerator_pynew(
PyTypeObject* type,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
static torch::PythonArgParser parser({"Generator(Device device=None)"});
torch::ParsedArgs<1> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
auto device = r.deviceWithDefault(0, at::Device(at::kCPU));
THPGeneratorPtr self((THPGenerator*)type->tp_alloc(type, 0));
if (device.type() == at::kCPU) {
self->cdata = make_generator<CPUGeneratorImpl>();
}
#ifdef USE_CUDA
else if (device.type() == at::kCUDA) {
self->cdata = make_generator<CUDAGeneratorImpl>(device.index());
}
#elif USE_MPS
else if (device.type() == at::kMPS) {
self->cdata = make_generator<MPSGeneratorImpl>();
}
#endif
else if (device.type() == at::kXPU) {
self->cdata = at::detail::getXPUHooks().getNewGenerator(device.index());
} else if (device.type() == at::kIPU) {
self->cdata = at::detail::getIPUHooks().getNewGenerator(device.index());
} else if (device.type() == at::kPrivateUse1) {
self->cdata = at::GetGeneratorForPrivateuse1(device.index());
} else {
TORCH_CHECK(
false,
"Device type ",
c10::DeviceTypeName(device.type()),
" is not supported for torch.Generator() api.");
}
return (PyObject*)self.release();
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_getState(PyObject* _self, PyObject* noargs) {
using namespace torch::autograd;
HANDLE_TH_ERRORS
auto& gen = ((THPGenerator*)_self)->cdata;
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
auto state_tensor = gen.get_state();
return THPVariable_Wrap(state_tensor);
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_setState(PyObject* _self, PyObject* _new_state) {
using namespace torch::autograd;
HANDLE_TH_ERRORS
if (!THPVariable_Check(_new_state)) {
throw torch::TypeError(
"expected a torch.ByteTensor, but got %s",
Py_TYPE(_new_state)->tp_name);
}
auto self = (THPGenerator*)_self;
auto& gen = self->cdata;
const auto& new_state_tensor = THPVariable_Unpack(_new_state);
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
gen.set_state(new_state_tensor);
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
uint64_t unpack_uint64(PyObject* pyobj) {
uint64_t unsigned_obj = 0;
try {
// First try to interpret as unsigned long
unsigned_obj = THPUtils_unpackUInt64(pyobj);
} catch (...) {
if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
// If an overflow happened, then the pyobj could be negative,
// so try to interpret it as signed long
PyErr_Clear();
int64_t obj = THPUtils_unpackLong(pyobj);
unsigned_obj = *(reinterpret_cast<uint64_t*>(&obj));
} else {
// If any other type of exception happened, rethrow it
throw;
}
}
return unsigned_obj;
}
static PyObject* THPGenerator_graphSafeGetState(
PyObject* _self,
PyObject* noargs) {
HANDLE_TH_ERRORS
auto& gen = ((THPGenerator*)_self)->cdata;
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
return THPGenerator_Wrap(gen.graphsafe_get_state());
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_graphSafeSetState(
PyObject* _self,
PyObject* _state) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
auto& gen = self->cdata;
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
gen.graphsafe_set_state(THPGenerator_Unwrap(_state));
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_cloneState(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto& gen = ((THPGenerator*)_self)->cdata;
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
auto new_generator = gen.clone();
return THPGenerator_Wrap(new_generator);
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_manualSeed(PyObject* _self, PyObject* seed) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
auto generator = self->cdata;
TORCH_CHECK(
THPUtils_checkLong(seed),
"manual_seed expected a long, "
"but got ",
THPUtils_typename(seed));
uint64_t unsigned_seed = unpack_uint64(seed);
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(generator.mutex());
generator.set_current_seed(unsigned_seed);
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_setOffset(PyObject* _self, PyObject* offset) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
auto generator = self->cdata;
TORCH_CHECK(
THPUtils_checkLong(offset),
"manual_offset expected a long, "
"but got ",
THPUtils_typename(offset));
uint64_t unsigned_offset = unpack_uint64(offset);
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(generator.mutex());
generator.set_offset(unsigned_offset);
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_seed(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
// See Note [Acquire lock when using random generators]
auto self = (THPGenerator*)_self;
std::scoped_lock<std::mutex> lock(self->cdata.mutex());
uint64_t seed_val = self->cdata.seed();
return THPUtils_packUInt64(seed_val);
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_initialSeed(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
return THPUtils_packUInt64(self->cdata.current_seed());
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_getOffset(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
