1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
|
#include <cstring>
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <torch/csrc/autograd/profiler_kineto.h>
#include <c10/macros/Export.h>
#include <c10/util/ApproximateClock.h>
#include <c10/util/Exception.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <c10/util/overloaded.h>
#include <torch/csrc/profiler/api.h>
#include <torch/csrc/profiler/collection.h>
#include <torch/csrc/profiler/containers.h>
#include <torch/csrc/profiler/events.h>
#include <torch/csrc/profiler/kineto_shim.h>
#include <torch/csrc/profiler/orchestration/observer.h>
#include <torch/csrc/profiler/perf.h>
#include <torch/csrc/profiler/standalone/itt_observer.h>
#include <torch/csrc/profiler/standalone/nvtx_observer.h>
#include <torch/csrc/profiler/standalone/privateuse1_observer.h>
#include <torch/csrc/profiler/util.h>
#include <ATen/Context.h>
#include <stdexcept>
#include <utility>
#ifdef USE_KINETO
#include <ApproximateClock.h>
#include <libkineto.h>
#include <time_since_epoch.h>
#ifndef _MSC_VER
// TODO: TO be removed, once this properly works from libkineto
// Literal copy-n-paste from third_party/kineto/libkineto/src/WeakSymbols.cpp
extern "C" {
// This function is needed to avoid superfluous dependency on GNU OpenMP library
// when cuPTI is linked statically For more details see
// https://github.com/pytorch/pytorch/issues/51026
__attribute__((weak)) int acc_get_device_type();
__attribute__((weak)) int acc_get_device_type() {
throw std::runtime_error(
"Dummy implementation of acc_get_device_type is not supposed to be called!");
}
} // extern "C"
#endif // _MSC_VER
#endif // USE_KINETO
namespace torch {
namespace autograd::profiler {
namespace {
inline int64_t getTimeNs() {
#ifdef USE_KINETO
return libkineto::timeSinceEpoch(std::chrono::system_clock::now());
#else
return c10::getTime();
#endif // USE_KINETO
}
using torch::profiler::impl::ActiveProfilerType;
using torch::profiler::impl::EventType;
using torch::profiler::impl::ExtraFields;
using torch::profiler::impl::get_record_concrete_inputs_enabled;
using torch::profiler::impl::ivalueListToStr;
using torch::profiler::impl::ivalueToStr;
using torch::profiler::impl::op_input_t;
using torch::profiler::impl::ProfilerStateBase;
using torch::profiler::impl::PyExtraFieldsBase;
using torch::profiler::impl::Result;
using torch::profiler::impl::shape;
using torch::profiler::impl::shapesToStr;
using torch::profiler::impl::stacksToStr;
using torch::profiler::impl::strListToStr;
using torch::profiler::impl::TensorMetadata;
using torch::profiler::impl::variantShapesToStr;
struct OpArgData {
bool hasData;
std::vector<shape> shapes;
std::vector<std::string> dtypes;
std::vector<c10::IValue> concreteInputs;
std::vector<std::vector<int64_t>> shapesForKinetoEvent;
std::vector<shape> strides;
};
auto parseArgData(
const std::vector<op_input_t>& input_shapes,
const std::vector<op_input_t>& concreteInputs) {
if (input_shapes.empty()) {
return OpArgData{false, {}, {}, {}, {}, {}};
}
std::vector<shape> shapes(input_shapes.size());
std::vector<shape> strides(input_shapes.size());
std::vector<std::vector<int64_t>> shapesForKinetoEvent(input_shapes.size());
std::vector<std::string> dtypes(input_shapes.size());
std::vector<c10::IValue> concrete_inputs_list;
for (const auto& i : c10::irange(input_shapes.size())) {
std::visit(
c10::overloaded(
[&](const TensorMetadata& t) {
shapes[i] = t.sizes_;
shapesForKinetoEvent[i] = t.sizes_;
dtypes[i] = std::string(scalarTypeToTypeMeta(t.dtype_).name());
strides[i] = t.strides_;
},
[&](const std::vector<TensorMetadata>& l) {
std::vector<std::vector<int64_t>> shape;
shape.reserve(l.size());
std::vector<std::vector<int64_t>> stride;
stride.reserve(l.size());
for (const auto& t : l) {
shape.emplace_back(t.sizes_);
stride.emplace_back(t.strides_);
}
shapes[i] = shape;
strides[i] = stride;
dtypes[i] = "TensorList";
},
[&](const c10::IValue&) { dtypes[i] = "Scalar"; },
[&](const auto&) {}),
input_shapes[i]);
}
// If we recorded concrete inputs, then parse them
if (input_shapes.size() == concreteInputs.size() && !concreteInputs.empty()) {
concrete_inputs_list.resize(input_shapes.size());
for (const auto& i : c10::irange(input_shapes.size())) {
std::visit(
c10::overloaded(
[&](const c10::IValue& val) { concrete_inputs_list[i] = val; },
[&](const auto&) {}),
input_shapes[i]);
std::visit(
c10::overloaded(
[&](const c10::IValue& val) {
concrete_inputs_list[i] = val;
dtypes[i] = "ScalarList";
},
[&](const auto&) {}),
concreteInputs[i]);
}
}
return OpArgData{
true,
shapes,
dtypes,
concrete_inputs_list,
shapesForKinetoEvent,
strides};
}
struct MetadataBase {
/* implicit */ MetadataBase(const std::shared_ptr<Result>& result)
: kinetoActivity_{result->kineto_activity_} {
if (std::holds_alternative<ExtraFields<EventType::Kineto>>(
result->extra_fields_)) {
// In order to add metadata we have to downcast from
// `libkineto::ITraceActivity` to `libkineto::GenericTraceActivity`. We
// know that all activities provided by PyTorch are of the correct type,
// however Kineto profilers can (and do) add events that inherit directly
// from ITraceActivity. As a result, any Result which was constructed from
// an event that Kineto provided is unsafe to cast.
