1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
|
#pragma once
// NB: Must be at the top of file to avoid including the deprecated "math.h".
// https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio
#ifdef _MSC_VER
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include <cmath>
#endif
#include <ATen/ATen.h>
#include <torch/csrc/autograd/generated/Functions.h>
namespace torch::autograd::generated::details {
extern const char* kCudnnDoubleBackwardMsg;
// A simple way to imperatively compute index ranges for slots
// that have been flattened
struct TORCH_API IndexRangeGenerator {
IndexRange range(size_t range_size) {
i += range_size;
return {i - range_size, i};
}
size_t size() {
return i;
}
private:
size_t i = 0;
};
TORCH_API Tensor toNonOptFwGrad(const std::optional<Tensor>& t);
TORCH_API Tensor toNonOptPrimal(const std::optional<Tensor>& t);
TORCH_API Tensor toNonOptTensor(const std::optional<Tensor>& t);
TORCH_API inline std::optional<Tensor> wrap_opt_if(
const Tensor& t,
const bool cond) {
using OptTensor = std::optional<Tensor>;
return cond ? OptTensor(t) : static_cast<OptTensor>(std::nullopt);
}
TORCH_API Tensor
apply_loss_reduction(const Tensor& unreduced, int64_t reduction);
TORCH_API bool any_variable_defined(const variable_list& variables);
TORCH_API void copy_range(
variable_list& out,
IndexRange range,
const at::Tensor& t);
TORCH_API void copy_range(
variable_list& out,
IndexRange range,
at::ArrayRef<at::Tensor> t);
TORCH_API at::Tensor copysign_tensor_self_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& result);
TORCH_API at::Tensor not_implemented(const char* name, const char* reason = "");
TORCH_API std::vector<Tensor> not_implemented_list(
const char* name,
const char* reason = "");
at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result);
at::Tensor maybe_multiply(const at::Tensor& t, const at::Scalar& s);
int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim);
Tensor restore_reduced_dims(
const Tensor& output,
IntArrayRef dims,
bool keepdim);
Tensor scale_grad_by_count(
const Tensor& grad,
const Tensor& mask,
IntArrayRef dims);
at::Tensor norm_backward(
const at::Tensor& grad,
const at::Tensor& self,
const std::optional<at::Scalar>& p_,
const at::Tensor& norm);
at::Tensor norm_backward(
at::Tensor grad,
const at::Tensor& self,
const std::optional<at::Scalar>& p_,
at::Tensor norm,
at::IntArrayRef dim,
bool keepdim);
Tensor norm_jvp(
const Tensor& self_p,
const Tensor& self_t,
const std::optional<Scalar>& p_,
Tensor norm,
IntArrayRef dim,
bool keepdim);
Tensor norm_jvp(
const Tensor& grad,
const Tensor& self,
const std::optional<Scalar>& p_,
Tensor norm);
Tensor _nested_from_padded_backward(
const Tensor& grad,
const Tensor& input,
const bool do_transform_0213);
std::tuple<Tensor, Tensor, Tensor> linear_double_backward(
const variable_list& grads,
const Tensor& self,
const Tensor& grad_output,
const Tensor& weight);
Tensor linalg_vector_norm_jvp(
const Tensor& self_p,
const Tensor& self_t,
const Scalar& scalar_ord,
Tensor norm,
const at::OptionalIntArrayRef& opt_dim,
bool keepdim);
at::Tensor linalg_vector_norm_backward(
at::Tensor grad,
const at::Tensor& self,
const at::Scalar& ord,
at::Tensor norm,
const at::OptionalIntArrayRef& opt_dim,
bool keepdim);
at::Tensor pow_backward(
at::Tensor grad,
const at::Tensor& self,
const at::Scalar& exponent_);
at::Tensor pow_backward_self(
const at::Tensor& grad,
const at::Tensor& self,
const at::Tensor& exponent);
at::Tensor pow_backward_exponent(
const at::Tensor& grad,
const at::Tensor& self,
const at::Tensor& exponent,
const at::Tensor& result);
