1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
|
#include <ATen/NamedTensorUtils.h>
#include <c10/core/DeviceType.h>
#include <c10/core/impl/GPUTrace.h>
#include <c10/core/impl/HermeticPyObjectTLS.h>
#include <c10/core/impl/PythonDispatcherTLS.h>
#include <c10/util/irange.h>
#include <pybind11/pytypes.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/PyInterpreter.h>
#include <torch/csrc/Size.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/Types.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/autograd/python_hook.h>
#include <torch/csrc/autograd/python_variable_indexing.h>
#include <torch/csrc/autograd/utils/error_messages.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <torch/csrc/utils/pyobject_preservation.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/python_dispatch.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/csrc/utils/tensor_numpy.h>
#include <torch/csrc/utils/torch_dispatch_mode.h>
#include <ATen/ATen.h>
#include <c10/core/SymIntArrayRef.h>
#include <structmember.h>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
using namespace at;
using namespace torch;
using namespace torch::autograd;
std::pair<py::object, py::dict> parseIValuesToPyArgsKwargs(
const c10::OperatorHandle& op,
const std::vector<c10::IValue>& arguments) {
TORCH_CHECK(
PyGILState_Check(),
"GIL must be held before you call parseIValuesToPyArgsKwargs");
const auto& schema = op.schema();
py::dict kwargs;
// About all the pointers:
//
// f(int x, int y = 0, *, int z = 0)
// ^- arguments.size()
// ^- kwarg_only_start
// ^- positional_default_start
// ^- 0
// Find the split point between kwarg-only and regular. Since most functions
// don't have kwarg-only arguments, it is more efficient to scan from the
// right (but ideally, this would just be precomputed in FunctionSchema
// itself). (NB: minus one in the loop is because we're testing if the
// *next* argument is kwarg-only before we advance the starting index)
int64_t kwarg_only_start = static_cast<int64_t>(arguments.size());
for (; kwarg_only_start > 0; kwarg_only_start--) {
const auto& arg = schema.arguments()[kwarg_only_start - 1];
if (!arg.kwarg_only()) {
break;
}
}
// Find the first positional argument that isn't defaulted
auto is_default = [&](size_t idx) -> bool {
const auto& arg = schema.arguments()[idx];
if (!arg.default_value().has_value()) {
return false;
}
const auto& default_ivalue = *arg.default_value();
const auto& ivalue = arguments[idx];
if (default_ivalue != ivalue) {
return false;
}
return true;
};
int64_t positional_default_start = kwarg_only_start;
for (; positional_default_start > 0; positional_default_start--) {
if (!is_default(positional_default_start - 1)) {
break;
}
}
auto args =
py::reinterpret_steal<py::object>(PyTuple_New(positional_default_start));
auto schemaAwareToPyObject = [&](size_t idx) -> py::object {
const auto& arg = schema.arguments()[idx];
auto match = [&](c10::TypeKind kind) {
const auto& t = arg.real_type();
if (t->kind() == kind)
return true;
if (auto opt_t = t->cast<c10::OptionalType>()) {
if (opt_t->getElementType()->kind() == kind)
return true;
}
return false;
};
if (arguments[idx].isNone()) {
return py::none();
} else if (match(c10::ScalarTypeType::Kind)) {
auto* obj =
getTHPDtype(static_cast<c10::ScalarType>(arguments[idx].toInt()));
return py::reinterpret_borrow<py::object>(
reinterpret_cast<PyObject*>(obj));
} else if (match(c10::LayoutType::Kind)) {
auto* obj =
getTHPLayout(static_cast<c10::Layout>(arguments[idx].toInt()));
return py::reinterpret_borrow<py::object>(
reinterpret_cast<PyObject*>(obj));
} else if (match(c10::MemoryFormatType::Kind)) {
return py::cast(static_cast<c10::MemoryFormat>(arguments[idx].toInt()));
} else {
return torch::jit::toPyObject(arguments[idx]);
}
};
// Populate positional arguments
for (const auto idx : c10::irange(positional_default_start)) {
PyTuple_SET_ITEM(
args.ptr(), idx, schemaAwareToPyObject(idx).release().ptr());
}
// Populate keyword arguments
for (const auto idx : c10::irange(kwarg_only_start, arguments.size())) {
// But don't populate default keyword arguments
if (is_default(idx))
continue;
const auto& arg = schema.arguments()[idx];
kwargs[py::cast(arg.name())] = schemaAwareToPyObject(idx);
}
return std::make_pair(std::move(args), std::move(kwargs));
}
void pushPyOutToStack(
const c10::OperatorHandle& op,
torch::jit::Stack* stack,
py::object out,
const char* msg) {
TORCH_CHECK(
PyGILState_Check(), "GIL must be held before you call pushPyOutToStack");
auto schema_returns = op.schema().returns();
const auto num_returns = schema_returns.size();
if (num_returns == 0) {
// Check that we got a None return from Python. Anything else is an error.
TORCH_CHECK(
out.is_none(),
"Expected ",
msg,
" for ",
op.operator_name(),
" to return None but it returned something else instead.");
} else if (num_returns == 1) {
torch::jit::push(
stack, torch::jit::toIValue(out.ptr(), schema_returns[0].real_type()));
} else {
auto outs = py::cast<py::sequence>(out);
for (const auto idx : c10::irange(outs.size())) {
torch::jit::push(
stack,
torch::jit::toIValue(
outs[idx].ptr(), schema_returns[idx].real_type()));
}
}
}
namespace {
c10::TensorImpl::SizesStridesPolicy parseSizesStridesPolicyArgument(
std::string_view arg) {
if (arg == "strides") {
return c10::TensorImpl::SizesStridesPolicy::CustomStrides;
}
if (arg == "sizes") {
return c10::TensorImpl::SizesStridesPolicy::CustomSizes;
}
TORCH_CHECK_VALUE(
false,
"Unknown sizes_strides_policy: ",
arg,
"; expected 'strides' or 'sizes'");
}
} // anonymous namespace
PyObject* THPVariableClass = nullptr;
PyObject* ParameterClass = nullptr;
static PyObject* THPVariable_NewWithVar(
PyTypeObject* type,
const at::TensorBase& _var,
c10::impl::PyInterpreterStatus status,
bool allow_preexisting_pyobj = false);
// clang-tidy gets confused by static const
static const char* VOLATILE_WARNING =
"volatile was removed and now has no effect. Use "
"`with torch.no_grad():` instead.";
static bool check_has_torch_dispatch(PyObject* obj) {
PyTypeObject* tp = Py_TYPE(obj);
if (THPVariable_CheckTypeExact(tp)) {
return false;
}
py::object attr = PyObject_FastGetAttrString(obj, "__torch_dispatch__");
return (
attr.ptr() != nullptr &&
attr.ptr() != torch::disabled_torch_dispatch_impl());
}
// NOLINTNEXTLINE(*-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static PyObject* device_to_py_class_[static_cast<size_t>(
c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES)];
void registerPythonTensorClass(
const std::string& device,
PyObject* python_tensor_class) {
c10::Device dev(device);
TORCH_CHECK(
dev.type() == kXLA, "Only the python class for XLA can be overriden");
if (device_to_py_class_[static_cast<size_t>(dev.type())] != nullptr) {
TORCH_WARN(
"Overriding a previously registered python class for ", dev.str());
}
device_to_py_class_[static_cast<size_t>(dev.type())] = python_tensor_class;
}
static PyObject* getPythonTensorClass(c10::Device d) {
return device_to_py_class_[static_cast<size_t>(d.type())];
}
void activateGPUTrace() {
c10::impl::GPUTrace::set_trace(getPyInterpreter());
}
PyObject* THPVariable_Wrap(const at::TensorBase& var) {
if (!var.defined()) {
Py_RETURN_NONE;
}
if (c10::impl::HermeticPyObjectTLS::get_state()) {
return THPVariable_NewWithVar(
(PyTypeObject*)THPVariableClass,
var,
c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
}
std::optional<PyObject*> mb_obj =
var.unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
getPyInterpreter(), /*ignore_hermetic_tls=*/false);
c10::impl::PyInterpreterStatus status{};
if (mb_obj.has_value()) {
auto obj = *mb_obj;
if (obj) {
if (var.unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
// C++ owns the Python object; this implies there weren't any other
// owning references to the Python object. Since we're making the
// object "live" again on Python side, let's flip back the ownership
// (Python owns C++) as it would now be unsound to deallocate the C++
// object if all C++ references go to zero
var.unsafeGetTensorImpl()->pyobj_slot()->set_owns_pyobj(false);
reinterpret_cast<THPVariable*>(obj)->cdata =
MaybeOwned<Variable>::owned(Variable(var));
// NB: incref is not necessary, because we are "stealing" the previous
// ownership from the Variable to return it here for the wrap
return obj;
}
Py_INCREF(obj);
return obj;
}
// TODO: a better invariant is that if we tagged, we MUST have a valid
// PyObject. That's PyObject preservation
// (https://github.com/pytorch/pytorch/pull/56017). Prior to this PR
// being a thing, the PyObject field will get cleared when all references
// to the Python object are removed.
status = c10::impl::PyInterpreterStatus::TAGGED_BY_US;
} else {
// Assumption: if a Tensor has been shared across threads, this induces
// a refcount bump. Therefore, if the use count 1, we are the sole thread
// with access to this tensor and no race is possible.
if (var.use_count() <= 1) {
status = c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED;
} else {
status = c10::impl::PyInterpreterStatus::MAYBE_UNINITIALIZED;
}
}
if (C10_LIKELY(var.device().type() != c10::kXLA)) {
return THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, var, status);
}
if (auto clazz = getPythonTensorClass(var.device())) {
return THPVariable_NewWithVar((PyTypeObject*)clazz, var, status);
}
return THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, var, status);
}
bool isResurrectable(THPVariable* self) {
// We want to divide this check into 2 cases.