if (!(SOFT_ASSERT(!hasKinetoActivity()))) {
result->kineto_activity_ = nullptr;
}
kinetoActivity_ = result->kineto_activity_;
}
}
void addMetadata(const std::string& key, const std::string& value) {
if (kinetoActivity_ && !value.empty() && value != "\"\"") {
torch::profiler::impl::kineto::addMetadata(
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<torch::profiler::impl::kineto::activity_t*>(
kinetoActivity_),
key,
value);
}
}
bool hasKinetoActivity() const {
return kinetoActivity_ != nullptr;
}
private:
const torch::profiler::impl::kineto::activity_t* kinetoActivity_{nullptr};
};
struct AddTensorboardFields : public MetadataBase {
AddTensorboardFields(
const std::shared_ptr<Result>& result,
KinetoEvent& kineto_event)
: MetadataBase(result) {
result->visit(*this);
const auto module_hierarchy = kineto_event.moduleHierarchy();
addMetadata("Module Hierarchy", stacksToStr(module_hierarchy.vec(), "."));
addMetadata("Call stack", stacksToStr(kineto_event.stack().vec(), ";"));
result->visit_if_base<PyExtraFieldsBase>([&, this](const auto& i) -> void {
this->addMetadata("Python id", std::to_string(i.id_));
std::optional<std::string> parent_id;
std::shared_ptr<Result> parent = result->parent_.lock();
while (parent && !parent_id.has_value()) {
parent->visit_if_base<PyExtraFieldsBase>(
[&](const auto& j) { parent_id = std::to_string(j.id_); });
parent = parent->parent_.lock();
}
this->addMetadata("Python parent id", parent_id.value_or("null"));
});
}
void operator()(const ExtraFields<EventType::PyCall>& py_call) {
if (py_call.module_.has_value()) {
addMetadata("Python module id", std::to_string(py_call.module_->id_));
}
}
template <typename T>
void operator()(const T&) {}
};
struct AddGenericMetadata : public MetadataBase {
AddGenericMetadata(
std::shared_ptr<Result>& result,
const torch::profiler::impl::ProfilerConfig* config)
: MetadataBase(result), config_(config) {
result->visit(*this);
if (config->experimental_config.verbose) {
result->visit_if_base<PyExtraFieldsBase>(
[&, this](const auto& i) -> void {
this->addMetadata("Python thread", std::to_string(i.python_tid_));
});
}
}
void operator()(ExtraFields<EventType::TorchOp>& op_event) {
const auto arg_data =
parseArgData(op_event.inputs_, op_event.concrete_inputs_);
if (arg_data.hasData) {
if (get_record_concrete_inputs_enabled()) {
addMetadata("Input Dims", variantShapesToStr(arg_data.shapes));
addMetadata("Input Strides", variantShapesToStr(arg_data.strides));
} else {
addMetadata("Input Dims", shapesToStr(arg_data.shapesForKinetoEvent));
}
addMetadata("Input type", strListToStr(arg_data.dtypes));
if (!arg_data.concreteInputs.empty()) {
addMetadata(
"Concrete Inputs", ivalueListToStr(arg_data.concreteInputs));
}
}
// Add metadata for kwinputs if exist
for (const auto& [key, val] : op_event.kwinputs_) {
if (key == "stream" && !val.isInt()) {
LOG(WARNING) << "Inputted stream is not an int for op: "
<< op_event.name_ << " skipping";
continue;
}
// Until needed, lets limit the kwargs to only ints, doubles, strings and
// bools
if (!val.isInt() && !val.isDouble() && !val.isString() && !val.isBool()) {
LOG(WARNING) << "Inputted kwarg: " << key
<< " is not an int, double, string, or bool for op: "
<< op_event.name_ << " skipping";
continue;
}
bool isString = val.isString();
addMetadata(key, ivalueToStr(val, isString));
}
// Add extra metadata if any
for (const auto& [key, val] : op_event.extra_meta_) {
addMetadata(key, val);
}
if (config_ && !config_->experimental_config.performance_events.empty()) {
auto& event_names = config_->experimental_config.performance_events;
for (const auto i : c10::irange(op_event.perf_event_counters_->size())) {
addMetadata(
event_names[i],
std::to_string((*op_event.perf_event_counters_)[i]));
}
}
// add information about an associated forward op, if a sequence number