at::Tensor pow_backward_exponent(
const at::Tensor& grad,
const at::Scalar& base,
const at::Tensor& exponent,
const at::Tensor& result);
at::Tensor angle_backward(const at::Tensor& grad, const at::Tensor& self);
template <typename T>
at::Tensor mul_tensor_backward(const Tensor& grad, T other, ScalarType self_st);
template <typename T>
at::Tensor div_tensor_self_backward(
const Tensor& grad,
T other,
ScalarType self_st,
const std::optional<std::string_view>& rounding_mode = std::nullopt);
at::Tensor div_tensor_other_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& other,
const std::optional<std::string_view>& rounding_mode = std::nullopt);
at::Tensor mvlgamma_backward(
const at::Tensor& grad,
const at::Tensor& self,
int64_t p);
at::Tensor permute_backwards(const at::Tensor& grad, at::IntArrayRef fwd_dims);
at::Tensor rad2deg_backward(const at::Tensor& grad);
at::Tensor deg2rad_backward(const at::Tensor& grad);
at::Tensor unsqueeze_multiple(
const at::Tensor& t,
at::OptionalIntArrayRef opt_dim,
size_t n_dims);
at::Tensor sum_backward(
const at::Tensor& grad,
at::SymIntArrayRef sizes,
at::OptionalIntArrayRef opt_dims,
bool keepdim);
at::Tensor sum_backward(
const at::Tensor& grad,
c10::SymIntArrayRef sizes,
c10::IntArrayRef dims,
bool keepdim);
at::Tensor nansum_backward(
const at::Tensor& grad,
const at::Tensor& self,
at::OptionalIntArrayRef dims,
bool keepdim);
std::vector<int64_t> reverse_list(const at::IntArrayRef list);
std::vector<c10::SymInt> reverse_list_symint(const c10::SymIntArrayRef list);
at::Tensor reverse_dim(const at::Tensor& t, int64_t dim);
at::Tensor prod_safe_zeros_backward(
const at::Tensor& grad,
const at::Tensor& inp,
int64_t dim);
at::Tensor prod_backward(
const at::Tensor& grad,
const at::Tensor& input,
const at::Tensor& result);
at::Tensor prod_backward(
at::Tensor grad,
const at::Tensor& input,
at::Tensor result,
int64_t dim,
bool keepdim);
at::Tensor solve_jvp(
const Tensor& X,
const Tensor& A,
const Tensor& dA,
const Tensor& dB);
at::Tensor solve_backward_self(
const at::Tensor& grad,
const at::Tensor& self,
const at::Tensor& A);
at::Tensor solve_backward_A(
const at::Tensor& grad,
const at::Tensor& self,
const at::Tensor& A,
const at::Tensor& solution);
at::Tensor cumsum_backward(const at::Tensor& grad, int64_t dim);
at::Tensor logsumexp_backward(
at::Tensor grad,
const at::Tensor& self,
at::Tensor result,
at::IntArrayRef dim,
bool keepdim);
at::Tensor logsumexp_jvp(
const at::Tensor& self_p,
const at::Tensor& self_t,
IntArrayRef dim,
bool keepdim);
at::Tensor safe_logsumexp_jvp(
const at::Tensor& self_p,
const at::Tensor& self_t,
IntArrayRef dim,
bool keepdim);
at::Tensor logcumsumexp_backward(
at::Tensor grad,
const at::Tensor& self,
const at::Tensor& result,
int64_t dim);
at::Tensor logcumsumexp_jvp(
const at::Tensor& self_p,
const at::Tensor& self_t,
int64_t dim);
at::Tensor unbind_backward(const variable_list& grads, int64_t dim);
at::Tensor unbind_backward_nested(
const variable_list& grads,
const Tensor& nt_sizes,
int64_t dim,
const at::TensorOptions& options);
at::Tensor unbind_backward_nested_jagged(
const variable_list& grads,
const Tensor& self,
int64_t dim);
at::Tensor unsqueeze_to(const at::Tensor& self, c10::SymIntArrayRef sym_sizes);
at::Tensor unsqueeze_to(
const at::Tensor& self,
int64_t dim,
c10::SymIntArrayRef sym_sizes);
at::Tensor unsqueeze_to(
const at::Tensor& self,
IntArrayRef dim,
c10::SymIntArrayRef sym_sizes);
std::vector<at::Tensor> cat_tensors_backward(
const at::Tensor& grad,
const std::vector<std::vector<c10::SymInt>>& sizes,
const std::vector<ScalarType>& dtypes,
int64_t dim);