// 1. C++ owns PyObject (in this case, self->cdata.unsafeIsBorrowed() is
// true). You might think that in this case, it is impossible for tp_clear to
// be called: surely the C++ reference to the PyObject is keeping it live? And
// you'd be right! In fact, when C++ owns the PyObject, we have an invariant
// that the refcount on the PyObject should be precisely one (because if you
// take out another reference to the PyObject, we're supposed to flip the
// ownership pointer back). In reality, you can violate this invariant
// temporarily with weak references, so we don't test for it in asserts.
// 2. PyObject owns C++ (in this case, self->cdata.unsafeIsBorrowed() is
// false). In this case, tp_clear can get called if the PyObject is referenced
// from a dead cycle, and nowhere else. But if resurrection did not occur,
// then the reference to C++ from the PyObject must be the ONLY reference to
// the C++ object.
if (self->cdata.unsafeIsBorrowed()) {
return false;
}
auto const& tensor = THPVariable_Unpack(self);
if (!tensor.defined() || tensor.use_count() <= 1) {
return false;
}
// Check if this is hermetic. If it is, no resurrection.
if (tensor.unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
getPyInterpreter(), /*ignore_hermetic_tls=*/false) !=
(PyObject*)self) {
return false;
}
return true;
}
// returns true if successfully rezzed; if so, cancel the
// rest of deallocation
static bool THPVariable_tryResurrect(THPVariable* self) {
const auto& tensor = THPVariable_Unpack(self);
if (!isResurrectable(self)) {
return false;
}
// At this point, we are definitely going to resurrect the tensor. So, the
// tensor better be defined :)
TORCH_INTERNAL_ASSERT(tensor.defined());
// There are other C++ owners of the tensor. Flip ownership
// so that C++ owns this Python object, and cancel deallocation.
TORCH_INTERNAL_ASSERT(
!tensor.unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj());
c10::TensorImpl* tensor_impl = tensor.unsafeGetTensorImpl();
auto maybe_pyobj = tensor_impl->pyobj_slot()->check_pyobj(
getPyInterpreter(),
/*ignore_hermetic_tls=*/false);
TORCH_INTERNAL_ASSERT(
maybe_pyobj.has_value(),
"Trying to preserve a Python tensor whose PyObjectSlot does not have a PyObject");
tensor_impl->pyobj_slot()->set_owns_pyobj(true);
// Resurrect the Python object. This is something CPython does
// internally occasionally, see
// https://github.com/python/cpython/blob/b98eba5bc2ffbe7a0ed49d540ebc4f756ae61985/Objects/object.c#L248-L259
// so we just copy the pattern here. Note that we don't have to worry
// about saving and restoring the refcount (as the quoted code does)
// because we actually DO need to reset the refcount to one here, we
// can't assume that some other code has taken care of it.
// NB: this will overreport _Py_RefTotal but based on inspection of object.c
// there is no way to avoid this
// When resurrecting, we MUST use _Py_NewReference and not Py_INCREF to
// ensure the PyObject is in a valid state
_Py_NewReference((PyObject*)self);
// Flip THPVariable to be non-owning
// (near use-after-free miss here: fresh MaybeOwned is created breaking
// reference on Tensor in struct BEFORE we overwrite the old one)
TORCH_INTERNAL_ASSERT(!c10::impl::HermeticPyObjectTLS::get_state());
self->cdata = MaybeOwned<Variable>::borrowed(tensor);
// NB: At this point, tensor *could* be dead (e.g., some other C++ thread
// decrefed it.) At this point, it is probably waiting on the GIL to
// deallocate the Python object and will kill self, BUT NOT YET.
return true;
}
static int THPVariable_subclass_clear(THPVariable* self) {
// Is it OK for an object to still be live after running
// tp_clear? Yes. When Python is breaking reference cycles, it can't assume
// that an object will dealloc after it's cleared. The source code explicitly
// handles this case:
// https://github.com/python/cpython/blob/4e661cd69164318c1f871faa476c68a04092ddc4/Modules/gcmodule.c#L1010-L1025
// Note that we don't need to actually resurrect here. There are 2 cases:
// 1. The PyObject is not part of a reference cycle. In this case, we don't
// need to do anything. The GC will move on to try and break the reference
// cycle on another object, which will eventually trigger tp_dealloc (and thus
// resurrection).
// 2. The PyObject is part of a reference cycle. This case should not actually
// be possible, due to the logic in our tp_traverse
// (THPVariable_subclass_traverse).
// In fact, resurrecting here breaks the invariant that "C++ owns Python only
// when PyObject's refcount would otherwise be 0". Most immediately, as we're
// merely breaking reference cycles here, there can be other references to the
// PyObject. *However*, if other objects in the refcycle resurrect, then we
// will be in a state where the PyObject has multiple Python references, yet
// C++ owns the PyObject.
// See https://github.com/pytorch/pytorch/pull/75933 for more discussion.
if (isResurrectable((THPVariable*)self)) {
return 0;
}
Py_CLEAR(self->backward_hooks);
Py_CLEAR(self->post_accumulate_grad_hooks);
const auto& tensor = THPVariable_Unpack(self);
if (tensor.defined()) {
// Two situations to consider:
// PyObject -owns-> Tensor
// unsafeIsBorrowed() is FALSE. We're obligated to look through
// Tensor to break references. Clearing cdata must induce the
// destruction of the C++ Tensor. If there were other references
// to C++ tensor, the Python object would have been resurrected
// by flipping the ownership.
// Tensor -owns-> PyObject
// unsafeIsBorrowed() is TRUE. We're deallocating the PyObject
// because Tensor asked us to (it's already destructing).
if (!self->cdata.unsafeIsBorrowed() &&
tensor.unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
getPyInterpreter(), /*ignore_hermetic_tls=*/false) ==
(PyObject*)self) {
// TODO: empirically, on OS X this assert appears to be untrue
// In test_py_tensors_multi_async_call - ProcessGroupRpcTestWithSpawn
// distributed/rpc/test_process_group_agent.py
//
// libc++abi.dylib: terminating with uncaught exception of type
// c10::Error:
// !tensor.unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()INTERNAL
// ASSERT FAILED at "../torch/csrc/autograd/python_variable.cpp":171,
// please report a bug to PyTorch. Exception raised from
// THPVariable_subclass_clear at
// ../torch/csrc/autograd/python_variable.cpp:171 (most recent call
// first): frame #0: c10::Error::Error(c10::SourceLocation,
// std::__1::basic_string<char, std::__1::char_traits<char>,
// std::__1::allocator<char> >) + 98 (0x1158a0442 in libc10.dylib) frame
// #1: c10::detail::torchCheckFail(char const*, char const*, unsigned
// int, char const*) + 205 (0x11589ed3d in libc10.dylib) frame #2:
// c10::detail::torchInternalAssertFail(char const*, char const*,
// unsigned int, char const*, c10::detail::CompileTimeEmptyString) + 9
// (0x1141e3f89 in libtorch_python.dylib) frame #3:
// THPVariable_subclass_clear(THPVariable*) + 412 (0x1148a547c in
// libtorch_python.dylib) frame #4:
// THPVariable_subclass_dealloc(_object*) + 453 (0x1148a5035 in
// libtorch_python.dylib) frame #5: (anonymous
// namespace)::concrete_decref_fn(c10::impl::PyInterpreter const*,
// _object*) + 53 (0x1148a5ea5 in libtorch_python.dylib) frame #6:
// c10::TensorImpl::release_resources() + 182 (0x11588c4a6 in
// libc10.dylib) frame #7:
// c10::MaybeOwned<at::Tensor>::operator=(c10::MaybeOwned<at::Tensor>&&)
// + 91 (0x11488c11b in libtorch_python.dylib) frame #8:
// THPVariable_subclass_dealloc(_object*) + 607 (0x1148a50cf in
// libtorch_python.dylib) <omitting python frames> frame #47: start + 1
// (0x7fff6ffc7cc9 in libdyld.dylib) frame #48: 0x0 + 4 (0x4 in ???)