// is available (e.g. during training)
if (op_event.sequence_number_ >= 0) {
addMetadata("Fwd thread id", std::to_string(op_event.forward_tid_));
addMetadata("Sequence number", std::to_string(op_event.sequence_number_));
}
addMetadata(
"Record function id", std::to_string(op_event.record_function_id_));
}
void operator()(ExtraFields<EventType::Backend>& backend_event) {
if (!backend_event.backend_.empty()) {
addMetadata("Backend", "\"" + backend_event.backend_ + "\"");
}
}
void operator()(const ExtraFields<EventType::Allocation>& alloc) {
addMetadata("Device Type", std::to_string((int8_t)alloc.device_type_));
addMetadata("Device Id", std::to_string(alloc.device_index_));
addMetadata("Addr", std::to_string(reinterpret_cast<intptr_t>(alloc.ptr_)));
addMetadata("Bytes", std::to_string(alloc.alloc_size_));
addMetadata("Total Allocated", std::to_string(alloc.total_allocated_));
addMetadata("Total Reserved", std::to_string(alloc.total_reserved_));
}
void operator()(const ExtraFields<EventType::OutOfMemory>& alloc) {
addMetadata("Device Type", std::to_string((int8_t)alloc.device_type_));
addMetadata("Device Id", std::to_string(alloc.device_index_));
addMetadata("Bytes", std::to_string(alloc.alloc_size_));
addMetadata("Total Allocated", std::to_string(alloc.total_allocated_));
addMetadata("Total Reserved", std::to_string(alloc.total_reserved_));
}
template <typename T>
void operator()(const T&) {}
private:
/* To get names of the performance events */
const torch::profiler::impl::ProfilerConfig* config_;
};
struct KinetoThreadLocalState : public ProfilerStateBase {
explicit KinetoThreadLocalState(
const ProfilerConfig& config,
std::set<torch::profiler::impl::ActivityType> activities)
: ProfilerStateBase(config),
startTime(getTimeNs()),
recordQueue(config, std::move(activities)) {}
~KinetoThreadLocalState() override = default;
static KinetoThreadLocalState* get(bool global) {
auto* state = ProfilerStateBase::get(/*global=*/global);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
state == nullptr ||
state->profilerType() == ActiveProfilerType::KINETO);
return static_cast<KinetoThreadLocalState*>(state);
}
ActiveProfilerType profilerType() override {
return ActiveProfilerType::KINETO;
}
void reportVulkanEventToProfiler(torch::profiler::impl::vulkan_id_t id) {
if (!config_.disabled()) {
recordQueue.getSubqueue()->emplace_vulkan_event(
c10::getApproximateTime(), id);
}
}
void reportMemoryUsage(
void* ptr,
int64_t alloc_size,
size_t total_allocated,
size_t total_reserved,
c10::Device device) override {
if (config_.profile_memory && !config_.disabled()) {
recordQueue.getSubqueue()->emplace_allocation_event(
c10::getApproximateTime(),
ptr,
alloc_size,
total_allocated,
total_reserved,
device.type(),
device.index());
}
}
void reportOutOfMemory(
int64_t alloc_size,
size_t total_allocated,
size_t total_reserved,
c10::Device device) override {
if (config_.profile_memory && !config_.disabled()) {
recordQueue.getSubqueue()->emplace_ooms_event(
c10::getApproximateTime(),
alloc_size,
total_allocated,
total_reserved,
device.type(),
device.index());
}
}
void setEventPostProcessingCallback(post_process_t&& cb) {
eventPostProcessCb = std::move(cb);
}
void pausePython() {
recordQueue.stop();
}
void resumePython() {
recordQueue.restart();
}
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>
finalizeTrace() {
auto end_time = getTimeNs();
recordQueue.stop();
std::lock_guard<std::mutex> guard(state_mutex_);
auto converter = clockConverter.makeConverter();
#ifdef USE_KINETO
libkineto::get_time_converter() = converter;
#endif
auto records_and_trace =
recordQueue.getRecords(std::move(converter), startTime, end_time);
materializeOpEvents(records_and_trace.first);
// `kinetoEvents` does not include Python events. Instead it exposes them
// via the `stacks` property.