std::vector<at::Tensor> stack_tensors_backward(
const at::Tensor& grad,
int64_t dim,
const std::vector<ScalarType>& dtypes);
std::vector<at::Tensor> block_diag_backward(
const at::Tensor& grad,
const std::vector<std::vector<int64_t>>& sizes,
const std::vector<ScalarType>& dtypes);
at::Tensor clamp_backward(
const at::Tensor& grad,
const at::Tensor& self,
const std::optional<at::Scalar>& min,
const std::optional<at::Scalar>& max);
at::Tensor clamp_backward(
const at::Tensor& grad,
const at::Tensor& self,
const at::Tensor& min,
const at::Tensor& max);
std::tuple<at::Tensor, at::Tensor> clamp_backward_min_max(
const at::Tensor& grad,
const at::Tensor& self,
const at::Tensor& min,
const at::Tensor& max,
const std::array<bool, 2>&);
at::Tensor clamp_jvp(
const Tensor& self_p,
const Tensor& self_t,
const Tensor& min_p,
const Tensor& min_t,
const Tensor& max_p,
const Tensor& max_t);
at::SymIntArrayRef strides_or_error(
const Tensor& input,
std::string_view const& input_name);
at::Tensor mm_mat1_backward(
const Tensor& grad,
const Tensor& mat2,
at::SymIntArrayRef mat1_sizes,
at::SymIntArrayRef mat1_strides,
c10::Layout mat1_layout,
const Scalar& alpha);
at::Tensor mm_mat2_backward(
const at::Tensor& grad,
const at::Tensor& mat1,
at::SymIntArrayRef sizes,
at::SymIntArrayRef strides,
c10::Layout layout,
const at::Scalar& alpha);
at::Tensor mm_mat1_sparse_backward(
const at::Tensor& grad,
const at::Tensor& mat1,
const at::Tensor& mat2,
const at::Scalar& alpha);
std::tuple<Tensor, Tensor, Tensor> sparse_sampled_addmm_backward(
const Tensor& grad,
const Tensor& self,
const std::optional<Tensor>& mat1,
const std::optional<Tensor>& mat2,
const Scalar& alpha,
const Scalar& beta,
const std::array<bool, 3>& grad_input_mask);
at::Tensor sparse_mask_backward(
const at::Tensor& grad,
const at::Tensor& mask,
c10::Layout self_layout);
at::Tensor sparse_sparse_matmul_backward(
const at::Tensor& grad,
const at::Tensor& mat1,
const at::Tensor& mat2,
int64_t grad_order);
at::Tensor renorm_backward(
const at::Tensor& grad,
const at::Tensor& self,
const at::Scalar& p,
int64_t dim,
const at::Scalar& maxnorm);
at::Tensor renorm_jvp(
const at::Tensor& self_p,
const at::Tensor& self_t,
const at::Scalar& p,
int64_t dim,
const at::Scalar& maxnorm);
at::Tensor repeat_backward(
at::Tensor grad,
at::SymIntArrayRef repeats,
at::SymIntArrayRef input_shape);
at::Tensor _fused_dropout_backward(
const at::Tensor& grad,
const at::Tensor& mask,
double p1m);
at::Tensor infinitely_differentiable_native_dropout_backward(
const at::Tensor& grad,
const at::Tensor& mask,
double scale);
at::Tensor native_dropout_double_backward(
const at::Tensor& ggI,
const at::Tensor& grad,
const at::Tensor& mask,
double scale);
at::Tensor evenly_distribute_backward(
const at::Tensor& grad,
const at::Tensor& input,
const at::Tensor& value);
Tensor sgn_backward(const Tensor& x, const Tensor& gx, const Tensor& sgn);
Tensor masked_fill_backward(const Tensor& grad, const Tensor& mask);
at::Tensor var_backward(
at::Tensor grad,
const at::Tensor& self,
at::OptionalIntArrayRef dim,
const std::optional<c10::Scalar>& correction,
bool keepdim);
at::Tensor var_jvp(
const at::Tensor& self_t,
const at::Tensor& self_p,
const at::Tensor& result,
at::OptionalIntArrayRef dim_opt,
const std::optional<c10::Scalar>& correction,
bool keepdim);
at::Tensor std_backward(
const at::Tensor& result,
const at::Tensor& grad,
const at::Tensor& self,
at::OptionalIntArrayRef dim,
const std::optional<c10::Scalar>& correction,
bool keepdim);
Tensor mean_backward(
const Tensor& grad,
c10::SymIntArrayRef shape,
at::OptionalIntArrayRef opt_dim,
