File: wrap_outputs.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (149 lines) | stat: -rw-r--r-- 3,743 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#pragma once

// Wrap tensor operation outputs as PyObject*

#include <ATen/ScalarOps.h>
#include <ATen/core/Tensor.h>
#include <c10/util/irange.h>
#include <torch/csrc/python_headers.h>
#include <initializer_list>
#include <tuple>

#include <torch/csrc/Dtype.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/tensor_qschemes.h>

namespace torch::autograd::utils {

inline PyObject* wrap(bool value) {
  if (value) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
}

inline PyObject* wrap(c10::DeviceIndex value) {
  return THPUtils_packDeviceIndex(value);
}

inline PyObject* wrap(int64_t value) {
  return THPUtils_packInt64(value);
}

inline PyObject* wrap(double value) {
  return PyFloat_FromDouble(value);
}

inline PyObject* wrap(c10::complex<double> value) {
  // I could probably also use FromComplex with a reinterpret cast,
  // but... eh.
  return PyComplex_FromDoubles(value.real(), value.imag());
}

inline PyObject* wrap(void* value) {
  return PyLong_FromVoidPtr(value);
}

inline PyObject* wrap(THPDtype* dtype) {
  return Py_NewRef(dtype);
}

inline PyObject* wrap(at::ScalarType scalarType) {
  return Py_NewRef(getTHPDtype(scalarType));
}

inline PyObject* wrap(THPLayout* layout) {
  return Py_NewRef(layout);
}

inline PyObject* wrap(at::Layout layout) {
  return Py_NewRef(getTHPLayout(layout));
}

inline PyObject* wrap(const at::Tensor& tensor) {
  return THPVariable_Wrap(tensor);
}

inline PyObject* wrap(const at::Scalar& scalar) {
  return wrap(scalar_to_tensor(scalar));
}

inline PyObject* wrap(at::QScheme qscheme) {
  auto* thp_qscheme = torch::utils::getTHPQScheme(qscheme);
  Py_INCREF(thp_qscheme);
  return thp_qscheme;
}

inline PyObject* wrap(at::TensorList tl) {
  auto r = THPObjectPtr{PyTuple_New(static_cast<Py_ssize_t>(tl.size()))};
  if (!r)
    throw python_error();
  for (const auto i : c10::irange(tl.size())) {
    PyTuple_SET_ITEM(r.get(), i, wrap(tl[i]));
  }
  return r.release();
}

inline PyObject* wrap(at::IntArrayRef list) {
  auto r = THPObjectPtr{PyTuple_New(static_cast<Py_ssize_t>(list.size()))};
  if (!r)
    throw python_error();
  for (const auto i : c10::irange(list.size())) {
    PyTuple_SET_ITEM(r.get(), i, wrap(list[i]));
  }
  return r.release();
}

inline PyObject* wrap(at::Stream stream) {
  return THPStream_Wrap(stream);
}

namespace detail {
template <typename F, typename Tuple, size_t... Is>
void apply_with_idx_impl(
    const F& f,
    Tuple& t,
    std::index_sequence<Is...> /*indices*/) {
  (void)std::initializer_list<int>{(f(std::get<Is>(t), Is), 0)...};
}

// For tuple(a, b, c), calls f(a, 0), f(b, 1), f(c, 2)
template <typename F, typename... Ts>
void apply_with_idx(const F& f, std::tuple<Ts...>& t) {
  apply_with_idx_impl(f, t, std::index_sequence_for<Ts...>{});
}
} // namespace detail

template <typename... Ts>
PyObject* wrap(std::tuple<Ts...> values) {
  auto r = THPObjectPtr{PyTuple_New(sizeof...(Ts))};
  if (!r)
    throw python_error();
  detail::apply_with_idx(
      [&](auto& value, size_t idx) {
        PyTuple_SET_ITEM(r.get(), idx, wrap(std::move(value)));
      },
      values);
  return r.release();
}

template <typename... Ts>
PyObject* wrap(PyTypeObject* type, std::tuple<Ts...> values) {
  auto r = THPObjectPtr{PyStructSequence_New(type)};
  if (!r)
    throw python_error();
  detail::apply_with_idx(
      [&](auto& value, size_t idx) {
        PyStructSequence_SET_ITEM(r.get(), idx, wrap(std::move(value)));
      },
      values);
  return r.release();
}

} // namespace torch::autograd::utils