// TORCH_INTERNAL_ASSERT(!tensor.unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj());
if (auto grad_acc =
torch::autograd::impl::try_get_grad_accumulator(tensor)) {
grad_acc->pre_hooks().clear();
grad_acc->tensor_pre_hooks().clear();
grad_acc->retains_grad_hooks().clear();
}
}
}
TORCH_INTERNAL_ASSERT(!isResurrectable((THPVariable*)self));
{
// MapAllocator can take significant time to release large tensors;
// release the GIL here to avoid impacting main thread perf.
pybind11::gil_scoped_release no_gil;
self->cdata = MaybeOwned<Variable>();
}
return 0;
}
int THPFake_traverse(THPVariable* self, visitproc visit, void* arg) {
TORCH_INTERNAL_ASSERT(
false, "TensorBase tp_traverse function was not overriden properly");
return 0;
}
int THPFake_clear(THPVariable* self) {
TORCH_INTERNAL_ASSERT(
false, "TensorBase tp_clear function was not overriden properly");
return 0;
}
PyObject* THPVariable_pynew(
PyTypeObject* type,
PyObject* args,
PyObject* kwargs);
static PyObject* THPVariable_fix_weakref(PyObject* self, PyObject* noargs) {
const auto& var = THPVariable_Unpack(self);
Py_DECREF(THPVariable_Wrap(var));
Py_RETURN_NONE;
}
// Maps the given python callable over a vector of items, returning a vector
// of the same type of items.
template <typename T>
static std::vector<T> map_py_func(
const py::function& func,
const std::vector<T>& items) {
std::vector<T> new_items;
new_items.reserve(items.size());
for (auto& item : items) {
new_items.emplace_back(py::cast<T>(func(item)));
}
return new_items;
}
template <>
std::vector<at::Tensor> map_py_func(
const py::function& func,
const std::vector<at::Tensor>& items) {
std::vector<at::Tensor> new_items;
new_items.reserve(items.size());
for (auto& item : items) {
auto output = func(item);
if (output.is(py::none())) {
// treat None value as an undefined tensor
new_items.emplace_back();
} else {
new_items.emplace_back(py::cast<at::Tensor>(output));
}
}
return new_items;
}
static PyObject* view_func_impl(
PyObject* _self,
PyObject* args,
PyObject* kwargs,
bool check_has_same_meta) {
HANDLE_TH_ERRORS
const auto& self = THPVariable_Unpack(_self);
static PythonArgParser parser({
"_view_func(Tensor new_base, PyObject* symint_visitor_fn=None, PyObject* tensor_visitor_fn=None)",
});
ParsedArgs<3> parsed_args{};
auto r = parser.parse(_self, args, kwargs, parsed_args);
auto new_base = r.tensor(0);
PyObject* symint_visitor_fn = r.pyobject(1);
PyObject* tensor_visitor_fn = r.pyobject(2);
// Ensure that self is indeed a backward differentiable view
// If not, we return an undefined Tensor (None) and let the user handle it.
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(self);
at::Tensor out;
if (diff_view_meta && diff_view_meta->has_bw_view()) {
const auto& view_info = diff_view_meta->get_backward_view();
// Ensure that the newly provided base is similar to the original base
if (!check_has_same_meta ||
torch::autograd::utils::has_same_meta(new_base, view_info.base_)) {
// Do the actual view replay
if (view_info.has_view_fn()) {
auto& view_func = view_info.view_fn();
// Determine new SymInt / tensor state as needed.
std::optional<std::vector<c10::SymInt>> new_symints = std::nullopt;
if (symint_visitor_fn != Py_None) {
new_symints = map_py_func(
py::cast<py::function>(symint_visitor_fn),
view_func.get_symints());
}
std::optional<std::vector<at::Tensor>> new_tensors = std::nullopt;
if (tensor_visitor_fn != Py_None) {
new_tensors = map_py_func(
py::cast<py::function>(tensor_visitor_fn),
view_func.get_tensors());
}
// call view func
if (new_symints.has_value() || new_tensors.has_value()) {
out = (*view_func.clone_and_set(new_symints, new_tensors))(new_base);
} else {
out = view_func(new_base);
}
} else {
out = new_base.as_strided(
self.sizes(), self.strides(), self.storage_offset());
}
}
}
return THPVariable_Wrap(out);
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_view_func(
PyObject* self_,
PyObject* args,
PyObject* kwargs) {
return view_func_impl(self_, args, kwargs, /*check_has_same_meta=*/true);
}
static PyObject* THPVariable_view_func_unsafe(
PyObject* self_,
PyObject* args,
PyObject* kwargs) {
return view_func_impl(self_, args, kwargs, /*check_has_same_meta=*/false);
}
static PyObject* rev_view_func_impl(PyObject* self_, PyObject* arg) {
HANDLE_TH_ERRORS
const auto& self = THPVariable_Unpack(self_);
TORCH_CHECK(
THPVariable_Check(arg),
"_rev_view_func expect a single argument that is a Tensor");
const auto& new_view = THPVariable_Unpack(arg);
// Ensure that self is indeed a backward differentiable view
// If not, we return an undefined Tensor (None) and let the user handle it.
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(self);
at::Tensor out;
if (diff_view_meta && diff_view_meta->has_bw_view()) {
const auto& view_info = diff_view_meta->get_backward_view();
// Do the actual view replay
TORCH_CHECK(view_info.has_view_fn(), "No _rev_view_func() found");
out = view_info.rev_view_fn()(new_view);
}
return THPVariable_Wrap(out);
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_rev_view_func_unsafe(
PyObject* self_,
PyObject* arg) {
return rev_view_func_impl(self_, arg);
}
// Instantiates a subclass of self with the same data.
static PyObject* THPVariable_as_subclass(
PyObject* _self,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
const auto& self = THPVariable_Unpack(_self);
static PythonArgParser parser({
"as_subclass(PyObject* cls)",
});
ParsedArgs<1> parsed_args{};
auto r = parser.parse(_self, args, kwargs, parsed_args);
PyObject* cls = r.pyobject(0);
TORCH_CHECK_TYPE(
PyType_Check(cls),
"cls must be a type (got ",
Py_TYPE(cls)->tp_name,
")");
// guard completely turns off torch dispatch modes, doesn't just pop off the
// stack
torch_dispatch_mode::StashTorchDispatchStackGuard td_g;
c10::impl::DisablePythonDispatcher dpd_g;
return THPVariable_NewWithVar(
(PyTypeObject*)cls,
self.alias(),
c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_make_subclass(
PyObject* _ignored,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_make_subclass(PyObject* cls, Tensor data, bool require_grad=False, *, std::string_view? dispatch_sizes_strides_policy=None, bool dispatch_device=False, bool dispatch_layout=False, Device? device_for_backend_keys=None)",
});
ParsedArgs<7> parsed_args{};
auto r = parser.parse(args, kwargs, parsed_args);
PyObject* cls = r.pyobject(0);
TORCH_CHECK_TYPE(
PyType_Check(cls),
"cls must be a type (got ",
Py_TYPE(cls)->tp_name,
")");
// guard completely turns off torch dispatch modes, doesn't just pop off the
// stack
torch_dispatch_mode::StashTorchDispatchStackGuard td_g;
c10::impl::DisablePythonDispatcher dpd_g;
auto data =
r.tensor(1).detach(); // creates a fresh Tensor (DEFINITELY_UNINITIALIZED)
// We set `data`'s `allow_tensor_metadata_change` to true here, because we
// want to allow the following use case for backward compatibility:
//
// ```python
// rnn = torch.nn.RNN(100, 100, 2)
// # The following calls `torch._cudnn_rnn_flatten_weight(rnn._flat_weights,
// ...)`, # which changes storage of `rnn`'s weights in-place
// rnn.flatten_parameters()
// ```
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
data.set_requires_grad(r.toBool(2));
const auto sizes_strides_policy = r.stringViewOptional(3);
if (sizes_strides_policy.has_value()) {
data.unsafeGetTensorImpl()->set_python_custom_sizes_strides(
parseSizesStridesPolicyArgument(*sizes_strides_policy));
}
if (r.toBool(4)) {
data.unsafeGetTensorImpl()->set_python_custom_device(true);
}
if (r.toBool(5)) {
data.unsafeGetTensorImpl()->set_python_custom_layout(true);
}
if (!r.isNone(6)) {
data.unsafeGetTensorImpl()->_change_backend_component_keys(r.device(6));
}
return THPVariable_NewWithVar(
(PyTypeObject*)cls,
data,
c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_make_wrapper_subclass(
PyObject*,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
// NB: pin_memory doesn't actually do anything
// TODO: strides variant?
// cls: Python subclass type
// size, strides, storage_offset, memory_format, dtype: self-explanatory
// layout: memory layout, e.g. for types of Nested Tensors or other sparse
// tensors
// pin_memory, requires_grad: self-explanatory
// dispatch_sizes_strides_policy: string - which sizes/strides we should
// dispatch to a custom python implementation.