kinetoEvents.erase(
std::remove_if(
kinetoEvents.begin(),
kinetoEvents.end(),
[](const auto& i) { return i.isPythonFunction(); }),
kinetoEvents.end());
return std::move(records_and_trace.second);
}
template <typename T>
void invokeCallback(T& t) {
if (eventPostProcessCb) {
eventPostProcessCb(t.debug_handle_, t.jit_stack_, t.jit_modules_);
}
}
void materializeOpEvents(std::vector<std::shared_ptr<Result>>& events) {
for (auto& e : events) {
if (e->parent_.expired() && e->deviceType() == c10::DeviceType::CPU) {
eventTree.push_back(e);
}
if (e->finished_) {
e->visit(c10::overloaded(
[this](ExtraFields<EventType::TorchOp>& i) { invokeCallback(i); },
[this](ExtraFields<EventType::Backend>& i) { invokeCallback(i); },
[](auto&) {}));
kinetoEvents.emplace_back(e, config_.experimental_config.verbose);
AddTensorboardFields add_tb(e, kinetoEvents.back());
AddGenericMetadata add_generic(e, &config_);
// It is not safe to use the activity after post processing.
e->kineto_activity_ = nullptr;
}
}
}
uint64_t startTime;
c10::ApproximateClockToUnixTimeConverter clockConverter;
torch::profiler::impl::RecordQueue recordQueue;
std::vector<KinetoEvent> kinetoEvents;
std::vector<experimental_event_t> eventTree;
// Optional, if event post-processing is enabled.
post_process_t eventPostProcessCb;
};
template <bool use_global_state_ptr = false>
std::unique_ptr<at::ObserverContext> onFunctionEnter(
const at::RecordFunction& fn) {
auto state_ptr = KinetoThreadLocalState::get(use_global_state_ptr);
if (!state_ptr) {
return nullptr;
}
return state_ptr->recordQueue.getSubqueue()->begin_op(fn);
}
// @lint-ignore CLANGTIDY clang-diagnostic-unused-parameter
template <bool use_global_state_ptr = false>
void onFunctionExit(
const at::RecordFunction& fn,
at::ObserverContext* ctx_ptr) {
auto state_ptr = KinetoThreadLocalState::get(use_global_state_ptr);
if (!state_ptr) {
return;
}
const auto& config = state_ptr->config();
auto* kineto_ctx_ptr =
static_cast<torch::profiler::impl::KinetoObserverContext*>(ctx_ptr);
TORCH_INTERNAL_ASSERT(kineto_ctx_ptr != nullptr);
kineto_ctx_ptr->event_->end_time_ = c10::getApproximateTime();
if (!config.experimental_config.performance_events.empty()) {
state_ptr->recordQueue.getSubqueue()->disable_perf_profiler(
*kineto_ctx_ptr->event_->counters_);
}
kineto_ctx_ptr->event_->basic_fields_.end_tid_ =
at::RecordFunction::currentThreadId();
if (fn.isNcclMeta()) {
auto& extra_meta = *(kineto_ctx_ptr->event_->extra_nccl_meta_);
// Record only the outputs in this exit callback of the record function
torch::profiler::impl::SaveNcclMetaConfig ncclMetaConfig{
true, false, false, true};
auto additonal_nccl_meta =
torch::profiler::impl::saveNcclMeta(fn, ncclMetaConfig);
extra_meta.insert(additonal_nccl_meta.begin(), additonal_nccl_meta.end());
}
if (config.state == ProfilerState::KINETO_GPU_FALLBACK) {
try {
auto fallback = kineto_ctx_ptr->fallback_;
TORCH_INTERNAL_ASSERT(fallback != nullptr);
torch::profiler::impl::cudaStubs()->record(
nullptr, &fallback->device_event_end_, nullptr);
} catch (const std::exception& e) {
LOG(WARNING) << "Failed to record CUDA event. " << e.what();
}
} else if (config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK) {
auto fallback = kineto_ctx_ptr->fallback_;
TORCH_INTERNAL_ASSERT(fallback != nullptr);
torch::profiler::impl::privateuse1Stubs()->record(
nullptr, &fallback->device_event_end_, nullptr);
}
if (fn.scope() == at::RecordScope::USER_SCOPE) {
torch::profiler::impl::kineto::popUserCorrelationId();
} else {
torch::profiler::impl::kineto::popCorrelationId();
}
}
template <bool use_global_callback = false>
void pushProfilingCallbacks(const std::unordered_set<at::RecordScope>& scopes) {
auto registration_state_ptr =
KinetoThreadLocalState::get(use_global_callback);
TORCH_INTERNAL_ASSERT(registration_state_ptr, "Expected profiler state set");
auto recordFunctionCallback =
at::RecordFunctionCallback(
onFunctionEnter<use_global_callback>,
onFunctionExit<use_global_callback>)
.needsInputs(registration_state_ptr->config().report_input_shapes)
.scopes(scopes);
if constexpr (use_global_callback) {
registration_state_ptr->setCallbackHandle(
at::addGlobalCallback(recordFunctionCallback));
} else {
registration_state_ptr->setCallbackHandle(
at::addThreadLocalCallback(recordFunctionCallback));
}
}
struct ProfilerStateInfo {
std::shared_ptr<KinetoThreadLocalState> state_ptr;
std::unordered_set<at::RecordScope> scopes;
};
std::shared_ptr<ProfilerStateInfo> profiler_state_info_ptr{nullptr};
} // namespace
void reportBackendEventToActiveKinetoProfiler(
const int64_t start_time_us,
const int64_t end_time_us,
const int64_t debug_handle,
const at::RecordScope scope,
const std::string& event_name,
const std::string& backend_name) {
TORCH_INTERNAL_ASSERT(
KinetoThreadLocalState::get(/*global=*/true) == nullptr,
"On-demand profiling does not support post processing callback");
auto state_ptr = KinetoThreadLocalState::get(/*global=*/false);
if (!state_ptr) {
return;
}
state_ptr->recordQueue.getSubqueue()->emplace_backend_event(
start_time_us,
end_time_us,
debug_handle,
scope,
event_name,
backend_name);
/* no support for input shapes now?
