1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#include <torch/csrc/autograd/functions/tensor.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/functions/utils.h>
#include <torch/csrc/autograd/graph_task.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/dynamo/compiled_autograd.h>
#include <ATen/ATen.h>
#include <c10/util/irange.h>
#include <memory>
#include <stdexcept>
#include <utility>
namespace torch::autograd {
static variable_list CopyBackwards_apply_functional(
variable_list&& grads,
std::array<bool, 2> needs_input_grad,
const c10::TensorOptions& src_options) {
check_input_variables("CopyBackwards", grads, 1, -1, true);
auto grad = c10::MaybeOwned<at::Tensor>::borrowed(grads[0]);
variable_list grad_inputs(2);
if (grad->defined()) {
if (needs_input_grad[0]) {
grad_inputs[0] = at::zeros_like(*grad, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
}
if (needs_input_grad[1]) {
// Handle R->C copies without raising a warning
const auto src_type = src_options.dtype().toScalarType();
if (!c10::isComplexType(src_type) && grad->is_complex()) {
grad = c10::MaybeOwned<at::Tensor>::owned(at::real(grads[0]));
}
at::DeviceGuard device_guard(src_options.device());
grad_inputs[1] = grad->to(src_options);
}
}
return grad_inputs;
}
auto CopyBackwards::apply(variable_list&& grads) -> variable_list {
return CopyBackwards_apply_functional(
std::move(grads),
{task_should_compute_output(0), task_should_compute_output(1)},
src_options);
}
void CopyBackwards::compiled_args(CompiledNodeArgs& args) {
args.collect(src_options);
}
variable_list CopyBackwards::apply_with_saved(
const variable_list& inputs,
SwapSavedVariables& saved) {
saved.before(src_options);
auto result = apply(variable_list(inputs));
saved.after(src_options);
return result;
}
CopySlices::CopySlices(
const Variable& base_var,
at::TensorGeometry view_,
std::unique_ptr<ViewFunc> view_fn_,
std::shared_ptr<Node> fn_)
: Node(),
base(base_var),
view(std::move(view_)),
view_fn(std::move(view_fn_)),
fn(std::move(fn_)) {
// Take the next_edges of fn as our own, except for index 0 which goes
// to base instead of the view.
add_input_metadata(base_var);
const auto num_outputs = fn->num_outputs();
next_edges_.reserve(num_outputs);
add_next_edge(impl::gradient_edge(base_var));
for (const auto i : c10::irange(1, num_outputs)) {
add_next_edge(fn->next_edge(i));
}
}
// common code between apply/apply_with_saved
template <typename T>
inline variable_list CopySlices::apply_impl(
variable_list&& inputs,
const T& call_fn) {
check_input_variables("CopySlices", inputs, 1, -1, true);
auto& grad = inputs[0];
if (!grad.defined()) {
return variable_list(num_outputs());
}
// Acquire lock to here protect thread safety on fn
// see Note [Thread Safety on Autograd Node]
std::lock_guard<std::mutex> lock(mutex_);
if (!fn) {
throw std::runtime_error(ERR_BACKWARD_TWICE);
}
auto result =
grad.new_empty_strided_symint(base.sym_sizes(), base.sym_strides());
result.copy_(grad);
at::Tensor grad_slice;
if (view_fn) {
grad_slice = (*view_fn)(result);
} else {
auto offset = view.sym_storage_offset() - base.sym_storage_offset();
grad_slice =
result.as_strided_symint(view.sym_sizes(), view.sym_strides(), offset);
}
// See Note [View + Inplace update for view tensor] For more details on this
// block Since the gradient edge for the 0th input is different between `this`
// and `fn`, make sure that the one from `fn` has the same metadata in the
// current GraphTask's exec_info as the one on `this`.
const auto exec_info = get_current_graph_task_exec_info();
if (exec_info && !exec_info->empty()) {
const auto& fn_edge = fn->next_edge(0);
const auto& this_edge = this->next_edge(0);
TORCH_INTERNAL_ASSERT(fn_edge.is_valid() == this_edge.is_valid());
if (fn_edge.is_valid()) {
const auto fn_next_node = fn_edge.function.get();
auto it = exec_info->find(fn_next_node);
if (it == exec_info->end()) {
// Node is not in the exec_info already
if (task_should_compute_output(0)) {
// And we need gradient for the corresponding output
add_node_to_current_graph_task_exec_info(fn_next_node);
// There is no need to remove this after execution because we are
// guaranteed that this->next_edge(0) must be in the history of
// fn->next_edge(0) (we cannot easily assert this as it might be far
// away if there were many chained views). This means that, since
// fn->next_edge(0) was not needed (no exec_info entry for it), we
// know that nothing downstream of fn->next_edge(0) is needed either
// (otherwise the whole path from that Node to this->next_edge(0)
// would be needed as well). This means that no other Node will ever
// look at fn->next_edge(0) metadata and thus there is no need to
// clean them up.
}
} else {
TORCH_INTERNAL_ASSERT(
it->second.should_execute() == task_should_compute_output(0));
}
}
}
// Sanity check that the graph was never modified after the fact (it is
// read-only!)
TORCH_INTERNAL_ASSERT(num_outputs() == fn->num_outputs());
for (const auto i : c10::irange(1, this->num_outputs())) {
TORCH_INTERNAL_ASSERT(
fn->next_edge(i).function.get() == this->next_edge(i).function.get());
}
// TODO: We clone grad_slice because we modify it below and "fn" might save
// it for the backward of res. We might be able to avoid the clone() if
// double-backprop is disabled.
auto res = call_fn({grad_slice.clone(at::MemoryFormat::Contiguous)});
variable_list grad_inputs(num_outputs());
for (const auto i : c10::irange(res.size())) {
if (task_should_compute_output(i)) {
if (!res[i].defined()) {
// If the output is not defined, treat it as if it was a zero tensor.
// This can happen if users define a custom Function.
continue;
}
if (i == 0) {
grad_slice.copy_(res[i]);
// NOLINTNEXTLINE(clang-analyzer-cplusplus.Move)
grad_inputs[i] = std::move(result); // NOLINT(bugprone-use-after-move)
} else {
grad_inputs[i] = std::move(res[i]);
}
}
}
return grad_inputs;
}
void CopySlices::release_variables() {
// Acquire lock to here protect thread safety on fn
std::lock_guard<std::mutex> lock(mutex_);
fn = nullptr;
}
void CopySlices::compiled_args(CompiledNodeArgs& args) {
TORCH_CHECK(!view_fn, "view_fn not supported by compiled autograd")
TORCH_INTERNAL_ASSERT((bool)fn);
args.collect(base);
args.collect(view);
args.collect(fn);
fn->compiled_args(args);
}
variable_list CopySlices::apply_with_saved(
const variable_list& grads,
SwapSavedVariables& saved) {
saved.before(base);
saved.before(view);
int call_count = 0;
variable_list result = apply_impl(
variable_list(grads),
[this, &saved, &call_count](const variable_list& inputs2) {
call_count++;
return fn->apply_with_saved(inputs2, saved);
});
TORCH_INTERNAL_ASSERT(call_count == 1);
saved.after(base);
saved.after(view);
return result;
}
auto CopySlices::apply(variable_list&& inputs1) -> variable_list {
return apply_impl(std::move(inputs1), [this](variable_list&& inputs2) {
return (*fn)(std::move(inputs2));
});
}
} // namespace torch::autograd
|