// dispatch_device: whether to dispatch to a custom python implementation
// for device
// dispatch_layout: whether to dispatch to a custom python implementation
// for layout
// _extra_dispatch_keys: additional dispatch keys to add to the tensor
// storage_size: if provided, skip storage size calculation and just use the
// value provided. One use case is for Nested Tensor, where the
// storage size cannot be calculated from the sizes/strides
// (because they contain a NestedInt).
static PythonArgParser parser({
"_make_wrapper_subclass(PyObject* cls, SymIntArrayRef size, SymIntArrayRef? strides=None, "
"SymInt? storage_offset=None, MemoryFormat? memory_format=None, ScalarType dtype=None, "
"Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False, "
"std::string_view? dispatch_sizes_strides_policy=None, bool dispatch_device=False, bool dispatch_layout=False, "
"DispatchKeySet _extra_dispatch_keys=None, SymInt? storage_size=None)",
});
ParsedArgs<15> parsed_args{};
auto r = parser.parse(args, kwargs, parsed_args);
PyObject* cls = r.pyobject(0);
TORCH_CHECK_TYPE(
PyType_Check(cls),
"cls must be a type (got ",
Py_TYPE(cls)->tp_name,
")");
// This is an important safety check; without it, the default behavior will be
// to continue on to the underlying CPU/CUDA kernel advertised by the dispatch
// key, which will immediately segfault because the data pointer is null. By
// forcing users to define __torch_dispatch__ we ensure this does not happen
// TODO: This check is not complete; because the user can disable torch
// dispatch and then go again, triggering segfault. TBH I'm thinking I want
// to delete this function entirely
py::object attr = PyObject_FastGetAttrString(cls, "__torch_dispatch__");
TORCH_CHECK_TYPE(
attr.ptr() != nullptr &&
attr.ptr() != torch::disabled_torch_dispatch_impl(),
((PyTypeObject*)cls)->tp_name,
" must define __torch_dispatch__");
const auto options = TensorOptions()
.dtype(r.scalartype(5))
.device(r.device(7))
.layout(r.layoutOptional(6))
// NB: long standing issue, requires_grad is not
// respected here; you have to set it post facto, see
// https://github.com/pytorch/pytorch/issues/26428
// .requires_grad(r.toBool(7))
.pinned_memory(r.toBool(8));
// don't bother releasing GIL here, as we are not allocating any nontrivial
// data
Tensor tensor;
{
AutoDispatchBelowADInplaceOrView guard{}; // TODO: Remove.
tracer::impl::NoTracerDispatchMode tracer_guard{};
auto sym_sizes = r.symintlist(1);
auto sym_strides_own = r.symintlistOptional(2);
auto sym_strides =
static_cast<std::optional<c10::SymIntArrayRef>>(sym_strides_own);
auto sym_storage_offset = r.toSymIntOptional(3);
c10::SymInt size_bytes;
auto dtype_itemsize = static_cast<int64_t>(options.dtype().itemsize());
auto storage_size = r.toSymIntOptional(14);
if (storage_size.has_value()) {
size_bytes = storage_size.value();
} else if (sym_strides.has_value()) {
size_bytes = at::detail::computeStorageNbytes(
sym_sizes,
sym_strides.value(),
dtype_itemsize,
sym_storage_offset.value_or(0));
} else {
size_bytes = at::detail::computeStorageNbytesContiguous(
sym_sizes, dtype_itemsize, sym_storage_offset.value_or(0));
}
// We use storages **only** to track aliasing of subclasses during tracing.
// The actual data pointers are not valid.
Storage storage{
Storage::use_byte_size_t{},
size_bytes,
/*allocator=*/c10::GetAllocator(c10::kMeta),
/*resizable=*/true};
// TODO: constructor should probably accept data pointer
storage.set_data_ptr_noswap(at::DataPtr{nullptr, r.device(7)});
auto keys = c10::DispatchKeySet({options.computeDispatchKey()});
if (auto mb_extra_keys = r.toDispatchKeySetOptional(13)) {
keys = keys | *mb_extra_keys;
}
tensor = at::detail::make_tensor<TensorImpl>(
std::move(storage), keys, options.dtype());
TensorImpl* tensor_impl = tensor.unsafeGetTensorImpl();
if (sym_strides.has_value()) {
tensor_impl->set_sizes_and_strides(
sym_sizes, sym_strides.value(), sym_storage_offset);
} else {
TORCH_CHECK(
!sym_storage_offset.has_value(),
"setting storage offset without stride not supported");
tensor_impl->generic_set_sizes_contiguous(sym_sizes);
}
const auto sizes_strides_policy = r.stringViewOptional(10);
if (sizes_strides_policy.has_value()) {
tensor.unsafeGetTensorImpl()->set_python_custom_sizes_strides(
parseSizesStridesPolicyArgument(*sizes_strides_policy));
}
}
tensor.set_requires_grad(r.toBool(9));
if (r.toBool(11)) {
tensor.unsafeGetTensorImpl()->set_python_custom_device(true);
}
if (r.toBool(12)) {
tensor.unsafeGetTensorImpl()->set_python_custom_layout(true);
}
return THPVariable_NewWithVar(
(PyTypeObject*)cls,
tensor,
c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
END_HANDLE_TH_ERRORS
}
using getter = PyObject* (*)(PyObject*, void*);
using setter = int (*)(PyObject*, PyObject*, void*);
PyObject* THPVariable_get_python_dispatch(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
const auto& var = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(
var.unsafeGetTensorImpl()->is_python_dispatch());
END_HANDLE_TH_ERRORS
}
// CRTP base class to implement the python bindings for a Tensor property in
// PyTorch A class that implements a property is expected to have:
// - static constexpr const char* name;
// - This variable should hold the Python name of the property
// - static Tensor fn(const Tensor&);
// - This function calls the relevant ATen on the tensor
template <typename T>
struct GetterBase {
static PyObject* getter(THPVariable* self, void* /*unused*/) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, T::name);
}
return THPVariable_Wrap(T::fn(THPVariable_Unpack(self)));
END_HANDLE_TH_ERRORS
}
};
struct PropertyT : GetterBase<PropertyT> {
static constexpr const char* name = "T";
static Tensor fn(const Tensor& t) {
return t.numpy_T();
}
};
struct PropertyH : GetterBase<PropertyH> {
static constexpr const char* name = "H";
static Tensor fn(const Tensor& t) {
return t.matrix_H();
}
};
struct PropertymT : GetterBase<PropertymT> {
static constexpr const char* name = "mT";
static Tensor fn(const Tensor& t) {
return t.mT();
}
};
struct PropertymH : GetterBase<PropertymH> {
static constexpr const char* name = "mH";
static Tensor fn(const Tensor& t) {
return t.mH();
}
};
struct PropertyData : GetterBase<PropertyData> {
static constexpr const char* name = "data";
static Tensor fn(const Tensor& t) {
return t.variable_data();
}
};
struct PropertyGrad : GetterBase<PropertyGrad> {
static constexpr const char* name = "grad";
static Tensor fn(const Tensor& t) {
return t.grad();
}
};
struct PropertyReal : GetterBase<PropertyReal> {
static constexpr const char* name = "real";
static Tensor fn(const Tensor& t) {
return at::real(t);
}
};
struct PropertyImag : GetterBase<PropertyImag> {
static constexpr const char* name = "imag";
static Tensor fn(const Tensor& t) {
return at::imag(t);
}
};
PyObject* THPVariable_get_cdata(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "_cdata");
}
const auto& var = THPVariable_Unpack(self);
return PyLong_FromVoidPtr(var.unsafeGetTensorImpl());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_get_version(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "_version");
}
const auto& var = THPVariable_Unpack(self);
return PyInt_FromLong(var._version());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_get_grad_fn(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "grad_fn");
}
const auto& var = THPVariable_Unpack(self);
if (!var.grad_fn()) {
Py_RETURN_NONE;
}
return functionToPyObject(var.grad_fn());
END_HANDLE_TH_ERRORS
}
static int THPVariable_set_grad_fn(
THPVariable* self,
PyObject* obj,
void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_setter(self, "_grad_fn", obj);
}
TORCH_CHECK(obj, "Deletion of _grad_fn not allowed. Detach tensor instead!");
TORCH_CHECK(obj == Py_None, "_grad_fn can be only set to None");
THPVariable_Unpack(self).detach_();
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
static PyObject* THPVariable_is_leaf(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_leaf");
}
return PyBool_FromLong(!THPVariable_Unpack(self).grad_fn());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_data(THPVariable* self, PyObject* data, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_setter(self, "data", data);
}
TORCH_CHECK(
data, "Deleting tensor data is not allowed. Delete tensor instead!");
TORCH_CHECK_TYPE(
THPVariable_Check(data),
"Variable data has to be a tensor, but got ",
Py_TYPE(data)->tp_name);
THPVariable_Unpack(self).set_data(THPVariable_Unpack(data));
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
int THPVariable_set_grad(THPVariable* self, PyObject* py_grad, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_setter(self, "grad", py_grad);
}
const auto& var = THPVariable_Unpack(self);
if (!py_grad || py_grad == Py_None) {
var.mutable_grad().reset();
return 0;
}
TORCH_CHECK_TYPE(
THPVariable_Check(py_grad),
"assigned grad expected to be a Tensor or None but got grad of type ",
THPUtils_typename(py_grad));
TORCH_CHECK(
self != (THPVariable*)py_grad, "can't assign Variable as its own grad");
const auto& grad = THPVariable_Unpack(py_grad);
TORCH_CHECK(
var.dtype() == grad.dtype(),
"attempting to assign a gradient with dtype '",
grad.dtype(),
"' to a tensor with dtype '",
var.dtype(),
"'. Please ensure that the gradient and the tensor have the same dtype");
TORCH_CHECK(
var.device().type() == grad.device().type(),
"attempting to assign a gradient with device type '",
grad.device().type(),
"' to a tensor with device type '",
var.device().type(),
"'. Please ensure that the gradient and the tensor are on the same device");
if (grad.layout() != kSparse) {
TORCH_CHECK(
grad.options().type_equal(var.options()),
"attempting to assign a gradient to a tensor that has data of a different type");
}
TORCH_CHECK(
grad.get_device() == var.get_device(),
"attempting to assign a gradient located on device with index '",
grad.get_device(),
"' to a tensor located on device with index '",
var.get_device(),
"'. Please ensure that the gradient and the tensor are on the same device");
TORCH_CHECK(
grad.sym_sizes().equals(var.sym_sizes()),
"attempting to assign a gradient of size '",
grad.sym_sizes(),
"' to a tensor of size '",
var.sym_sizes(),
"'. Please ensure that the gradient and the tensor are the same size");
var.mutable_grad() = grad;
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject* THPVariable_get_volatile(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "volatile");
}
const char* msg = "volatile was removed (Variable.volatile is always False)";
auto r = PyErr_WarnEx(PyExc_UserWarning, msg, 1);
if (r != 0)
throw python_error();
Py_RETURN_FALSE;
END_HANDLE_TH_ERRORS
}
int THPVariable_set_volatile(THPVariable* self, PyObject* obj, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_setter(self, "volatile", obj);
}
auto r = PyErr_WarnEx(PyExc_UserWarning, VOLATILE_WARNING, 1);
if (r != 0)
throw python_error();
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject* THPVariable_get_output_nr(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "output_nr");
}
const auto output_nr =
static_cast<long>(THPVariable_Unpack(self).output_nr());
return PyInt_FromLong(output_nr);
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_get_requires_grad(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "requires_grad");
}
if (THPVariable_Unpack(self).requires_grad()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_retains_grad(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "retains_grad");
}
if (THPVariable_Unpack(self).retains_grad()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_get_ndim(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "ndim");
}
return PyInt_FromLong(THPVariable_Unpack(self).dim());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_get_names(PyObject* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function(self)) {
return handle_torch_function_getter((THPVariable*)self, "names");
}
// The long-term plan is to return a list of (python) torch.Dimname.