if (config.report_input_shapes) {
ctx_ptr->shapes = inputSizes(fn);
ctx_ptr->dtypes = inputTypes(fn);
}
*/
}
void prepareProfiler(
const torch::profiler::impl::ProfilerConfig& config,
const std::set<torch::profiler::impl::ActivityType>& activities) {
if (config.state == ProfilerState::NVTX ||
config.state == ProfilerState::ITT) {
return;
}
TORCH_CHECK(
config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK ||
config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK,
"Supported only in Kineto profiler");
torch::profiler::impl::kineto::prepareTrace(
/*cpuOnly=*/!(
at::hasCUDA() || at::hasXPU() || at::hasMTIA() ||
c10::get_privateuse1_backend() != "privateuseone"),
activities,
config.experimental_config,
config.trace_id);
if (!config.experimental_config.performance_events.empty()) {
/* For now only CPU activity is supported */
TORCH_CHECK(
activities.count(torch::autograd::profiler::ActivityType::CPU),
"Cannot run cpu hardware profiler without CPU activities, please only use CPU activity type");
/*
* Sending a warning and passing the non-standard event to the backend
* Backend can abort if the event is not supported.
* TODO Should we gracefully drop the invalid event if we have atleast one
* valid?
*/
auto is_standard_event = [](const std::string& event) -> bool {
for (auto e : torch::profiler::ProfilerPerfEvents) {
if (!std::strcmp(event.c_str(), e)) {
return true;
}
}
return false;
};
for (const auto& e : config.experimental_config.performance_events) {
if (!is_standard_event(e)) {
TORCH_WARN("Forwarding a non-standard CPU performance event : ", e);
}
}
}
}
static void toggleTorchOpCollectionDynamic(bool enable) {
auto state_ptr = ProfilerStateBase::get();
if (state_ptr) {
const auto& config = state_ptr->config();
if (enable) {
auto scopes = profiler_state_info_ptr->scopes;
config.global() ? pushProfilingCallbacks</*global=*/true>(scopes)
: pushProfilingCallbacks</*global=*/false>(scopes);
} else {
state_ptr->removeCallback();
}
}
}
// Set this function to be unused as profiler implementation needs more
// refactoring to support Python ops collection dynamic toggling
#ifdef _MSC_VER
#define UNUSED
#else
#define UNUSED __attribute__((unused))
#endif
static UNUSED void togglePythonCollectionDynamic(bool enable) {
auto state_ptr = ProfilerStateBase::get();
if (state_ptr) {
auto global = state_ptr->config().global();
KinetoThreadLocalState* kineto_thread_local_state_ptr =
KinetoThreadLocalState::get(global);
if (enable) {
kineto_thread_local_state_ptr->resumePython();
} else {
kineto_thread_local_state_ptr->pausePython();
}
}
}
static void toggleCPUCollectionDynamic(bool enable) {
toggleTorchOpCollectionDynamic(enable);
// For now we only support Torch Op collection dynamic toggling as
// implementing Python ops would require not only string parsing to get rid of
// the toggling events as well as other unfinished events as well as changes
// in stack logic
// togglePythonCollectionDynamic(enable);
}
void toggleCollectionDynamic(
const bool enable,
const std::set<torch::profiler::impl::ActivityType>& activities) {
if (activities.count(torch::autograd::profiler::ActivityType::CPU) > 0 &&
activities.count(torch::autograd::profiler::ActivityType::CUDA) == 0) {
LOG(WARNING)
<< "Toggling CPU activity with CUDA activity on may result in traces with CUDA events on artibrary tracks";
} else if (
activities.count(torch::autograd::profiler::ActivityType::CUDA) > 0 &&
activities.count(torch::autograd::profiler::ActivityType::CPU) == 0) {
LOG(WARNING)
<< "Toggling CUDA activity with CPU activity on may result in traces with incorrect correlation between CPU and CUDA events";
}
for (auto act : activities) {
if (act == torch::autograd::profiler::ActivityType::CUDA) {
torch::profiler::impl::kineto::toggleCollectionDynamic(enable);
} else if (act == torch::autograd::profiler::ActivityType::CPU) {
toggleCPUCollectionDynamic(enable);
} else {
LOG(WARNING)
<< "Dynamic toggle is only supported for CPU/GPU activity, skipping toggling of "
<< actToString(act);
continue;
}
}
}
