File: input_buffer.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (43 lines) | stat: -rw-r--r-- 1,377 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#pragma once

// The InputBuffer class accumulates a list of Variables for use by a
// function. It implements logic to avoid modifying the passed
// values in-place (adding an input twice will accumulate the result).
// This behaviour is needed and used only in backward graphs.

#include <utility>
#include <vector>

#include <c10/core/Stream.h>
#include <torch/csrc/autograd/variable.h>
#include <optional>

namespace torch::autograd {

struct InputBuffer {
  explicit InputBuffer(size_t size) : buffer(size) {}
  InputBuffer(const InputBuffer& other) = delete;
  InputBuffer(InputBuffer&& other) = default;
  explicit InputBuffer(variable_list&& inputs) : buffer(std::move(inputs)) {}
  InputBuffer& operator=(InputBuffer&& other) = default;

  // Accumulates the variable at a specified index.
  // The optional CUDA streams determine which stream the accumulation
  // is run on and how the addition is synchronized.
  TORCH_API void add(
      size_t pos,
      Variable&& var,
      const std::optional<c10::Stream>& opt_producer_stream,
      const std::optional<c10::Stream>& opt_consumer_stream);

  Variable operator[](size_t pos) {
    return buffer[pos];
  }

  // Returns the inputs as a list of variables. Destroys given InputBuffer.
  static std::vector<Variable> variables(InputBuffer&& g);

  std::vector<Variable> buffer;
};

} // namespace torch::autograd