c10::SymInt numel,
bool keepdim);
Tensor var_mean_backward(
const Tensor& gvar,
const Tensor& gmean,
const Tensor& self,
at::OptionalIntArrayRef dim_opt,
const std::optional<c10::Scalar>& correction,
bool keepdim);
Tensor std_mean_backward(
const Tensor& gstd,
const Tensor& gmean,
const Tensor& self,
const Tensor& std,
at::OptionalIntArrayRef dim_opt,
const std::optional<c10::Scalar>& correction,
bool keepdim);
at::Tensor cholesky_backward(
const at::Tensor& grad,
bool upper,
const at::Tensor& L);
at::Tensor cholesky_jvp(
const at::Tensor& input_tangent,
const at::Tensor& L,
bool upper);
at::Tensor cholesky_inverse_backward(
const at::Tensor& grad,
const at::Tensor& L,
bool upper,
const at::Tensor& inverse);
at::Tensor cholesky_inverse_jvp(
const at::Tensor& F,
const at::Tensor& dF,
const at::Tensor& X,
bool upper);
Tensor pinv_jvp(const Tensor& A, const Tensor& pinvA, const Tensor& dA);
Tensor pinv_backward(const Tensor& grad, const Tensor& pinvA, const Tensor& A);
Tensor chunk_backward_nested(
const std::vector<torch::autograd::Variable>& grads,
const Tensor& self,
int64_t chunks,
int64_t dim);
at::Tensor split_with_sizes_backward(
const std::vector<torch::autograd::Variable>& grads,
c10::SymIntArrayRef split_sizes,
int64_t dim,
c10::SymIntArrayRef sizes,
const at::TensorOptions& options);
at::Tensor _nested_split_with_sizes_backward(
const std::vector<torch::autograd::Variable>& grads,
c10::SymIntArrayRef split_sizes,
int64_t dim,
const Tensor& nt_sizes,
const at::TensorOptions& options);
at::Tensor split_backward(
const std::vector<torch::autograd::Variable>& grads,
const c10::SymInt& split_size,
int64_t dim,
c10::SymIntArrayRef sizes,
const at::TensorOptions& options);
at::Tensor max_pool_double_backward(
const at::Tensor& grad,
const at::Tensor& indices,
int dim);
at::Tensor error_for_max_pool2d_double_backward();
at::Tensor glu_double_backward(
const at::Tensor& grad,
const at::Tensor& grad_output,
const at::Tensor& input,
int64_t dim);
at::Tensor glu_double_backward_grad_output(
const at::Tensor& grad,
const at::Tensor& input,
int64_t dim);
at::Tensor infinitely_differentiable_silu_backward(
const at::Tensor& grad_output,
const at::Tensor& input);
at::Tensor infinitely_differentiable_mish_backward(
const at::Tensor& grad_output,
const at::Tensor& input);
Tensor infinitely_differentiable_logit_backward(
const Tensor& grad,
const Tensor& self,
std::optional<double> eps);
Tensor binary_cross_entropy_target_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& target,
const std::optional<Tensor>& weight,
int64_t reduction);
Tensor binary_cross_entropy_double_backward_target(
const Tensor& grad,
const Tensor& grad_output,
const Tensor& self,
const Tensor& target,
const std::optional<Tensor>& weight,
int64_t reduction);
Tensor binary_cross_entropy_with_logits_backward(
const Tensor& grad,
const Tensor& input,
const Tensor& target,
const std::optional<Tensor>& weight_opt,
const std::optional<Tensor>& pos_weight_opt,
int64_t reduction);
at::Tensor binary_cross_entropy_with_logits_target_backward(
const at::Tensor& grad_output,
const at::Tensor& self,
const at::Tensor& target,
const std::optional<at::Tensor>& weight,
const std::optional<at::Tensor>& pos_weight,
int64_t reduction);
at::Tensor log_sigmoid_double_backward(
const at::Tensor& grad,
const at::Tensor& input);
at::Tensor softmax_double_backward(
const at::Tensor& grad,
const at::Tensor& grad_output,
int dim,
const at::Tensor& output);
at::Tensor binary_cross_entropy_double_backward(
const at::Tensor& grad_output,
const at::Tensor& grad,
const at::Tensor& input,
const at::Tensor& target,