return THPUtils_packUInt64(self->cdata.get_offset());
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_get_device(THPGenerator* self, void* unused) {
HANDLE_TH_ERRORS
return THPDevice_New(self->cdata.device());
END_HANDLE_TH_ERRORS
}
PyObject* THPGenerator_reduce(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
auto& gen = self->cdata;
auto ret = THPObjectPtr{PyTuple_New(3)};
if (!ret)
throw python_error();
py::object torch_module = py::module::import("torch");
py::object torch_generator = torch_module.attr("Generator");
PyTuple_SET_ITEM(ret.get(), 0, torch_generator.release().ptr());
auto args = THPObjectPtr{PyTuple_New(1)};
if (!args)
throw python_error();
PyTuple_SET_ITEM(args.get(), 0, THPGenerator_get_device(self, nullptr));
PyTuple_SET_ITEM(ret.get(), 1, args.release());
auto state = THPObjectPtr{PyTuple_New(3)};
if (!state)
throw python_error();
c10::DeviceType device_type = gen.device().type();
PyTuple_SET_ITEM(state.get(), 0, THPGenerator_initialSeed(_self, nullptr));
PyTuple_SET_ITEM(
state.get(),
1,
device_type != at::kCPU ? THPGenerator_getOffset(_self, nullptr)
: Py_None);
PyTuple_SET_ITEM(state.get(), 2, THPGenerator_getState(_self, nullptr));
PyTuple_SET_ITEM(ret.get(), 2, state.release());
return ret.release();
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_pickleSetState(PyObject* _self, PyObject* state) {
HANDLE_TH_ERRORS
THPGenerator_manualSeed(_self, PyTuple_GET_ITEM(state, 0));
auto& offset = PyTuple_GET_ITEM(state, 1);
if (offset != Py_None) {
THPGenerator_setOffset(_self, offset);
}
THPGenerator_setState(_self, PyTuple_GET_ITEM(state, 2));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyGetSetDef THPGenerator_properties[] = {
{"device", (getter)THPGenerator_get_device, nullptr, nullptr, nullptr},
{nullptr}};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static PyMethodDef THPGenerator_methods[] = {
{"__reduce__", THPGenerator_reduce, METH_NOARGS, nullptr},
{"__setstate__", THPGenerator_pickleSetState, METH_O, nullptr},
{"get_state", THPGenerator_getState, METH_NOARGS, nullptr},
{"set_state", THPGenerator_setState, METH_O, nullptr},
{"clone_state", THPGenerator_cloneState, METH_NOARGS, nullptr},
{"graphsafe_get_state",
THPGenerator_graphSafeGetState,
METH_NOARGS,
nullptr},
{"graphsafe_set_state", THPGenerator_graphSafeSetState, METH_O, nullptr},
{"set_offset", THPGenerator_setOffset, METH_O, nullptr},
{"manual_seed", THPGenerator_manualSeed, METH_O, nullptr},
{"seed", THPGenerator_seed, METH_NOARGS, nullptr},
{"initial_seed", THPGenerator_initialSeed, METH_NOARGS, nullptr},
{"get_offset", THPGenerator_getOffset, METH_NOARGS, nullptr},
{nullptr}};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyMemberDef THPGenerator_members[] = {
{"_cdata", T_ULONGLONG, offsetof(THPGenerator, cdata), READONLY, nullptr},
{nullptr}};
PyTypeObject THPGeneratorType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C.Generator", /* tp_name */
sizeof(THPGenerator), /* tp_basicsize */
0, /* tp_itemsize */
THPGenerator_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
// NOLINTNEXTLINE(misc-redundant-expression)
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
nullptr, /* tp_doc */
nullptr, /* tp_traverse */
nullptr, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
THPGenerator_methods, /* tp_methods */
THPGenerator_members, /* tp_members */
THPGenerator_properties, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
THPGenerator_pynew, /* tp_new */
};
bool THPGenerator_init(PyObject* module) {
THPGeneratorClass = (PyObject*)&THPGeneratorType;
if (PyType_Ready(&THPGeneratorType) < 0)
return false;
Py_INCREF(&THPGeneratorType);
PyModule_AddObject(module, "Generator", (PyObject*)&THPGeneratorType);
return true;
}
void set_pyobj(const Generator& self, PyObject* pyobj) {
TORCH_CHECK(self.defined(), "cannot call set_pyobj() on undefined generator");
self.set_pyobj(pyobj);
}
PyObject* pyobj(const Generator& self) {
TORCH_CHECK(self.defined(), "cannot call pyobj() on undefined generator");
return self.pyobj();
}
PyObject* THPGenerator_Wrap(const Generator& gen) {
if (!gen.defined()) {
Py_RETURN_NONE;
}
if (auto obj = pyobj(gen)) {
Py_INCREF(obj);
return obj;
}
return THPGenerator_NewWithVar(
(PyTypeObject*)THPGeneratorClass, std::move(gen));
}
at::Generator THPGenerator_Unwrap(PyObject* state) {
if (!Py_IS_TYPE(state, &THPGeneratorType)) {
throw torch::TypeError(
"expected a Generator, but got %s", Py_TYPE(state)->tp_name);
}
return reinterpret_cast<THPGenerator*>(state)->cdata;
}
// Creates a new Python object for a Generator. The Generator must not already
// have a PyObject* associated with it.
PyObject* THPGenerator_NewWithVar(PyTypeObject* type, Generator gen) {
PyObject* obj = type->tp_alloc(type, 0);
if (obj) {
auto g = (THPGenerator*)obj;
new (&g->cdata) Generator(std::move(gen));
set_pyobj(g->cdata, obj);
}
return obj;
}
|