void enableProfilerWithEventPostProcess(
const torch::profiler::impl::ProfilerConfig& config,
const std::set<torch::profiler::impl::ActivityType>& activities,
post_process_t&& cb,
const std::unordered_set<at::RecordScope>& scopes) {
TORCH_CHECK(
config.state != ProfilerState::NVTX,
"NVTX does not support post processing callback.");
TORCH_CHECK(
config.state != ProfilerState::ITT,
"ITT does not support post processing callback.");
TORCH_INTERNAL_ASSERT(
KinetoThreadLocalState::get(/*global=*/true) == nullptr,
"On-demand profiling does not support post processing callback");
enableProfiler(config, activities, scopes);
auto state_ptr = KinetoThreadLocalState::get(config.global());
state_ptr->setEventPostProcessingCallback(std::move(cb));
}
void enableProfiler(
const torch::profiler::impl::ProfilerConfig& config,
const std::set<torch::profiler::impl::ActivityType>& activities,
const std::unordered_set<at::RecordScope>& scopes) {
const auto has_cpu = activities.count(ActivityType::CPU);
TORCH_CHECK(
KinetoThreadLocalState::get(/*global=*/config.global()) == nullptr,
"Profiler is already enabled",
(config.global() ? "." : " on this thread."));
if (config.state == ProfilerState::NVTX) {
torch::profiler::impl::pushNVTXCallbacks(config, scopes);
return;
} else if (config.state == ProfilerState::ITT) {
torch::profiler::impl::pushITTCallbacks(config, scopes);
return;
} else if (config.state == ProfilerState::PRIVATEUSE1) {
torch::profiler::impl::pushPRIVATEUSE1CallbacksStub(config, scopes);
return;
}
TORCH_CHECK(
config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK ||
config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK ||
config.global());
TORCH_CHECK(!activities.empty(), "No activities specified.");
TORCH_INTERNAL_ASSERT(
has_cpu || !config.global(),
"Ondemand profiling must enable CPU tracing");
auto state_ptr = std::make_shared<KinetoThreadLocalState>(config, activities);
KinetoThreadLocalState::push(state_ptr);
if (has_cpu) {
config.global() ? pushProfilingCallbacks</*global=*/true>(scopes)
: pushProfilingCallbacks</*global=*/false>(scopes);
}
if (!config.global()) {
torch::profiler::impl::kineto::startTrace();
}
if (has_cpu) {
auto state_info_ptr = std::make_shared<ProfilerStateInfo>();
state_info_ptr->state_ptr = state_ptr;
state_info_ptr->scopes = scopes;
profiler_state_info_ptr = state_info_ptr;
}
}
bool isProfilerEnabledInMainThread() {
return profiler_state_info_ptr != nullptr;
}
void enableProfilerInChildThread() {
auto state_info_ptr = profiler_state_info_ptr;
TORCH_CHECK(state_info_ptr, "Profiler is not enabled in main thread.");
TORCH_CHECK(
KinetoThreadLocalState::get(/*global=*/false) == nullptr,
"Profiler is already enabled in this thread.");
KinetoThreadLocalState::push(state_info_ptr->state_ptr);
pushProfilingCallbacks</*global=*/false>(state_info_ptr->scopes);
}
void disableProfilerInChildThread() {
auto state_ptr = ProfilerStateBase::pop();
TORCH_CHECK(
state_ptr,
"Can't disable Kineto profiler when it's not running in this thread");
state_ptr->removeCallback();
}
std::unique_ptr<ProfilerResult> disableProfiler() {
// releasing to inform child threads to stop profiling
profiler_state_info_ptr = nullptr;
auto state_ptr = ProfilerStateBase::pop();
const auto& config = state_ptr->config();
TORCH_CHECK(
state_ptr &&
(config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK ||
config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK ||
config.state == ProfilerState::KINETO_ONDEMAND ||
config.state == ProfilerState::NVTX ||
config.state == ProfilerState::ITT ||
config.state == ProfilerState::PRIVATEUSE1),
"Can't disable Kineto profiler when it's not running");
state_ptr->removeCallback();
// Traces are converged via libkineto automatically for ondemand flow
if (state_ptr->config().global()) {
(void)std::static_pointer_cast<KinetoThreadLocalState>(state_ptr)
->finalizeTrace();
return std::make_unique<ProfilerResult>();
}
// Shared among NVTX, PRIVATEUSE1, KINETO, KINETO_GPU_FALLBACK,
// KINETO_PRIVATEUSE1_FALLBACK
std::unique_ptr<ProfilerResult> result;