const std::optional<at::Tensor>& weight,
int64_t reduction);
at::Tensor binary_cross_entropy_double_backward_grad_output(
const at::Tensor& grad,
const at::Tensor& input,
const at::Tensor& target,
const std::optional<at::Tensor>& weight,
int64_t reduction);
at::Tensor smooth_l1_loss_double_backward(
const at::Tensor& grad,
const at::Tensor& input,
const at::Tensor& target,
int64_t reduction,
double beta);
at::Tensor huber_loss_double_backward(
const at::Tensor& grad,
const at::Tensor& input,
const at::Tensor& target,
int64_t reduction,
double delta);
at::Tensor huber_loss_double_backward_grad_output(
const at::Tensor& grad,
const at::Tensor& grad_output,
const at::Tensor& input,
const at::Tensor& target,
int64_t reduction,
double delta);
at::Tensor mse_loss_double_backward(
const at::Tensor& grad,
const at::Tensor& input,
int64_t reduction);
at::Tensor soft_margin_loss_double_backward(
const at::Tensor& grad,
const at::Tensor& input,
const at::Tensor& target,
int64_t reduction);
at::Tensor soft_margin_loss_double_backward_grad_output(
const at::Tensor& grad,
const at::Tensor& grad_output,
const at::Tensor& input,
const at::Tensor& target,
int64_t reduction);
at::Tensor softplus_double_backward(
const at::Tensor& grad,
const at::Tensor& input,
const at::Scalar& beta,
const at::Scalar& threshold);
std::tuple<at::Tensor, at::Tensor> slogdet_jvp(
const at::Tensor& LU,
const at::Tensor& pivots,
const at::Tensor& dA,
const at::Tensor& sign,
const bool use_A_T);
at::Tensor slogdet_backward(
const at::Tensor& grad_sign,
const at::Tensor& grad_logabsdet,
const at::Tensor& A,
const at::Tensor& signdet,
const at::Tensor& LU,
const at::Tensor& pivots);
at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self);
at::Tensor sinc_backward(const at::Tensor& grad, const at::Tensor& self);
at::Tensor sparse_constructor_values_backward(
const at::Tensor& sparse_grad_out,
const at::Tensor& indices);
at::Tensor embedding_dense_double_backward_symint(
const at::Tensor& grad,
const at::Tensor& indices,
const c10::SymInt& padding_idx);
at::Tensor index_backward(
at::Tensor zeros_like_self,
const torch::List<std::optional<Tensor>>& indices,
const at::Tensor& grad);
at::Tensor _cudnn_ctc_loss_backward(
const at::Tensor& grad_out,
const at::Tensor& loss,
const at::Tensor& raw_grad,
bool zero_infinity);
at::Tensor elu_double_backward(
const Tensor& grad,
const Tensor& grad_output,
const Scalar& alpha,
const Scalar& scale,
const Scalar& input_scale,
bool is_result,
const Tensor& self_or_result);
Tensor svd_backward(
const Tensor& gU,
const Tensor& gS,
const Tensor& gVh,
const Tensor& U,
const Tensor& S,
const Tensor& Vh);
std::tuple<Tensor, Tensor, Tensor> linalg_svd_jvp(
const Tensor& dA,
const Tensor& U,
const Tensor& S,
const Tensor& Vh,
const bool full_matrices);
Tensor slice_backward_wrapper(
const at::Tensor& grad,
const c10::SymIntArrayRef& input_sizes,
int64_t dim,
std::optional<c10::SymInt> start,
std::optional<c10::SymInt> end,
c10::SymInt step);
std::tuple<Tensor, Tensor> linalg_eig_jvp(
const Tensor& dA,
const Tensor& L,
const Tensor& V,
const bool is_hermitian);
Tensor linalg_eig_backward(
const Tensor& gL,
const Tensor& gV,
const Tensor& L,
const Tensor& V,
const bool is_hermitian,
const bool symeig_eigenvectors = true);
Tensor linalg_lstsq_jvp(
const Tensor& A,
const Tensor& B,
const Tensor& dA,
const Tensor& dB);
std::tuple<Tensor, Tensor> triangular_solve_backward(
const Tensor& grad_x,
const Tensor& grad_m,
const Tensor& b,
const Tensor& a,
const Tensor& x,
const bool upper,
const bool transpose,
const bool unitriangular,
std::array<bool, 2> output_mask);