// However, for now, return a list of string.
const auto& tensor = THPVariable_Unpack(self);
auto size = tensor.dim();
THPObjectPtr tuple(PyTuple_New(size));
if (!tuple)
throw python_error();
const auto dimnames = tensor.names();
for (const auto i : c10::irange(size)) {
PyObject* str = nullptr;
if (dimnames[i].type() == at::NameType::WILDCARD) {
// PyTuple_SET_ITEM steals a reference to the object. When the tuple is
// deallocated, it'll decrement the refcount on Py_None, which is bad.
// To avoid this, we "create" a new reference to Py_None by increasing
// the refcount.
// Sources:
// - https://docs.python.org/3/c-api/tuple.html#c.PyTuple_SetItem
// -
// https://stackoverflow.com/questions/16400600/how-to-return-a-tuple-containing-a-none-value-from-the-c-api
Py_INCREF(Py_None);
str = Py_None;
} else {
str = THPUtils_packString(dimnames[i].symbol().toUnqualString());
if (!str)
throw python_error();
}
PyTuple_SET_ITEM(tuple.get(), i, str);
}
return tuple.release();
END_HANDLE_TH_ERRORS
}
int THPVariable_set_names(PyObject* self, PyObject* names, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function(self)) {
return handle_torch_function_setter((THPVariable*)self, "names", names);
}
const auto& var = THPVariable_Unpack(self);
if (names == Py_None) {
at::internal_set_names_inplace(var, std::nullopt);
} else {
TORCH_CHECK(
THPUtils_checkDimnameList(names),
"names must either be None or a tuple of dim names");
at::internal_set_names_inplace(var, torch::parseDimnameList(names));
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
int THPVariable_set_requires_grad(
THPVariable* self,
PyObject* obj,
void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_setter(self, "requires_grad", obj);
}
TORCH_CHECK(obj && PyBool_Check(obj), "requires_grad must be a bool");
const auto& var = THPVariable_Unpack(self);
auto requires_grad = (obj == Py_True);
if (!var.is_leaf()) {
THPUtils_setError(
autograd::utils::requires_grad_leaf_error(obj == Py_True).c_str());
return -1;
}
if (requires_grad &&
!isDifferentiableType(at::typeMetaToScalarType((var.dtype())))) {
THPUtils_setError(
"only Tensors of floating point and complex dtype can require gradients");
return -1;
}
var.set_requires_grad(requires_grad);
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject* THPVariable_get_name(THPVariable* self, void* unused) {
if (check_has_torch_function((PyObject*)self)) {
HANDLE_TH_ERRORS
return handle_torch_function_getter(self, "name");
END_HANDLE_TH_ERRORS
}
const auto& tensor = THPVariable_Unpack(self);
if (tensor.name().empty())
Py_RETURN_NONE;
return THPUtils_packString(tensor.name().c_str());
}
PyObject* THPVariable_get_backwards_hooks(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "_backward_hooks");
}
if (self->backward_hooks) {
Py_INCREF(self->backward_hooks);
return self->backward_hooks;
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
int THPVariable_set_backwards_hooks(
THPVariable* self,
PyObject* obj,
void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_setter(self, "_backward_hooks", obj);
}
TORCH_CHECK(obj, "Deletion of _backwards_hooks not allowed!");
if (obj == Py_None) {
obj = nullptr;
}
Py_XINCREF(obj);
Py_XDECREF(self->backward_hooks);
self->backward_hooks = obj;
const auto& tensor = THPVariable_Unpack(self);
torch::autograd::impl::clear_hooks(tensor);
if (obj) {
torch::autograd::impl::add_hook(
tensor, std::make_unique<PyFunctionTensorPreHook>(obj, 0));
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject* THPVariable_get_post_accumulate_grad_hooks(
THPVariable* self,
void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "_post_accumulate_grad_hooks");
}
if (self->post_accumulate_grad_hooks) {
Py_INCREF(self->post_accumulate_grad_hooks);
return self->post_accumulate_grad_hooks;
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
int THPVariable_set_post_accumulate_grad_hooks(
THPVariable* self,
PyObject* obj,
void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_setter(
self, "_post_accumulate_grad_hooks", obj);
}
TORCH_CHECK(obj, "Deletion of _post_accumulate_grad_hooks not allowed!");
if (obj == Py_None) {
obj = nullptr;
}
Py_XINCREF(obj);
Py_CLEAR(self->post_accumulate_grad_hooks);
self->post_accumulate_grad_hooks = obj;
const auto& tensor = THPVariable_Unpack(self);
if (obj) {
torch::autograd::impl::set_post_acc_grad_hooks(
tensor, std::make_unique<PyFunctionTensorPostAccGradHooks>(obj));
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject* THPVariable_get_base(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "_base");
}
const auto& tensor = THPVariable_Unpack(self);
if (tensor.is_view()) {
return THPVariable_Wrap(tensor._base());
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_get_shape(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "shape");
}
return THPSize_NewFromSymSizes(THPVariable_Unpack(self));
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_cpu(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_cpu");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_cpu());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_cuda(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_cuda");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_cuda());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_mtia(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_mtia");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_mtia());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_xla(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_xla");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_xla());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_ipu(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_ipu");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_ipu());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_xpu(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_xpu");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_xpu());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_sparse(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_sparse");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_sparse());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_sparse_csr(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_sparse_csr");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_sparse_csr());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_mkldnn(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_mkldnn");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_mkldnn());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_mps(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_mps");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_mps());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_maia(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_maia");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_maia());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_vulkan(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_vulkan");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_vulkan());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_quantized(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_quantized");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_quantized());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_meta(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_meta");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_meta());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_complex(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_complex");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_complex());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_nested(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_nested");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_nested());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_has_symbolic_sizes_strides(
THPVariable* self,
void* unused) {
HANDLE_TH_ERRORS
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(
self_.unsafeGetTensorImpl()->has_symbolic_sizes_strides());
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_dtype(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "dtype");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.scalar_type());
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_layout(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "layout");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.layout());
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_device(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "device");
}
return THPDevice_New(THPVariable_Unpack(self).device());
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_get_nbytes(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "nbytes");
}
return PyLong_FromSize_t(THPVariable_Unpack(self).nbytes());
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_get_itemsize(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "itemsize");
}
return PyLong_FromSize_t(THPVariable_Unpack(self).itemsize());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_real(PyObject* self, PyObject* real, void* unused) {
HANDLE_TH_ERRORS
auto& self_ = THPVariable_Unpack(self);
auto self_real = at::real(self_);