if (state_ptr->config().state == ProfilerState::NVTX ||
state_ptr->config().state == ProfilerState::PRIVATEUSE1) {
result = std::make_unique<ProfilerResult>();
}
if (config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK ||
config.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK) {
auto kineto_state_ptr =
std::static_pointer_cast<KinetoThreadLocalState>(state_ptr);
auto trace = kineto_state_ptr->finalizeTrace();
result = std::make_unique<ProfilerResult>(
kineto_state_ptr->startTime,
std::move(kineto_state_ptr->kinetoEvents),
std::move(trace),
std::move(kineto_state_ptr->eventTree));
}
return result;
}
KinetoEvent::KinetoEvent(
const std::shared_ptr<const torch::profiler::impl::Result>& result,
const bool verbose)
: result_{result} {
TORCH_INTERNAL_ASSERT(result != nullptr);
if (verbose) {
// Populate Python stack
auto parent = result_->parent_.lock();
while (parent != nullptr) {
parent->visit_if_base<PyExtraFieldsBase>(
[&](const auto&) { python_stack_.push_back(parent->name()); });
parent = parent->parent_.lock();
}
}
result->visit_if_base<ExtraFields<EventType::TorchOp>>([&](const auto& op) {
auto arg_data = parseArgData(op.inputs_, op.concrete_inputs_);
shapes_ = std::move(arg_data.shapesForKinetoEvent);
dtypes_ = std::move(arg_data.dtypes);
concrete_inputs_ = std::move(arg_data.concreteInputs);
kwinputs_ = std::move(op.kwinputs_);
});
}
bool KinetoEvent::isPythonFunction() const {
bool out{false};
result_->visit_if_base<PyExtraFieldsBase>([&](const auto&) { out = true; });
return out;
}
bool KinetoEvent::hasShapes() const {
return !shapes_.empty();
}
const c10::ArrayRef<std::vector<int64_t>> KinetoEvent::shapes() const {
return shapes_;
}
bool KinetoEvent::hasTypes() const {
return !dtypes_.empty();
}
const c10::ArrayRef<std::string> KinetoEvent::dtypes() const {
return dtypes_;
}
bool KinetoEvent::hasConcreteInputs() const {
return !concrete_inputs_.empty();
}
const c10::ArrayRef<c10::IValue> KinetoEvent::concreteInputs() const {
return concrete_inputs_;
}
bool KinetoEvent::hasKwinputs() const {
return !kwinputs_.empty();
}
const std::unordered_map<std::string, c10::IValue> KinetoEvent::kwinputs()
const {
return kwinputs_;
}
const c10::ArrayRef<std::string> KinetoEvent::stack() const {
auto get = [&](const auto& i) -> auto& {
return !i.jit_stack_.empty() ? i.jit_stack_ : python_stack_;
};
auto const& extra_fields = result_->extra_fields_;
if (auto p = std::get_if<ExtraFields<EventType::TorchOp>>(&extra_fields)) {
return get(*p);
}
if (auto p = std::get_if<ExtraFields<EventType::Backend>>(&extra_fields)) {
return get(*p);
}
return python_stack_;
}
const c10::ArrayRef<std::string> KinetoEvent::moduleHierarchy() const {
auto const& extra_fields = result_->extra_fields_;
if (auto p = std::get_if<ExtraFields<EventType::TorchOp>>(&extra_fields)) {
return p->jit_modules_;
}
if (auto p = std::get_if<ExtraFields<EventType::Backend>>(&extra_fields)) {
return p->jit_modules_;
}
return {};
}
uint64_t KinetoEvent::endNs() const {
return result_->endTimeNS();
}
uint64_t KinetoEvent::durationNs() const {
return (result_->endTimeNS() - result_->start_time_ns_);
}
int64_t KinetoEvent::debugHandle() const {
return result_->visit(c10::overloaded(
[](const ExtraFields<EventType::TorchOp>& i) { return i.debug_handle_; },
[](const ExtraFields<EventType::Backend>& i) { return i.debug_handle_; },
[](const auto&) -> int64_t { return -1; }));
}
int KinetoEvent::deviceIndex() const {
return result_->visit(c10::overloaded(
[](const ExtraFields<EventType::Allocation>& i) {
return static_cast<int>(i.device_index_);
},
[](const ExtraFields<EventType::OutOfMemory>& i) {
return static_cast<int>(i.device_index_);
},
[&](const auto&) {
return static_cast<int>(result_->kineto_info_.device);
}));
}
bool KinetoEvent::hasStack() const {
return !stack().empty();
}
int64_t KinetoEvent::cudaElapsedUs() const {
auto cuda_event_start = fallbackStart();
auto cuda_event_end = fallbackEnd();
if (!cuda_event_start || !cuda_event_end) {
return -1;
}
try {
return (int64_t)torch::profiler::impl::cudaStubs()->elapsed(