Tensor triangular_solve_jvp(
const Tensor& X,
const Tensor& A,
const Tensor& dA,
const Tensor& dB,
const bool upper,
const bool transpose,
const bool unitriangular);
Tensor linalg_solve_triangular_forward_AD(
const Tensor& A_t,
const Tensor& B_t,
const Tensor& A,
const Tensor& X,
const bool upper,
const bool left,
const bool unitriangular);
std::tuple<Tensor, Tensor> linalg_solve_triangular_backward(
const Tensor& grad,
const Tensor& A,
const Tensor& X,
const bool upper,
const bool left,
const bool unitriangular,
std::array<bool, 2> output_mask);
std::tuple<Tensor, Tensor, Tensor> _trilinear_backward(
const Tensor& grad_out,
const std::optional<Tensor>& i1,
const std::optional<Tensor>& i2,
const std::optional<Tensor>& i3,
IntArrayRef expand1,
IntArrayRef expand2,
IntArrayRef expand3,
IntArrayRef sumdim,
std::array<bool, 3> grad_mask);
std::tuple<Tensor, Tensor> linalg_qr_jvp(
const Tensor& dA,
const Tensor& Q,
const Tensor& R,
const std::string_view mode);
Tensor linalg_qr_backward(
const Tensor& gQ,
const Tensor& gR,
const Tensor& Q,
const Tensor& R,
const std::string_view mode);
Tensor linalg_matrix_exp_differential(
const Tensor& self,
const Tensor& grad,
bool adjoint);
std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward(
const Tensor& input,
const std::optional<Tensor>& gamma,
const Tensor& ggI,
const Tensor& ggG,
const Tensor& ggB,
const Tensor& gO,
const std::optional<Tensor>& running_mean,
const std::optional<Tensor>& running_var,
bool training,
double eps,
const std::optional<Tensor>& save_mean,
const std::optional<Tensor>& save_invstd,
std::array<bool, 3> output_mask);
std::tuple<Tensor, Tensor> _euclidean_dist_backward(
const Tensor& grad,
const Tensor& x1,
const Tensor& x2,
const Tensor& res);
Tensor fft_backward(
const Tensor& self,
const Tensor& grad,
int64_t signal_ndim,
bool complex_input,
bool complex_output,
bool inverse,
IntArrayRef checked_signal_sizes,
int64_t normalization,
bool onesided,
IntArrayRef output_sizes);
Tensor fft_r2c_backward(
const Tensor& grad,
at::IntArrayRef dim,
int64_t normalization,
bool onesided,
const c10::SymInt& last_dim_size);
Tensor fft_c2r_backward(
const Tensor& grad,
IntArrayRef dim,
int64_t normalization);
Tensor constant_pad_nd_backward(const Tensor& grad, c10::SymIntArrayRef pad);
std::tuple<Tensor, Tensor> cholesky_solve_backward(
const Tensor& grad_x,
const Tensor& self,
const Tensor& input2,
const Tensor& result,
const bool upper,
std::array<bool, 2> output_mask);
Tensor cholesky_solve_jvp(
const Tensor& X,
const Tensor& U,
const Tensor& dU,
const Tensor& dB,
const bool upper);
std::tuple<Tensor, Tensor, Tensor>
infinitely_differentiable_native_group_norm_backward(
const Tensor& dY,
const Tensor& dmean,
const Tensor& drstd,
const Tensor& X,
const Tensor& mean,
const Tensor& rstd,
const std::optional<Tensor>& gamma,
c10::SymInt N,
const c10::SymInt& C,
c10::SymInt HxW,
int64_t group,
double eps,
std::array<bool, 3> grad_input_mask);
Tensor gelu_double_backward(
const Tensor& ggI,
const Tensor& gO,
const Tensor& input,
std::string_view approximate);
Tensor as_strided_backward(
Tensor grad,
const TensorGeometry& input_geometry,
c10::SymIntArrayRef sizes,
c10::SymIntArrayRef strides,
const std::optional<c10::SymInt>& storage_offset_);
Tensor as_strided_scatter_backward(
const Tensor& grad,
const TensorGeometry& input_geometry,
const TensorGeometry& src_geometry,
c10::SymIntArrayRef sizes,
c10::SymIntArrayRef strides,
std::optional<c10::SymInt> storage_offset);
std::tuple<Tensor, Tensor> atan2_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& other,
std::array<bool, 2> output_mask);