auto real_ = valueToTensor(self_real.options(), real, self_real.device());
{
pybind11::gil_scoped_release no_gil;
self_real.copy_(real_);
return 0;
}
END_HANDLE_TH_ERRORS_RET(-1)
}
int THPVariable_set_imag(PyObject* self, PyObject* imag, void* unused) {
HANDLE_TH_ERRORS
auto& self_ = THPVariable_Unpack(self);
auto self_imag = at::imag(self_);
auto imag_ = valueToTensor(self_imag.options(), imag, self_imag.device());
{
pybind11::gil_scoped_release no_gil;
self_imag.copy_(imag_);
return 0;
}
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject* THPVariable__use_count(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
const auto& t = THPVariable_Unpack(self);
return THPUtils_packUInt64(t.use_count());
END_HANDLE_TH_ERRORS
}
// properties are registered here because we are currently only able to bind
// them manually. TODO: make declarable in native_functions
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyGetSetDef THPVariable_properties[] = {
{"_python_dispatch",
(getter)THPVariable_get_python_dispatch,
nullptr,
nullptr,
nullptr},
{"T", (getter)PropertyT::getter, nullptr, nullptr, nullptr},
{"H", (getter)PropertyH::getter, nullptr, nullptr, nullptr},
{"mT", (getter)PropertymT::getter, nullptr, nullptr, nullptr},
{"mH", (getter)PropertymH::getter, nullptr, nullptr, nullptr},
{"_cdata", (getter)THPVariable_get_cdata, nullptr, nullptr, nullptr},
{"_version", (getter)THPVariable_get_version, nullptr, nullptr, nullptr},
{"grad_fn", (getter)THPVariable_get_grad_fn, nullptr, nullptr, nullptr},
{"_grad_fn",
(getter)THPVariable_get_grad_fn,
(setter)THPVariable_set_grad_fn,
nullptr,
nullptr},
{"is_leaf", (getter)THPVariable_is_leaf, nullptr, nullptr, nullptr},
{"retains_grad",
(getter)THPVariable_retains_grad,
nullptr,
nullptr,
nullptr},
{"data",
(getter)PropertyData::getter,
(setter)THPVariable_set_data,
nullptr,
nullptr},
{"_grad",
(getter)PropertyGrad::getter,
(setter)THPVariable_set_grad,
nullptr,
nullptr}, // Allows the python class to override .grad
{"grad",
(getter)PropertyGrad::getter,
(setter)THPVariable_set_grad,
nullptr,
nullptr},
{"_base", (getter)THPVariable_get_base, nullptr, nullptr, nullptr},
{"volatile",
(getter)THPVariable_get_volatile,
(setter)THPVariable_set_volatile,
nullptr,
nullptr},
{"output_nr", (getter)THPVariable_get_output_nr, nullptr, nullptr, nullptr},
{"requires_grad",
(getter)THPVariable_get_requires_grad,
(setter)THPVariable_set_requires_grad,
nullptr,
nullptr},
{"_backward_hooks",
(getter)THPVariable_get_backwards_hooks,
(setter)THPVariable_set_backwards_hooks,
nullptr,
nullptr},
{"_post_accumulate_grad_hooks",
(getter)THPVariable_get_post_accumulate_grad_hooks,
(setter)THPVariable_set_post_accumulate_grad_hooks,
nullptr,
nullptr},
{"name", (getter)THPVariable_get_name, nullptr, nullptr, nullptr},
{"shape", (getter)THPVariable_get_shape, nullptr, nullptr, nullptr},
{"is_cuda", (getter)THPVariable_is_cuda, nullptr, nullptr, nullptr},
{"is_mtia", (getter)THPVariable_is_mtia, nullptr, nullptr, nullptr},
{"is_cpu", (getter)THPVariable_is_cpu, nullptr, nullptr, nullptr},
{"is_xla", (getter)THPVariable_is_xla, nullptr, nullptr, nullptr},
{"is_xpu", (getter)THPVariable_is_xpu, nullptr, nullptr, nullptr},
{"is_ipu", (getter)THPVariable_is_ipu, nullptr, nullptr, nullptr},
{"is_sparse", (getter)THPVariable_is_sparse, nullptr, nullptr, nullptr},
{"is_sparse_csr",
(getter)THPVariable_is_sparse_csr,
nullptr,
nullptr,
nullptr},
{"is_mkldnn", (getter)THPVariable_is_mkldnn, nullptr, nullptr, nullptr},
{"is_mps", (getter)THPVariable_is_mps, nullptr, nullptr, nullptr},
{"is_maia", (getter)THPVariable_is_maia, nullptr, nullptr, nullptr},
{"is_vulkan", (getter)THPVariable_is_vulkan, nullptr, nullptr, nullptr},
{"is_complex", (getter)THPVariable_is_complex, nullptr, nullptr, nullptr},
{"is_quantized",
(getter)THPVariable_is_quantized,
nullptr,
nullptr,
nullptr},
{"is_meta", (getter)THPVariable_is_meta, nullptr, nullptr, nullptr},
{"is_nested", (getter)THPVariable_is_nested, nullptr, nullptr, nullptr},
{"_has_symbolic_sizes_strides",
(getter)THPVariable_has_symbolic_sizes_strides,
nullptr,
nullptr,
nullptr},
{"dtype", (getter)THPVariable_dtype, nullptr, nullptr, nullptr},
{"layout", (getter)THPVariable_layout, nullptr, nullptr, nullptr},
{"device", (getter)THPVariable_device, nullptr, nullptr, nullptr},
{"ndim", (getter)THPVariable_get_ndim, nullptr, nullptr, nullptr},
{"nbytes", (getter)THPVariable_get_nbytes, nullptr, nullptr, nullptr},
{"itemsize", (getter)THPVariable_get_itemsize, nullptr, nullptr, nullptr},
{"names",
(getter)THPVariable_get_names,
(setter)THPVariable_set_names,
nullptr,
nullptr},
{"real",
(getter)PropertyReal::getter,
(setter)THPVariable_set_real,
nullptr,
nullptr},
{"imag",
(getter)PropertyImag::getter,
(setter)THPVariable_set_imag,
nullptr,
nullptr},
{nullptr}};
static PyMappingMethods THPVariable_as_mapping = {
THPVariable_length,
THPVariable_getitem,
THPVariable_setitem,
};
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static PyMethodDef extra_methods[] = {
{"as_subclass",
castPyCFunctionWithKeywords(THPVariable_as_subclass),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_make_subclass",
castPyCFunctionWithKeywords(THPVariable_make_subclass),
METH_STATIC | METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_make_wrapper_subclass",
castPyCFunctionWithKeywords(THPVariable_make_wrapper_subclass),
METH_STATIC | METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_fix_weakref", THPVariable_fix_weakref, METH_NOARGS, nullptr},
{"_view_func",
castPyCFunctionWithKeywords(THPVariable_view_func),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_view_func_unsafe",
castPyCFunctionWithKeywords(THPVariable_view_func_unsafe),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_rev_view_func_unsafe",
THPVariable_rev_view_func_unsafe,
METH_O,
nullptr},
{"_use_count", THPVariable__use_count, METH_NOARGS, nullptr},
{nullptr}};
struct THPVariableMeta {
PyHeapTypeObject base;
};
int THPVariableMetaType_init(PyObject* cls, PyObject* args, PyObject* kwargs);
PyTypeObject THPVariableMetaType = {
PyVarObject_HEAD_INIT(DEFERRED_ADDRESS(&PyType_Type), 0)
"torch._C._TensorMeta", /* tp_name */
sizeof(THPVariableMeta), /* tp_basicsize */
0, /* tp_itemsize */
nullptr, /* tp_dealloc */
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
// NOLINTNEXTLINE(misc-redundant-expression)
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
nullptr, /* tp_doc */
nullptr, /* tp_traverse */
nullptr, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
nullptr, /* tp_methods */
nullptr, /* tp_members */
nullptr, /* tp_getset */
DEFERRED_ADDRESS(&PyType_Type), /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
THPVariableMetaType_init, /* tp_init */
nullptr, /* tp_alloc */
nullptr, /* tp_new */
};
PyTypeObject THPVariableType = {
PyVarObject_HEAD_INIT(&THPVariableMetaType, 0)
"torch._C.TensorBase", /* tp_name */
sizeof(THPVariable), /* tp_basicsize */
0, /* tp_itemsize */
// This is unspecified, because it is illegal to create a THPVariableType
// directly. Subclasses will have their tp_dealloc set appropriately
// by the metaclass
nullptr, /* tp_dealloc */
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
&THPVariable_as_mapping, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
// NOLINTNEXTLINE(misc-redundant-expression)
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_GC, /* tp_flags */
nullptr, /* tp_doc */
// Also set by metaclass
(traverseproc)THPFake_traverse, /* tp_traverse */
(inquiry)THPFake_clear, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
nullptr, /* tp_methods */
nullptr, /* tp_members */
THPVariable_properties, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
// Although new is provided here, it is illegal to call this with cls ==
// THPVariableMeta. Instead, subclass it first and then construct it
THPVariable_pynew, /* tp_new */
};
PyObject* THPVariable_pynew(
PyTypeObject* type,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
TORCH_CHECK(
type != &THPVariableType,
"Cannot directly construct TensorBase; subclass it and then construct that");
jit::tracer::warn("torch.Tensor", jit::tracer::WARN_CONSTRUCTOR);
auto tensor = torch::utils::base_tensor_ctor(args, kwargs);
// WARNING: tensor is NOT guaranteed to be a fresh tensor; e.g., if it was
// given a raw pointer that will refcount bump
// NB: base_tensor_ctor can call into dispatched ATen functions (e.g.,
// alias(), lift_fresh()) which can return Tensor subclasses. We allow
// these to be passed on directly.
return THPVariable_NewWithVar(
type,
tensor,
c10::impl::PyInterpreterStatus::MAYBE_UNINITIALIZED,
/*allow_preexisting_pyobj=*/true);
END_HANDLE_TH_ERRORS
}
// NB: this is not the tp_dealloc on THPVariable; instead, its the dealloc
// on subclasses. It's never valid to construct a THPVariable so it's not
// necessary to implement the dealloc for that case
void THPVariable_subclass_dealloc(PyObject* self) {
if (THPVariable_tryResurrect((THPVariable*)self))
return;
// This is like a crappy version of subtype_dealloc.
// Unfortunately, we cannot directly delegate to
// subtype_dealloc as it will start walking the parent
// chain *starting with* the type of self, which will cause
// us to go back to our custom dealloc.