&cuda_event_start, &cuda_event_end);
} catch (std::exception& e) {
LOG(WARNING) << "Failed to measure time between two CUDA events. "
<< e.what();
}
return -1;
}
int64_t KinetoEvent::privateuse1ElapsedUs() const {
auto privateuse1_event_start = fallbackStart();
auto privateuse1_event_end = fallbackEnd();
if (!privateuse1_event_start || !privateuse1_event_end) {
return -1;
}
return (int64_t)torch::profiler::impl::privateuse1Stubs()->elapsed(
&privateuse1_event_start, &privateuse1_event_end);
return -1;
}
void KinetoEvent::getPerfEventCounters(std::vector<uint64_t>& in) const {
return result_->visit(c10::overloaded(
[&in](const ExtraFields<EventType::TorchOp>& e) -> void {
const size_t n = e.perf_event_counters_->size();
// should be rare
if (in.size() < n) {
in.resize(n, 0);
}
for (size_t i = 0; i < n; ++i) {
in[i] = (*e.perf_event_counters_)[i];
}
},
[](const auto&) -> void { return; }));
}
#define FORWARD_FROM_RESULT(method_name, result_expr) \
decltype(std::declval<KinetoEvent>().method_name()) \
KinetoEvent::method_name() const { \
return static_cast<decltype(std::declval<KinetoEvent>().method_name())>( \
result_->result_expr); \
}
FORWARD_FROM_RESULT(startThreadId, start_tid_)
FORWARD_FROM_RESULT(endThreadId, endTID())
FORWARD_FROM_RESULT(activityType, kinetoType())
FORWARD_FROM_RESULT(name, name())
FORWARD_FROM_RESULT(deviceType, deviceType())
FORWARD_FROM_RESULT(startNs, start_time_ns_)
FORWARD_FROM_RESULT(correlationId, correlationID())
FORWARD_FROM_RESULT(deviceResourceId, kineto_info_.resource)
#undef FORWARD_FROM_RESULT
// Most of the fields in `KinetoEvent` only make sense for a single event type.
// (Generally TorchOp.) For all other types they simply return the default
// value. This macro provides a succinct way of expressing this behavior.
#define TYPED_ATTR_WITH_DEFAULT( \
event_type, method_name, expression, default_value) \
decltype(std::declval<KinetoEvent>().method_name()) \
KinetoEvent::method_name() const { \
using out_t = decltype(std::declval<KinetoEvent>().method_name()); \
return result_->visit(c10::overloaded( \
[](const ExtraFields<EventType::event_type>& e) -> out_t { \
return expression; \
}, \
[](const auto&) -> out_t { return default_value; })); \
}
#define TYPED_ATTR(event_type, method_name, expression) \
TYPED_ATTR_WITH_DEFAULT(event_type, method_name, expression, {})
TYPED_ATTR_WITH_DEFAULT(TorchOp, sequenceNr, e.sequence_number_, -1)
TYPED_ATTR(TorchOp, fwdThreadId, e.sequence_number_ >= 0 ? e.forward_tid_ : 0)
TYPED_ATTR(TorchOp, scope, static_cast<uint8_t>(e.scope_))
TYPED_ATTR(TorchOp, hasModuleHierarchy, !e.jit_modules_.empty())
TYPED_ATTR(TorchOp, isAsync, e.is_async_)
TYPED_ATTR(TorchOp, extraMeta, e.extra_meta_)
TYPED_ATTR(TorchOp, fallbackStart, e.device_fallback_.device_event_start_)
TYPED_ATTR(TorchOp, fallbackEnd, e.device_fallback_.device_event_end_)
TYPED_ATTR(
TorchOp,
flops,
!e.extra_args_.empty()
? torch::profiler::impl::computeFlops(e.name_, e.extra_args_)
: 0)
TYPED_ATTR(Backend, backend, e.backend_)
TYPED_ATTR(Allocation, nBytes, e.alloc_size_)
TYPED_ATTR(Kineto, linkedCorrelationId, [&]() {
const auto linked = e.linked_activity_.lock();
return linked ? linked->correlationID() : 0;
}())
#undef TYPED_ATTR
#undef TYPED_ATTR_WITH_DEFAULT
ProfilerResult::ProfilerResult(
uint64_t start_time,
std::vector<KinetoEvent> events,
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>&&
trace,
std::vector<experimental_event_t>&& event_tree)
: trace_start_ns_(start_time),
events_(std::move(events)),
trace_(std::move(trace)),
event_tree_(std::move(event_tree)) {}
ProfilerResult::ProfilerResult() = default;
ProfilerResult::~ProfilerResult() = default;
void ProfilerResult::save(const std::string& path) {
trace_->save(path);
}
} // namespace autograd::profiler
namespace profiler::impl {
void _reportVulkanEventToProfiler(vulkan_id_t id) {
auto state_ptr = ::torch::autograd::profiler::KinetoThreadLocalState::get(
/*global=*/false);
if (state_ptr) {
state_ptr->reportVulkanEventToProfiler(id);
}
}
} // namespace profiler::impl
} // namespace torch
|