Tensor amaxamin_jvp(
const Tensor& x,
const Tensor& dx,
const Tensor& result,
IntArrayRef dim,
bool keepdim);
std::tuple<Tensor, Tensor, Tensor> layer_norm_double_backward(
const Tensor& input,
const std::optional<Tensor>& gamma,
const Tensor& ggI,
const Tensor& ggG,
const Tensor& ggB,
const Tensor& gO,
const Tensor& save_mean,
const Tensor& save_invstd,
c10::SymIntArrayRef normalized_shape,
std::array<bool, 3> output_mask);
std::tuple<Tensor, Tensor> householder_product_backward(
const Tensor& grad,
const Tensor& result,
const Tensor& input,
const Tensor& tau,
const bool flip_order = false);
Tensor householder_product_jvp(
const Tensor& dV,
const Tensor& dtau,
const Tensor& prod,
const Tensor& V,
const Tensor& tau);
std::tuple<Tensor, Tensor, Tensor> ormqr_backward(
const Tensor& grad,
const Tensor& result,
const Tensor& self,
const Tensor& tau,
const Tensor& other,
bool left,
bool transpose,
std::array<bool, 3> grad_output_mask);
std::tuple<Tensor, Tensor> polar_backward(
const Tensor& grad,
const Tensor& result);
Tensor i1_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& result);
Tensor i1e_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& result);
Tensor linalg_lu_solve_LU(
const Tensor& grad,
const Tensor& LU,
const Tensor& pivots,
const Tensor& X,
const bool left,
const bool adjoint);
Tensor linalg_lu_solve_jvp(
const Tensor& X,
const Tensor& LU,
const Tensor& pivots,
const Tensor& dLU,
const Tensor& dB,
const bool left,
const bool adjoint);
std::tuple<Tensor, Tensor> linalg_solve_backward(
const Tensor& gX,
const Tensor& X,
const Tensor& A,
const Tensor& LU,
const Tensor& pivots,
const bool left,
const bool B_requires_grad);
Tensor linalg_solve_jvp(
const Tensor& dA,
const Tensor& dB,
const Tensor& X,
const Tensor& LU,
const Tensor& pivots,
const bool left,
const bool use_A_T);
Tensor lu_unpack_backward(
const Tensor& L_grad,
const Tensor& U_grad,
const c10::SymInt& m,
const c10::SymInt& n);
Tensor linalg_det_backward(
const Tensor& grad,
const Tensor& det,
const Tensor& A,
const Tensor& LU,
const Tensor& pivots);
Tensor linalg_det_jvp(
const Tensor& dA,
const Tensor& det,
const Tensor& LU,
const Tensor& pivots,
const bool use_A_T);
std::tuple<Tensor, Tensor> linalg_lstsq_backward(
const Tensor& grad,
const Tensor& A,
const Tensor& B_,
const std::array<bool, 2>& grad_input_mask);
Tensor linalg_lu_backward(
const Tensor& L_grad,
const Tensor& U_grad,
const Tensor& P,
const Tensor& L,
const Tensor& U,
const bool pivot);
std::tuple<Tensor, Tensor> linalg_lu_jvp(
const Tensor& dA,
const Tensor& P,
const Tensor& L,
const Tensor& U,
const bool pivot);
Tensor lu_factor_ex_backward(
const Tensor& grad,
const Tensor& LU,
const Tensor& pivs,
const bool pivot);
Tensor lu_factor_ex_jvp(
const Tensor& dX,
const Tensor& LU,
const Tensor& pivs,
const bool pivot);
Tensor batch_norm_jvp(
const Tensor& input_p,
const Tensor& input_t,
const Tensor& weight_p,
const Tensor& weight_t,
const Tensor& bias_p,
const Tensor& bias_t,
const std::optional<Tensor>& running_mean,
const std::optional<Tensor>& running_var,
const Tensor& saved_mean,
const Tensor& saved_invstd,
bool train,
double eps);
Tensor layer_norm_jvp(
const Tensor& input_p,
const Tensor& input_t,
const Tensor& weight_p,
const Tensor& weight_t,
const Tensor& bias_p,
const Tensor& bias_t,
const Tensor& saved_mean,
const Tensor& saved_invstd,
c10::SymIntArrayRef normalized_shape);
Tensor group_norm_jvp(
const Tensor& input_p,
const Tensor& input_t,
const Tensor& weight_p,
const Tensor& weight_t,
const Tensor& bias_p,
const Tensor& bias_t,
const Tensor& saved_mean,
const Tensor& saved_invstd,