//
// We have to replicate the subtype_dealloc logic to ensure
// that finalizers are handled correctly
PyTypeObject* type = Py_TYPE(self);
TORCH_INTERNAL_ASSERT(type->tp_flags & Py_TPFLAGS_HEAPTYPE);
TORCH_INTERNAL_ASSERT(PyType_IS_GC(type), "GC types not implemented");
PyObject_GC_UnTrack(self);
// TODO: consider using trash can
bool has_finalizer = type->tp_finalize || type->tp_del;
if (type->tp_finalize) {
PyObject_GC_Track(self);
if (PyObject_CallFinalizerFromDealloc(self) < 0) {
/* Resurrected */
return;
}
PyObject_GC_UnTrack(self);
}
// base test is unnecessary as THPVariable does not set this
if (type->tp_weaklistoffset) {
PyObject_ClearWeakRefs(self);
}
if (type->tp_del) {
PyObject_GC_Track(self);
type->tp_del(self);
if (Py_REFCNT(self) > 0) {
/* Resurrected */
return;
}
PyObject_GC_UnTrack(self);
}
if (has_finalizer) {
/* New weakrefs could be created during the finalizer call.
If this occurs, clear them out without calling their
finalizers since they might rely on part of the object
being finalized that has already been destroyed. */
if (type->tp_weaklistoffset) {
/* Modeled after GET_WEAKREFS_LISTPTR() */
PyWeakReference** list =
(PyWeakReference**)PyObject_GET_WEAKREFS_LISTPTR(self);
while (*list)
_PyWeakref_ClearRef(*list);
}
}
// Clear all slots until we get to base class THPVariableType
{
PyTypeObject* base = type;
while (base != &THPVariableType) {
if (Py_SIZE(base)) {
clear_slots(base, self);
}
base = base->tp_base;
TORCH_INTERNAL_ASSERT(base);
}
}
// All Python defined classes have __dict__
if (C10_LIKELY(type->tp_dictoffset)) {
PyObject** dictptr = _PyObject_GetDictPtr(self);
if (dictptr != nullptr) {
PyObject* dict = *dictptr;
if (dict != nullptr) {
Py_DECREF(dict);
*dictptr = nullptr;
}
}
}
// subtype_dealloc allows for this but we don't
TORCH_INTERNAL_ASSERT(Py_TYPE(self) == type);
// Finally clear out the base THPVariable
THPVariable_subclass_clear((THPVariable*)self);
((THPVariable*)self)->cdata.~MaybeOwned<Variable>();
Py_TYPE(self)->tp_free(self);
// Python defined subclasses should always be on the heap
TORCH_INTERNAL_ASSERT(type->tp_flags & Py_TPFLAGS_HEAPTYPE);
Py_DECREF(type);
}
// Creates a new Python object for a Variable. The status parameter
// specifies what the interpreter tag status on the object is; for
// example, if you ran check_pyobj, the return optional of this object
// tells you if the tensor was already tagged or not so you can pass
// TAGGED_BY_US or MAYBE_UNINITIALIZED; in other cases, you know where
// var came from and can directly assert that it's DEFINITELY_UNINITIALIZED.
// It's ALWAYS safe (albeit slower) to call this with MAYBE_UNINITIALIZED.
static PyObject* THPVariable_NewWithVar(
PyTypeObject* type,
const at::TensorBase& _var,
c10::impl::PyInterpreterStatus status,
bool allow_preexisting_pyobj) {
// Make sure that the reinterpret into a THPVariable* will be valid
TORCH_CHECK(
PyType_IsSubtype(type, &THPVariableType),
"Creating a Tensor subclass from a class ",
"that does not inherit from Tensor is not possible. Make sure your class inherits from Tensor.");
// This function overwrite the Tensor's pyobj field without extra checks
// Make sure it is not set otherwise we would leak memory
auto mb_obj = _var.unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
getPyInterpreter(), /*ignore_hermetic_tls=*/false);
// Under some circumstances, we may attempt to create a new Python
// object for a variable that already has a Python object. The most common
// situation this can occur is if you have a TorchDispatchMode active that
// is returning a subclass from lift_fresh (which is invoked to
// appropriately "wrap" a constant tensor into whatever ambient modes are
// active.)
//
// In general, it is impossible to handle this case compositionally.
// Suppose you have a user call ATensor([1, 2, 3]) when a mode is active
// that is transforming all ops (including the internal lift_fresh call that
// transforms [1, 2, 3] into a torch.tensor([1., 2., 3.])) to output
// BTensor, where ATensor and BTensor are completely unrelated subclasses
// and there is no way to compose them. There is no way to satisfy the user
// request here: in particular, you can't just try to re-invoke the ATensor
// constructor on the returned BTensor, because (1) this could cause an
// infinite loop--we are already in ATensor.__new__ and (2) there isn't any
// guarantee that ATensor.__new__ supports a single element constructor
// anyway.
//
// However, a more common case is a user just called torch.Tensor([1, 2, 3]),
// and a fake tensor mode is active. Really, all you want is to get back
// a FakeTensor, in the same way torch.tensor([1, 2, 3]) or torch.arange(3)
// would have returned a fake tensor (concretely, the way this happens
// is we create a *real* tensor torch.tensor([1., 2., 3.]), and then it
// turns into a FakeTensor when we call lift_fresh on this real tensor).
// This case is compositional because FakeTensor is a subclass of Tensor, so
// it's valid for us to return it in place of a Tensor. So this is what we
// do.
if (mb_obj.has_value() && mb_obj.value()) {
TORCH_CHECK(
allow_preexisting_pyobj,
"Creating a new Tensor subclass ",
type->tp_name,
" but the raw Tensor object is already associated to a python object ",
"of type ",
mb_obj.value()->ob_type->tp_name);
// Even if we allow pre-existing PyObject, we don't allow completely
// ignoring the requested type. Check that we fulfilled a subtype
// relation here. In the common case the requested type is Tensor and
// this always succeeds.
PyObject* obj = *mb_obj;
// Check if it's OK to just directly return the Python object without
// allocating a new variable. We just check that the existing Python
// object is a subclass of the requested type.
PyTypeObject* obj_type = Py_TYPE(obj);
TORCH_CHECK(
obj_type == type || PyType_IsSubtype(obj_type, type),
"Creating a new Tensor subclass ",
type->tp_name,
" but the raw Tensor object is already associated to a python object ",
"of type ",
mb_obj.value()->ob_type->tp_name,
" which is not a subclass of the "
"requested type");
// We may (in fact, we typically will) need to resurrect this
return THPVariable_Wrap(_var);
}
PyObject* obj = type->tp_alloc(type, 0);
if (obj) {
auto v = (THPVariable*)obj;
// TODO: named constructor to avoid default initialization
new (&v->cdata) MaybeOwned<Variable>();
if (c10::impl::HermeticPyObjectTLS::get_state()) {
// Do NOT initialize pyobj field on the tensor, you own the C++
v->cdata = MaybeOwned<Variable>::owned(Variable(_var));
TORCH_INTERNAL_ASSERT(
!check_has_torch_dispatch(obj),
"While HermeticPyObject was enabled, we attempted to create a tensor "
"subclass with __torch_dispatch__. This violates the invariant that "
"operations in HermeticPyObject have equivalent C++ implementations. "
"If your operator registered from Python operator registration isn't "
"doing anything strange, there may be an internal PyTorch bug involving "
"not appropriately disabling TorchDispatchMode before executing "
"Python op registration.");
} else {
// Normal codepath
v->cdata = MaybeOwned<Variable>::owned(Variable(_var));
const auto& var = THPVariable_Unpack(v);
var.unsafeGetTensorImpl()->pyobj_slot()->init_pyobj(
getPyInterpreter(), obj, status);
if (check_has_torch_dispatch(obj)) {
var.unsafeGetTensorImpl()->set_python_dispatch(true);
}
}
}
return obj;
}
/// NOTE [ PyObject Traversal ]
///
/// PyObjects that are wrapping c++ objects can lead to non-trivial traverse
/// logic and it can be tricky to know what to traverse and when. This note
/// tries to clarify what is the danger here and a simple algorithm to choose
/// how to write the tp_traverse and tp_clear functions. If you're not already
/// familiar with how the CPython GC works, you should read this in-depth
/// description: https://devguide.python.org/garbage_collector/
///
/// The complexity for us comes from the fact that some c++ shared_ptr objects
/// own references to python objects and are also owned both by other python
/// objects and c++ objects. This means that to allow the GC to collect all
/// cycles, we need to properly implement the traverse/clear methods that take
/// into account these C++ ownership links.
///
/// The main danger here comes from the fact that, while all python-related code
/// is thread safe wrt the GC execution (thanks to the GIL), other threads might
/// be using our C++ objects arbitrarily which can lead to shared_ptr ref count
/// going up or down in between the different traverse/clear invocations. The
/// one constraint we add here that is not explicitly mentioned in the GC
/// description above is that for a given GC run (meaning while the GIL is
/// held), the traverse/clear pair should never report different ownership
/// relations: if traverse visited a given PyObject, then the clear within that
/// same GC run must still be the sole owner and clear that PyObject.
///
/// A more mechanical algorithm to know what to traverse/clear is as follows:
/// - Any field on this PyObject that contains a strong reference to another
/// PyObject
/// must be visited and cleared. An example of that is the "backward_hooks"
/// field of the THPVariable.
/// - Any field that contains a C++ object that is uniquely owned by this
/// PyObject (either
/// a unique_ptr or a shared_ptr with use_count==1) should have all the
/// PyObject it owns visited and cleared. An example would be here the
/// tensor hooks.
/// - If that uniquely owned C++ object also uniquely owns other C++ objects,
/// these should be
/// visited and cleared as well if they contain any PyObject.
///
/// Caveat: to avoid slow runtime, we limit the depth of this exploration of C++
/// objects in practice and we do not, for example, go through the whole
/// autograd graph, even if it is uniquely owned. This is a known place where
/// users can create noncollectable cycles as described in:
/// https://github.com/pytorch/pytorch/issues/7343
///
static int traverse_slots(
PyTypeObject* type,
PyObject* self,
visitproc visit,
void* arg) {
auto n = Py_SIZE(type);
auto mp = type->tp_members;
for (Py_ssize_t i = 0; i < n; i++, mp++) {
if (mp->type == T_OBJECT_EX) {
char* addr = (char*)self + mp->offset;
PyObject* obj = *(PyObject**)addr;
if (obj != nullptr) {
int err = visit(obj, arg);
if (err)
return err;
}
}
}
return 0;
}
static int THPVariable_subclass_traverse(
PyObject* self,
visitproc visit,
void* arg) {
// If the tensor is eligible to be resurrected, don't traverse it; instead
// treat all of its references as a root (as they WOULD be a root since we
// can treat the inbound C++ references as root owners).
//
// This works because unlike conventional GCs, Python's GC operates in two
// phases: first it uses traverse to discover roots, and then it uses traverse
// to do reachability. Bypassing traverse during root discovery forces Python
// to treat self as a root for everything it refers to. For a full
// explanation of the algorithm see
// https://devguide.python.org/garbage_collector/
//
// NB: if we don't hold an owning reference to the underlying Tensor, it is
// possible that the underlying Tensor has already gone dead. In that case,
// it's not safe to access it. But it's also safe to traverse, because if
// the underlying Tensor *is* live, then root discovery will determine that
// self is live, and nothing will get GC'ed anyway (resurrection cannot happen
// if the C++ objects owns the PyObject)
THPVariable* var = reinterpret_cast<THPVariable*>(self);
if (isResurrectable(var)) {
return 0;
}
// Crappy version of subtype_traverse; same deal as
// THPVariable_subclass_dealloc
PyTypeObject* type = Py_TYPE(self);
// Traverse slots until we get to base class THPVariableType
{
PyTypeObject* base = type;
while (base != &THPVariableType) {
if (Py_SIZE(base)) {
int err = traverse_slots(base, self, visit, arg);
if (err)
return err;
}
base = base->tp_base;
TORCH_INTERNAL_ASSERT(base);
}
}
// All Python defined classes have __dict__
if (C10_LIKELY(type->tp_dictoffset)) {
PyObject** dictptr = _PyObject_GetDictPtr(self);
if (dictptr && *dictptr)
Py_VISIT(*dictptr);
}
TORCH_INTERNAL_ASSERT(type->tp_flags & Py_TPFLAGS_HEAPTYPE);
Py_VISIT(type);
// Finally traverse THPVariable special stuff
Py_VISIT(var->backward_hooks);
Py_VISIT(var->post_accumulate_grad_hooks);
if (!var->cdata.unsafeIsBorrowed()) {
const auto& tensor = THPVariable_Unpack(var);
if (tensor.defined()) {
// WARNING: The grad_fn traversal logic is very subtle, if you change
// this, be very careful not to re-introduce this bug:
// https://gist.github.com/zou3519/7ac92b84dd7d206dcc6eae55fee8372c
// We ensure that we follow NOTE [ PyObject Traversal ] he by checking
// that this python object is the sole owner of the underlying Tensor and
// that this Tensor is the sole owner of its grad_fn. In this case, the
// only way to get a new reference to the grad_fn is by using this python
// object, which requires the GIL to be accessed. Note that this is only
// valid as long as user don't share non-owning references across
// different threads (which is crazy and should never be done).
auto autograd_meta = torch::autograd::impl::get_autograd_meta(tensor);
if (tensor.use_count() == 1) {
if (autograd_meta) {
// Do NOT call grad_fn() here as that might trigger a recompute
const auto& grad_fn = autograd_meta->grad_fn_;
if (grad_fn && grad_fn.use_count() == 1) {
// All Node can have a pyobj (stored in "pyobj_")
Py_VISIT(grad_fn->pyobj());
// PyNode are special as they also have an "obj" field
if (auto py_node_fn = dynamic_cast<PyNode*>(grad_fn.get())) {
Py_VISIT(py_node_fn->obj);
}
}
}
}
if (autograd_meta) {
for (const auto& hook : torch::autograd::impl::hooks(tensor)) {
if (auto pyhook =
dynamic_cast<PyFunctionTensorPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
}
}
}
return 0;
}
int THPVariableMetaType_init(PyObject* cls, PyObject* args, PyObject* kwargs) {
if (PyType_Type.tp_init(cls, args, kwargs) < 0) {
return -1;
}
// It is important for all three of these to be overriden correctly for the
// resurrection checks to properly happen. In particular, an older version
// was not overriding tp_clear here. This lead to the default subtype_clear
// running on the Tensor object (as only TensorBase tp_clear was custom),
// clearing the __dict__ field, before the TensorBase custom clear was called
// and would properly detect the resurrect.
// See https://github.com/pytorch/pytorch/issues/136358 for the exact behavior
((PyTypeObject*)cls)->tp_dealloc = (destructor)THPVariable_subclass_dealloc;
((PyTypeObject*)cls)->tp_traverse =
(traverseproc)THPVariable_subclass_traverse;
((PyTypeObject*)cls)->tp_clear = (inquiry)THPVariable_subclass_clear;
// Don't do anything for the base Tensor class
if (!THPVariableClass) {
return 0;
}
// Forbid subclassing _TensorBase directly
py::tuple mro =
py::reinterpret_borrow<py::tuple>(((PyTypeObject*)cls)->tp_mro);
bool is_subclass_of_thpvariable = false;
for (py::handle h : mro) {
if (h.ptr() == THPVariableClass) {
is_subclass_of_thpvariable = true;
break;
}
}
if (!is_subclass_of_thpvariable) {
PyErr_SetString(PyExc_RuntimeError, "Cannot subclass _TensorBase directly");
return -1;
}
// If the user provided a torch_dispatch implementation, disable
// torch_function.
py::object torch_dispatch_impl = py::reinterpret_steal<py::object>(
PyObject_GetAttrString(cls, "__torch_dispatch__"));
py::object torch_dispatch_default = py::reinterpret_steal<py::object>(
PyObject_GetAttrString(THPVariableClass, "__torch_dispatch__"));
if (torch_dispatch_impl.ptr() != torch_dispatch_default.ptr()) {
py::object torch_function_impl = py::reinterpret_steal<py::object>(
PyObject_GetAttrString(cls, "__torch_function__"));
py::object torch_function_default_bound = py::reinterpret_steal<py::object>(
PyObject_GetAttrString(THPVariableClass, "__torch_function__"));
// Since our __torch_function__ is a classmethod, we need to "unbound" the
// method to get the raw function
py::object torch_function_default = py::reinterpret_steal<py::object>(
PyObject_GetAttrString(torch_function_default_bound.ptr(), "__func__"));
// User-defined __torch_function__ might not be a classmethod
if (PyObject_HasAttrString(torch_function_impl.ptr(), "__func__")) {
torch_function_impl = py::reinterpret_steal<py::object>(
PyObject_GetAttrString(torch_function_impl.ptr(), "__func__"));
}
if (torch_function_impl.ptr() == torch_function_default.ptr()) {
PyObject_SetAttrString(
cls, "__torch_function__", torch::disabled_torch_function_impl());
}
}
return 0;
}
namespace torch::autograd {
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
extern PyMethodDef variable_methods[];
extern void initTorchFunctions(PyObject* module);
void initTensorImplConversion(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
m.def("_wrap_tensor_impl", [](void* ptr) {
auto p = c10::intrusive_ptr<c10::TensorImpl, at::UndefinedTensorImpl>::
unsafe_reclaim_from_nonowning(static_cast<c10::TensorImpl*>(ptr));
TORCH_CHECK(p.defined(), "Can't wrap undefined tensor");
auto tensor = at::Tensor::wrap_tensor_impl(std::move(p));
return py::cast(std::move(tensor));
});
// set on the module level to avoid mixing pybind and plain CPython extensions
m.def("_tensor_impl_raw_handle", [](torch::autograd::Variable* t) -> void* {
// We return a raw non-owning pointer here, we rely on surrounding
// code to keep the original tensor alive
return t->getIntrusivePtr().get();
});
}
} // namespace torch::autograd
bool THPVariable_initModule(PyObject* module) {
THPVariableMetaType.tp_base = &PyType_Type;
if (PyType_Ready(&THPVariableMetaType) < 0)
return false;
Py_INCREF(&THPVariableMetaType);
PyModule_AddObject(module, "_TensorMeta", (PyObject*)&THPVariableMetaType);
static std::vector<PyMethodDef> methods;
THPUtils_addPyMethodDefs(methods, torch::autograd::variable_methods);
THPUtils_addPyMethodDefs(methods, extra_methods);
THPVariableType.tp_methods = methods.data();
if (PyType_Ready(&THPVariableType) < 0)
return false;
Py_INCREF(&THPVariableType);
PyModule_AddObject(module, "TensorBase", (PyObject*)&THPVariableType);
Py_INCREF(&THPVariableType);
PyModule_AddObject(module, "_TensorBase", (PyObject*)&THPVariableType);
torch::autograd::initTorchFunctions(module);
torch::autograd::initTensorImplConversion(module);
torch::utils::validate_numpy_for_dlpack_deleter_bug();
return true;
}
|