int64_t groups);
Tensor group_norm_mean_jvp(
const Tensor& input_t,
const Tensor& mean_p,
int64_t groups);
Tensor group_norm_invstd_jvp(
const Tensor& input_p,
const Tensor& input_t,
const Tensor& mean_p,
const Tensor& invstd_p,
int64_t groups);
Tensor convolution_jvp(
const Tensor& input_p,
const Tensor& input_t,
const Tensor& weight_p,
const Tensor& weight_t,
const Tensor& bias_p,
const Tensor& bias_t,
at::SymIntArrayRef stride,
at::SymIntArrayRef padding,
at::SymIntArrayRef dilation,
bool transposed,
at::SymIntArrayRef output_padding,
const c10::SymInt& groups);
Tensor _convolution_jvp(
const Tensor& input_p,
const Tensor& input_t,
const Tensor& weight_p,
const Tensor& weight_t,
const Tensor& bias_p,
const Tensor& bias_t,
at::SymIntArrayRef stride,
at::SymIntArrayRef padding,
at::SymIntArrayRef dilation,
bool transposed,
at::SymIntArrayRef output_padding,
const c10::SymInt& groups,
bool benchmark,
bool deterministic,
bool cudnn_enabled,
bool allow_tf32);
Tensor convolution_backward_jvp_grad_bias(
const Tensor& grad_out_t,
const Tensor& grad_bias);
Tensor cat_jvp(const at::ITensorListRef& tensors, int64_t dim);
Tensor block_diag_jvp(at::TensorList tensors);
Tensor stack_jvp(at::TensorList tensors, int64_t dim);
Tensor cumprod_jvp(
const Tensor& self_t,
const Tensor& self_p,
const Tensor& result,
int dim);
Tensor gather_with_keepdimed_indices(
const Tensor& input,
int64_t dim,
const Tensor& indices,
bool keepdim);
Tensor evenly_read_jvp(
const Tensor& fw_grad,
const Tensor& input,
const Tensor& value);
Tensor warn_backwards(const Tensor& grad_output);
std::tuple<Tensor, Tensor> _cudnn_convolution_backward(
const at::Tensor& self,
const at::Tensor& grad_output,
const at::Tensor& weight,
at::SymIntArrayRef padding,
at::SymIntArrayRef output_padding,
at::SymIntArrayRef stride,
at::SymIntArrayRef dilation,
bool transposed,
c10::SymInt groups,
::std::array<bool, 2> output_mask);
Tensor scatter_reduce_jvp(
const Tensor& self_p,
const Tensor& self_t,
int dim,
const Tensor& index,
const Tensor& src_p,
const Tensor& src_t,
std::string_view reduce,
bool include_self,
const Tensor& result);
std::tuple<Tensor, Tensor> scatter_reduce_backward(
const Tensor& grad,
const Tensor& self,
int dim,
const Tensor& index,
const Tensor& src,
std::string_view reduce,
bool include_self,
const Tensor& result);
Tensor _to_copy_backward(
const Tensor& grad,
const c10::TensorOptions& self_options);
std::tuple<Tensor, Tensor> index_reduce_backward(
const Tensor& grad,
const Tensor& self,
int dim,
const Tensor& index,
const Tensor& source,
std::string_view reduce,
bool include_self,
const Tensor& result);
Tensor take_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& indices);
Tensor to_sparse_backward(
const Tensor& grad,
const c10::Layout self_layout,
const c10::OptionalArrayRef<c10::SymInt>& self_blocksize);
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor>
mkldnn_rnn_layer_differentiable_backward(
const Tensor& input,
const Tensor& weight0,
const Tensor& weight1,
const Tensor& weight2,
const Tensor& weight3,
const Tensor& hx_,
const Tensor& cx_tmp,
const Tensor& output,
const Tensor& hy_,
const Tensor& cy_,
const std::optional<Tensor>& grad_output_r_opt,
const std::optional<Tensor>& grad_hy_r_opt,
const std::optional<Tensor>& grad_cy_r_opt,
bool reverse,
int64_t mode,
int64_t hidden_size,
int64_t num_layers,
bool has_biases,
bool train,
bool bidirectional,
at::IntArrayRef batch_sizes,
bool batch_first,
const at::Tensor& workspace);
Tensor values_backward(const Tensor& grad, const Tensor& self);
} // namespace torch::autograd::generated::details
|